3D Maps Integration based on Overlapping Regions Matching


DOI: https://doi.org/10.14313/JAMRIS/3-2021/20
Keywords: Multi-robot mapping, Map merging, Feature matching, ICP, NDT, Octomaps


This paper presents a method of 3D maps integration based on overlapping regions detection and matching. The algorithm works without an initial guess about transformation. The process of finding transformation between maps can be divided into two steps. The first one is the estimation of an initial transformation based on feature extraction, description, and matching. The assumption is that the maps have an overlapping area that can be used during feature based processing. Then the found initial solution is corrected using local methods, for example, Iterative Closest Point (ICP) algorithm. The maps are stored in the octree based representation (octomaps) but during transformation estimation, a point cloud representation is used as well. In addition, the presented method was verified in various experiments: in a simulation, with wheeled robots, and with publicly available datasets. Eventually, the solution can be applied to many robotic applications related to the exploration of unknown environments. Nevertheless, so far the implemented method was validated with a group of wheeled robots.

“ROS: Robot Operating System”. https://www.ros.org/. Accessed on: 2022‑04‑21.

N. Adluru, L. J. Latecki, M. Sobel, and R. Lakaemper, “Merging maps of multiple robots”. In: 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 2008, 1–4, 10.1109/ICPR.2008.4761036.

I. Andersone, “The Characteristics of the Map Merging Methods: A Survey”, Scientific Journal of Riga Technical University. Computer Sciences, vol. 41, no. 1, 2010, 113–121, 10.2478/v10143‑010‑0032‑8.

P. Besl and N. D. McKay, “A method for registration of 3‑D shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992, 239–256, 10.1109/34.121791.

T. M. Bonanni, B. Della Corte, and G. Grisetti, “3‑D Map Merging on Pose Graphs”, IEEE Robotics and Automation Letters, vol. 2, no. 2, 2017, 1031–1038, 10.1109/LRA.2017.2655139.

S. Carpin, “Fast and accurate map merging for multi‑robot systems”, Autonomous Robots, vol. 25, no. 3, 2008, 305–316, 10.1007/s10514‑008‑9097‑4.

A. Censi and S. Carpin, “HSM3D: Feature‑less global 6DOF scan‑matching in the Hough/Radon domain”. In: 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, 3899–3906, 10.1109/ROBOT.2009.5152431.

K. G. Derpanis. “Overview of the RANSAC Algorithm”. http://www.cs.yorku.ca/~kosta/CompVis_Notes/ransac.pdf, 2010. Accessed on: 2022‑04‑21.

M. Drwiega, “Features Matching based Merging of 3D Maps in Multi‑Robot Systems”. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2019, 663–668, 10.1109/MMAR.2019.8864711.

M. Drwięga. “3d_map_server”. https://github.com/mdrwiega/3d_map_server, March 2022. Accessed on: 2022‑04‑21.

A. Ferrein, I. Scholl, T. Neumann, K. Krückel, and S. Schiffer. “A System for Continuous Underground Site Mapping and Exploration”. In: M. Reyhanoglu and G. De Cubber, eds., Unmanned Robotic Systems and Applications. IntechOpen, April 2020.

S. Gholami Shahbandi and M. Magnusson, “2D map alignment with region decomposition”, Autonomous Robots, vol. 43, no. 5, 2019, 1117–1136, 10.1007/s10514‑018‑9785‑7.

J. Han, P. Yin, Y. He, and F. Gu, “Enhanced ICP for the Registration of Large‑Scale 3D Environment Models: An Experimental Study”, Sensors, vol. 16, no. 2, 2016, 228, 10.3390/s16020228.

C. Harris and M. Stephens, “A Combined Corner and Edge Detector”. In: Procedings of the Alvey Vision Conference 1988, Manchester, 1988, 23.1–23.6, 10.5244/C.2.23.

A. Hornung. “OctoMap 3D scan dataset ‑ Arbeitsgruppe: Autonome Intelligente Systeme”. http://ais.informatik.unifreiburg.de/projects/datasets/octomap/. Accessed on: 2022‑04‑21.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Autonomous Robots, vol. 34, no. 3, 2013, 189–206, 10.1007/s10514‑012‑9321‑0.

J. Jessup, S. N. Givigi, and A. Beaulieu, “Robust and efficient multi‑robot 3D mapping with octree based occupancy grids”. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 2014, 3996–4001, 10.1109/SMC.2014.6974556.

K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging for distributed robot navigation”. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1, Las Vegas, Nevada, USA, 2003, 212–217, 10.1109/IROS.2003.1250630.

H. S. Lee and K. M. Lee, “Multi‑robot SLAM using ceiling vision”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009, 912–917, 10.1109/IROS.2009.5354435.

H.‑C. Lee, S.‑H. Lee, M. H. Choi, and B.‑H. Lee, “Probabilistic map merging for multirobot RBPF‑SLAM with unknown initial poses”, Robotica, vol. 30, no. 2, 2012, 205–220, 10.1017/S026357471100049X.

H.‑C. Lee, Seung‑Hwan Lee, Tae‑Seok Lee, Doo‑Jin Kim, and B.‑H. Lee, “A survey of map merging techniques for cooperative‑SLAM”. In: 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, Korea (South), 2012, 285–287, 10.1109/URAI.2012.6462995.

K. Lee, C. Jung, and W. Chung, “Accurate calibration of kinematic parameters for two wheel differential mobile robots”, Journal of Mechanical Science and Technology, vol. 25, no. 6, 2011, 1603–1611, 10.1007/s12206‑011‑0334‑y.

M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for autonomous mining vehicles using 3D‑NDT”, Journal of Field Robotics, vol. 24, no. 10, 2007, 803–827, 10.1002/rob.20204.

M. Magnusson, N. Vaskevicius, T. Stoyanov, K. Pathak, and A. Birk, “Beyond points: Evaluating recent 3D scan‑matching algorithms”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 3631–3637, 10.1109/ICRA.2015.7139703.

R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments”, KI ‑ Künstliche Intelligenz, vol. 24, no. 4, 2010, 345–348, 10.1007/s13218‑010‑0059‑6.

R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms (FPFH) for 3D registration”. In: 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, 3212–3217, 10.1109/ROBOT.2009.5152473.

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL)”. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 1–4, 10.1109/ICRA.2011.5980567.

S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple‑Robot Simultaneous Localization and Mapping: A Review: Multiple‑Robot Simultaneous Localization and Mapping”, Journal of Field Robotics, vol. 33, no. 1, 2016, 3–46, 10.1002/rob.21620.

B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature extraction on 3D range scans taking into account object boundaries”. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 2601–2608, 10.1109/ICRA.2011.5980187.

H. Surmann, N. Berninger, and R. Worst, “3D mapping for multi hybrid robot cooperation”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, 626–633, 10.1109/IROS.2017.8202217.

F. Tombari, S. Salti, and L. Di Stefano, “A combined texture‑shape descriptor for enhanced 3D feature matching”. In: 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011, 809–812, 10.1109/ICIP.2011.6116679.

F. Tungadi, W. L. D. Lui, L. Kleeman, and R. Jarvis, “Robust online map merging system using laser scan matching and omnidirectional vision”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010, 7–14, 10.1109/IROS.2010.5654446.

C. Ulas and H. Temeltas, “A 3D Scan Matching Method Based On Multi‑Layered Normal Distribution Transform”, IFAC Proceedings Volumes, vol. 44, no. 1, 2011, 11602–11607, 10.3182/20110828‑6‑IT‑1002.02865.

K. Wang, S. Jia, Y. Li, X. Li, and B. Guo, “Research on map merging for multi‑robotic system based on RTM”. In: 2012 IEEE International Conference on Information and Automation, Shenyang, China, 2012, 156–161, 10.1109/ICInfA.2012.6246800.

K. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems”. In: Proc. of the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol. 2, 2010.

S. Yu, C. Fu, A. K. Gostar, and M. Hu, “A Review on Map‑Merging Methods for Typical Map Types in Multiple‑Ground‑Robot SLAM Solutions”, Sensors, vol. 20, no. 23, 2020, 6988, 10.3390/s20236988.

Y. Yue, D. Wang, P. Senarathne, and D. Moratuwage, “A hybrid probabilistic and point set registration approach for fusion of 3D occupancy grid maps”. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016, 001975–001980, 10.1109/SMC.2016.7844529.

Y. Yue, C. Yang, Y. Wang, P. G. C. N. Senarathne, J. Zhang, M. Wen, and D. Wang, “A Multilevel Fusion System for Multirobot 3‑D Mapping Using Heterogeneous Sensors”, IEEE Systems Journal, vol. 14, no. 1, 2020, 1341–1352, 10.1109/JSYST.2019.2927042.

Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition”. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 2009, 689–696, 10.1109/ICCVW.2009.5457637.

X. Zhou and S. Roumeliotis, “Multi‑robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case”. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 1785–1792, 10.1109/IROS.2006.282219.



Most read articles by the same author(s)