
Abstract:

1. Introduction
A dynamical system described by homogenous equa-

tion is called pointwise complete if every given final state
of the system can by reached by suitable choice of its ini-
tial state. A system, which is not pointwise complete, is
called pointwise degenerated.

The pointwise completeness and pointwise degene-
racy of linear continuous-time systems with delays have
been investigated in [3], [9], [12], [15]. The pointwise
completeness of linear discrete-time cone-systems with
delays has been analyzed in [14].

In positive systems inputs, state variables and out-
puts take only non-negative values [4], [5]. The point-
wise completeness and pointwise degeneracy of positive
discrete-time linear systems with delays have been consi-
dered in [2].

Mathematical fundamentals of fractional calculus are
given in the monographs [10], [11], [13]. The positive
fractional linear systems have been introduced in [6], [7]
and the pointwise completeness and pointwise degene-
racy of fractional linear systems have been investigated
in [1], [8].

In this paper the pointwise completeness and point-
wise degeneracy of standard and positive linear systems
with state-feedbacks will be addressed. The structure of
the paper is the following. In section 2 the basic defini-
tions and theorems concerning the pointwise complete-
ness and pointwise degeneracy are recalled and neces-
sary and sufficient conditions are established for the
pointwise completeness and pointwise degeneracy of the
closed-loop systems. The same problem for positive sys-
tems is analyzed in section 3. Concluding remarks are
given in section 4.

The pointwise completeness and pointwise degeneracy
of standard and positive linear discrete-time and conti-
nuous-time systems with state-feedbacks are addressed.
It is shown that: 1) the pointwise completeness and point-
wise degeneracy of continuous-time standard systems are
invariant under the state and output feedbacks, 2) for
standard and positive discrete-time and positive conti-
nuous-time systems necessary and sufficient conditions are
established for the existence of gain matrices of state-
feedbacks such that the closed-loop systems are pointwise
complete. Considerations are illustrated by numerical
examples.

Keywords: pointwise completeness, pointwise degeneracy,
positive linear systems, state-feedbacks.

The following notation will be used in the paper. The
set of real matrices will be denoted by and
with nonnegative entries by and . The
set of nonnegative integers will be denoted by and
the identity matrix will be denoted by

Consider the discrete-time linear system

where is the state vector and .

The system (2.1) is called pointwise
complete at if for every final state there
exists an initial state such that

The system (2.1) is point wise complete if
and only if the matrix is nonsingular i.e .

The solution of equation (2.1) at for
is given by and

if and only if

The system (2.1) is called pointwise
degenerated in the direction at if there exists
a non-zero vector such that for all initial states

the solution of (2.1) for satisfies the con-
dition where denotes the transpose.

The system (2.1) is pointwise degenera-
ted in the direction at if and only if the matrix is
singular i.e. .

Note that and there exists
a vector such that if and only if
and from we have for every

Now let us consider the discrete-time linear system

with the state-feedback

where is the input vector, and
is a gain matrix.

Substitution of (2.4) into (2.3) yields the closed-loop
system
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2. Standard linear systems

2.1. Discrete-time systems
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for all (the field of complex numbers). (2.11)

(2.12)

where

Let the system (2.3) be pointwise dege-
nerated in the direction at Then there exists
a gain matrix such that the closed-loop system is point
wise complete at if and only if the condition

is satisfied.
The closed-loop system is pointwise

complete at if and only if . From the
equality

is follows implies the condition (2.7).
Let the nonsingular matrix contain

all linearly independent rows of the matrix
. The equation

has a solution since the condition (2.7) implies

Let the system (2.3) be pointwise dege-
nerated in the direction at . Then there exists
a gain matrix such that the closed-loop system is
pointwise complete at if the pair of the
system (2.3) is reachable.

The system (2.3) is reachable if and only if

For from (2.11) we obtain the condition (2.7).

Therefore, if the pair is reachable then there
exists such that the closed-loop system is pointwise
complete at .

Consider the system (2.3) with the
matrices

It is easy to check that the pair (2.12) is not reachable
since

Theorem 3.
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but the condition (2.7) is satisfied

In this case the closed-loop matrix

is nonsingular for and arbitrary and .
Therefore, the closed-loop system is pointwise com-

plete for and arbitrary and .

Consider the continuous-time linear system

where is the state vector and .
The system (2.13) is called pointwise

complete at if for every final state there
exists an initial state such that .

The system (2.13) is called pointwise
degenerated in the direction at if there exists
a non-zero vector such that for all initial states

the solution of (2.13) for satisfies the
condition .

The system (2.13) is pointwise complete
at every and for any matrix .

The solution of equation (2.13) at for
is given by

and

since for any and .
Therefore, we have the following corollary.

The system (2.13) is not pointwise degene-
rated for any

Now let us consider the continuous-time linear
system

with the state-feedback

where is the input vector, and
is a gain matrix.
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2.2. Continuous-time systems
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Let the positive system (2.1) be pointwise degene-
rated at . We are looking for a gain matrix
such that the closed-loop system (2.5) is positive and
pointwise complete at . A vector (column) is called
monomial if only one its component is positive and the
remaining components are zero.

Let the positive system (2.1) be point-
wise degenerated at . There exists a gain matrix

such that the closed-loop system (2.5) is po-
sitive and pointwise complete at if and only if the
following conditions are satisfied

(3.2a)

there exists a monomial matrix such that

(3.2b)

From (2.5) it follows that there exists a gain
matrix such that is
monomial matrix only if the matrix (3.2a) holds.

By Kronecker-Cappely theorem the equation
has a solution if and only if the condition (3.2b)

is satisfied for a monomial matrix .
Consider the positive system (2.3) with

the matrices

(3.3)

It is easy to check that the pair (3.3) satisfies the
conditions (3.2).

We are looking for a gain matrix such
that the closed-loop system matrix

(3.4)

is a monomial matrix. From (3.4) it follows that the
closed-loop system matrix is a monomial one for

and
Consider the positive system (2.3) with

the matrices

(3.5)

The pair (3.5) satisfied the condition (3.2a) since
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Substitution of (2.17) into (2.16) yields the closed-
loop system

where

From Theorem 5 and corollary we have the following.
The pointwise completeness and the

pointwise degeneracy of the continuous-time system
(2.13) are invariant under the state-feedback (2.17).

The point wise completeness and the point-
wise degeneracy of the continuous-time system (2.13)
are also invariant under the output-feedback

where is a gain matrix, is the
output vector and .

In this case the closed-loop system matrix has the
form .

(2.18)

(2.19)

Consider the discrete-time linear system (2.3).
[4], [5]. The system (2.3) is called

positive if for any initial state
and all input sequences .

[4], [5]. The system (2.3) is positive if and
only if

. (3.1)

[1]. The positive system (2.3) is called
pointwise complete at if for every final state

there exists an initial state such that
.

A matrix is called monomial if and only if
every its row and every its column contains only one
positive entry and the remaining entries are zero.

The positive system (2.1) is pointwise
complete at if and only if the matrix is a monomial
matrix.

It is easy to check that the matrix for
is monomial if and only if the matrix is monomial.

It is well known [5] that if and only if is
a monomial matrix. In this case from (2.2) we have

for every .
The positive system (2.1) is called point

wise degenerated at if there exists at least one final
state , which is not reachable in steps from any
initial state i.e. the equality is not satis-
fied for any .

The positive system (2.1) is pointwise
degenerated at if and only if the matrix is not
a monomial matrix.

The equation has a solution
for a given if and only the matrix is

a monomial matrix.
Now let us consider the positive system (2.3) with the

state-feedback (2.4). The closed-loop system (2.5) is
positive if and only if .
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3. Positive linear systems

3.1. Discrete-time systems
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but the pair does not satisfy the condition (3.2b). It is
easy to see that does not exist a monomial matrix

such that for (3.5) .

In this case we have

(3.6)

From (3.6) it follows that does not exist a gain matrix
such that the closed-loop system matrix

is a monomial one.

Consider the continuous-time linear system (2.16).
The system (2.16) is called positive if
for any initial state and

all input vectors .
A matrix is called Metzler matrix if
for Let be the set of real Metzler
matrix.

[4], [5]. The system (2.16) is positive if
and only if

and (3.7)

[2]. The positive system (2.13) is called
pointwise complete at if for every final state
there exists an initial state such that .

[2]. The positive system (2.13) is
pointwise complete at if and only if the matrix A is
diagonal.

From (2.15) it follows that for any
there exists if and only if is monomial matrix.
Taking into account that

(3.8)

we see that the matrix (3.8) is monomial if and only if is
diagonal.

[2]. The positive system (2.13) is called
pointwise degenerated at if there exists at least one
final state which is not reachable at from
any initial state , i.e. the equality is not
satisfied for any .

The positive system (2.13) is pointwise
degenerated at if and only if the matrix is not
diagonal.

For a given there exists
satisfying (2.15) if and only if the matrix is mo-
nomial and this holds if and only if the matrix is
diagonal.

Now let us consider the continuous-time system
(2.16) with the state-feedback (2.17). The closed-loop
system is positive if and only if the closed-loop system
matrix (2.19) is a Metzler matrix.
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Let the positive system (2.16) be pointwise degene-
rated at . We are looking for a gain matrix
such that the closed-loop system matrix (2.19) is a diago-
nal matrix.

Let the positive system (2.16) be point-
wise degenerated at . There exists a gain matrix

such that the closed-loop system is positive and
pointwise complete if and only if there exists a diagonal
matrix such that the condition

(3.8)

is satisfied.
By Kronecker-Cappely theorem the equation

(3.9)

has a solution for any diagonal matrix and
if and only if the condition (3.8) is satisfied.

Note that in particular case the matrix can be cho-
sen as the diagonal matrix with the same diagonal entries
as in the matrix . In this case all diagonal entries of

are zero.
Consider the positive system (2.16) with

the matrices
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We are looking for a gain matrix

(3.11)

such that the closed-loop system matrix (2.19) is
diagonal.

Let
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The condition (3.8) for (3.10) and (3.12) takes the
form

and it is satisfied for and .
In this case the equation (3.9) has the form
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( , are arbitrary) (3.14)

for and .
It is easy to check that for

the matrix has the form

which can be obtained from (3.14) for and .
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Concluding remarks
The pointwise completeness and pointwise degene-

racy of standard and positive linear discrete-time and
continuous-time systems with state-feedbacks have been
addressed. It has been shown that:
1) The pointwise completeness and pointwise degene-

racy of continuous-time standard systems are invaria-
nt under the state and output feedbacks (Theorem 6).

2) If the discrete-time linear system is pointwise
degenerated then there exists a gain matrix of the
state-feedback such that the closed-loop system is
pointwise complete if and only if the condition (2.7)
is satisfied.

3) If the positive discrete-time linear system is point-
wise degenerated then there exists a gain matrix of
the state-feedback such that the closed-loop system
is positive and pointwise complete if and only if the
conditions (3.2) are satisfied (Theorem 10).

4) If the positive continuous-time linear system is point
wise degenerated then there exists a gain matrix of
the state-feedback such that the closed-loop system
is positive and pointwise complete if and only if the
pair satisfies the condition of Theorem 14.

The considerations have been illustrated by numerical
examples.

The considerations can be easily extended for:
1) linear discrete-time and continuous-time systems

with delays
2) linear fractional systems without and with delays.

Extensions of these considerations for standard po-
sitive and fractional 2D linear systems are open problem.
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