Structurally R-Controllable and Structurally R-Observable Descriptor Linear Electrical Circuits

Authors

DOI: https://doi.org/10.14313/JAMRIS/3-2021/21
Keywords: structural, R-controllability, R-observability, descriptor, linear, electrical circuit

Abstract

Structurally R-controllable and structurally R-observable descriptor linear electrical circuits are investigated.
Sufficient conditions are given under which the Rcontrollability and R-observability of descriptor linear electrical circuits are independent of their parameters.

S. H. Żak, Systems and control, Oxford University Press: New York, 2003.

P. J. Antsaklis and A. N. Michel, Linear systems, Birkhäuser: Boston, MA, 2006, 10.1007/0‑8176‑4435‑0.

S. L. Campbell, J. Meyer, Carl D., and N. J. Rose, “Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Constant Coefficients”, SIAM Journal on Applied Mathematics, vol. 31, no. 3, 1976, 411–425, 10.1137/0131035.

D. Cobb, “Controllability, observability, and duality in singular systems”, IEEE Transactions on Automatic Control, vol. 29, no. 12, 1984, 1076–1082, 10.1109/TAC.1984.1103451.

L. Dai, Singular control systems, number 118 in Lecture notes in control and information sciences, Springer: Berlin Heidelberg, 1989, 10.1007/BFb0002475.

G.‑R. Duan, Analysis and Design of Descriptor Linear Systems, Springer: New York, NY, 2010, 10.1007/978‑1‑4419‑6397‑0.

T. Kaczorek and K. Borawski, “Minimum energy control of descriptor discrete‑time linear systems by the use of Weierstrass‑Kronecker decomposition”, Archives of Control Sciences, vol. 26, no. 2, 2016, 177–187.

T. Kaczorek, Linear control systems: synthesis of multivariable systems and multidimensional systems, J. Wiley: Taunton, Somerset, England : New York, 1992.

T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer International Publishing: Cham, 2015, 10.1007/978‑3‑319‑11361‑6.

T. Kailath, Linear systems, Prentice‑Hall: Englewood Cliffs, N.J, 1980.

R. E. Kalman, “On the general theory of control systems”, IFAC Proceedings Volumes, vol. 1, no. 1, 1960, 491–502, 10.1016/S1474‑6670(17)70094‑8.

R. E. Kalman, “Mathematical Description of Linear Dynamical Systems”, Journal of the Society for Industrial and Applied Mathematics Series A Control, vol. 1, no. 2, 1963, 152–192, 10.1137/0301010.

J. Klamka, “Complete controllability of singular 2‑d system”. In: Proc. 13th IMACS World Congress, Dublin, Ireland, 1991, 1839–1840.

J. Klamka, Controllability of dynamical systems, volume 48, Kluwer Academic Publishers Dordrecht, 1991.

H. H. Rosenbrock, State‑space and multivariable theory, Nelson: London, 1970.

L. Sajewski, “Solution of the State Equation of Descriptor Fractional Continuous‑Time Linear Systems with Two Different Fractional”. In: R. Szewczyk, C. Zieliński, and M. Kaliczyńska, eds., Progress in Automation, Robotics and Measuring Techniques, Cham, 2015, 233–242, 10.1007/978‑3‑319‑15796‑2_24.

P. Van Dooren, “The computation of Kronecker’s canonical form of a singular pencil”, Linear Algebra and its Applications, vol. 27, 1979, 103–140, 10.1016/0024‑3795(79)90035‑1.

E. Virnik, “Stability analysis of positive descriptor systems”, Linear Algebra and its Applications, vol. 429, no. 10, 2008, 2640–2659, 10.1016/j.laa.2008.03.002.

E. Yip and R. Sincovec, “Solvability, controllability, and observability of continuous descriptor systems”, IEEE Transactions on Automatic Control, vol. 26, no. 3, 1981, 702–707, 10.1109/TAC.1981.1102699.

Downloads

Published
2022-05-21
Issue
Section
Articles

Most read articles by the same author(s)