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Abstract:
In this paper, we proposed a comparative research
project on the classification of various objects in satellite
images using some pre‐trained models of CNN (VGG‐
19, ResNet‐50, Inception‐V3, EfficientNet‐B7) and R‐CNN.
In this research work, we have used the DOTA dataset,
which combines data from 14 classes. We have imple‐
mented above‐mentioned pre‐trained models of CNN
and R‐CNN to achieve optimal results for accuracy as
well as productivity in detection of various objects such
as ships, tennis courts, swimming pools, vehicles, and
harbors from remotely accessed images. In this study, a
convolutional neural network (CNN) is used as the base
model. For complex computations and for speeding up
results, transfer learning is used. With the help of exper‐
imental analysis, we have discovered that R‐CNN and
Inception‐V3 performed best out of the five pre‐trained
models.

Keywords: remote sensing images, CNN, R‐CNN, transfer
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1. Introduction
Artiϐicial Intelligence (AI) can be considered as the

future for the world by seeing the ongoing progress
of AI in various ϐields. Many industries are currently
growing dependent on AI based applications. As time
passes, advancements and improvisations are contin‐
uously progressing in the ϐield of AI along with IT [1].
In the recent past it was not thought that AI would
play this major role in our day‐to‐day lives, as it was
considered something out of the ϐield of science, only
used for the implementation of robots, and that kind
of thing. But AI has proven itself a required element of
many disciplines, from basic requirements like facial
recognition to complex calculations like automation,
and so on. The digital industries gained control of
various basic challenges through the digital transfor‐
mation of AI technologies. Thework abilities of AI sys‐
tems have forced AI to sit at the core of various devel‐
opmental industries [2]. The integration of AI features
with many other applications has reduced the over‐
burden of developers in maintaining and improving
productivity, efϐiciency, and quality. From the ϐields of
manufacturing and research to smart healthcare and
ϐinance systems, AI has brought many things onto a
single platform in a short period of time.

AI has made possible the development of IT sys‐
tems at a broad level.

AI and machine learning (ML) are the ϐields that
correspond to each other as an integral part of com‐
puter science. Most commonly, AI and ML are used as
synonyms, but they are different fromeach other, as AI
can be described as the simulation of human through
machine for developing many capabilities such as
thinking and decision making. ML is a part of AI, the
foundation of the process of training the computers
with the help of datasets to accomplish AI tasks. ML
is used to build smart systems by implementing var‐
ious learning algorithms. With the help of these ML
algorithms, the computers can perform various tasks
such as object detection, recognition, localization, and
classiϐication [3] in images as well as the applications
such as fraud detection in live videos aswell [4]. These
automated systems are developed by ML algorithms
to learn from training images and the model is smart
enough tokeep itself updatedwhile producingoutputs
without any human interaction.

1.1. New Paradigms of AI‐based Computing – the ML
to DL

There has been an outperformance of expecta‐
tions in terms of the performance of deep learning
(DL) models, and the results achieved are state of
the art. Deep learning techniques are a subset of ML
but improve the process of training and learning. DL
achieves powerful results by learning from real‐world
data in a nested and hierarchical form. The biggest and
advantage of DL over ML is that DL learns high‐level
features from training data in the form of images and
videos as an incremental process. DL over ML solves
any problem in an end‐to‐end approach whereas ML
follows the approach of breaking down a problem in
several parts to solve the problem as a whole. For
example, for multiple‐objects detection, DL technolo‐
gies like YOLO take the input in the form of image and
video and produce the output in the form of object
location with name of object whereas in ML algo‐
rithms like SVM, other algorithms like bounding‐box
object detection is required initially for identiϐication
of all possible objects. DL outshines this, as there is
no limitation andworries about feature engineering in
various applications such as image classiϐication [5],
anomaly detection, video surveillance, instance seg‐
mentation [6], and object detection.
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One of the most demanding approaches of DL is
object detection, which is one of the most popular
areas today. However, object detection has evolved
from about 20 years ago. Before 2014, object detec‐
tionwas performed by several traditional approaches:
Viola‐Jones Detector (2001), HOG Detector (2006),
DPM (2008). Roughly from 2014, DL techniques came
into existence, with one‐ and two‐stage object detec‐
tion algorithms. Various two‐stage object detectors,
such as SPPNet and RCNN (2014), Fast R‐CNN and
Faster R‐CNN (2015), Mask RCNN (2017), GRCNN
(2021), FPN (2017), and one‐stage detectors such as
SSD (2016), YOLO (2016), RetinaNet (2017), YOLOv3
(2018), YOLOv4 (2020), YOLOR (2021) are perform‐
ing by achieving state‐of‐the‐art results in the ϐield of
object detection.
1.2. Facets of Advanced DL

Deep Representation Learning or deep learning
(DL) has improved and dramatically achieved success
performing various learning tasks in past few years.
Traditional neural network or multilayer perception
is a form of neural network that represents the frame‐
work of connected layers. It is used in various classiϐi‐
cation and regression tasks. Artiϐicial Neural Network
(ANN) generally involvesmultilayer perceptrons, Con‐
volutional Neural Networks (CNN), Recurrent Neural
Network (RNN), and more. Deep learning techniques
are serving in various dimensions: object detection,
classiϐication, object recognition, speech recognition,
natural language processing, bio‐informatics, visual
image recognition, drug discovery, visual art process‐
ing, and so on. Deep learning followsmultiple layers to
extract the highest and deepest features of data. Each
layer produces more abstract and signiϐicant features.
From raw data in the form of images and videos, fea‐
ture levels at each successive level are extracted.
1.3. Convolutional Neural Network

In the near past, CNN attracted researchers, and it
has achieved remarkable fame and success because of
its working nature. It uses kernel methods along with
weight‐sharing processes. CNNhas set its benchmarks
in various domains, most speciϐically in computer
vision. CNN is an advanced form of traditional neural
networks, processing complex data at initial stages of
computation and pre‐processing. CNN is an advanced
form of deep learning that accepts images or videos
as input, assigns weights to various objects present in
video or images, and ably detects and differentiates
various objects from each other. Above various other
deep‐learning‐based neural network models, CNN is
achieving excellent results in multiple domains.

Convolutional neural networks have several lay‐
ers, including the input layer, the convolutional layer,
the pooling layer, and the fully connected layer. In
order to obtain attributes from the input image, the
convolutional layer applies ϐilters. In order to reduce
computation, the pooling layer down‐samples the
image before the fully connected layer makes the ϐinal
prediction. With the help of gradient descent and
back‐propagation, the network learns the best ϐilters.

Figure 1.Work flow Diagram of CNN

Each successive convolution layer is followed by
a pooling layer using nonlinear functions to reduce
the size of the input layer. In addition, they facilitate
the reduction of the amount of computation and para‐
metric information in the network. Casteluccio et al.,
2015, indicate that it also helps control over‐ϐitting. A
[2 x 2] ϐilter is used in Figure 1 to represent the pooling
operation. Pooling operations include the following:
‐ Layers of convolution consist of learnable ϐilters (or
kernels) that have the samewidth, height, and depth
as the input volume (3 if it’s an image input layer).

‐ As an example, let’s take a 34x34x3 image and run
convolution. It is possible to create ϐilters as large as
axax3, where a can be anything from 3, 5, or 7, but
smaller than the size of the image.

‐ Forwardpass ϐilters are calculated in stepsby sliding
each ϐilter across the input volume as a dot product
of kernel weights and patches.

‐ The stride of each ϐilter is determinedby thenumber
of steps and the height of each ϐilter is the height of
the input volume.

‐ The output volume of the output volumewill consist
of a depth equal to the number of ϐilters. As we slide
our ϐilters, the output volumewill have a 2‐D output.
All ϐilters will be learned by the network.
It is also known as covnets when it is a complete

architecture based on Convolution Neural Networks.
Every layer of a covnet is a differentiable function
that transforms one volume into another. Let’s take an
image of 32 x 32 x 3 dimensions and run a network on
it.

Input Layers: These are layers where we provide
input to our models. Images or sequences of images
are commonly used as inputs in CNN. Raw input for
this layer is 32x32 pixels, 32x32 pixels, and 3x3 pixels.

Convolutional Layers: An input dataset is pro‐
cessed with this layer, which extracts the feature from
it. Image input is processed using a set of learnable
ϐilters called kernels. A ϐilter/kernel is typically a 2x2,
3x3, or 5x5 matrix. This function calculates a dot
product between kernel weights and corresponding
input image patches based on input image data. This
layer produces feature maps as its output. We’ll get a
32 x 32 x 12 output volume if we use 12 ϐilters for this
layer.
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Figure 2.Max pooling

Activation Layers: An activation layer adds non‐
linearity to a network by adding an activation func‐
tion to its output. A convolution layer’s output will
be activated element‐by‐element. In addition to RELU:
max(0, x), Tanh, and Leaky RELU, some common acti‐
vation functions are RELU:max(0, x), and Leaky RELU.
Therefore, the output volume will have dimensions
32 x 32 x 12 due to the volume remaining unchanged.

Covnet pooling layer: This layer is periodically
inserted into the covnets and is used to reduce the
volume of the computation, which in turn reduces
memory usage. This layer also prevents overϐitting. A
maximum pooling layer and an average pooling layer
are two common types of pooling layers. With a max‐
imum pool and 2x2 ϐilters, we will have a 16x16x12
volume.

Flattening: After convolution and pooling, the fea‐
ture maps are ϐlattened into one‐dimensional vectors,
which can be used for categorization or regression.

Fully Connected Layers: This layer calculates the
ϐinal classiϐication or regression task based on the
input from the previous layer.

Output Layer: As each class’s output is converted
into its probability score by the logistic function, the
output is then fed into a sigmoid or softmax function
for classiϐication purposes.

1.4. The Advancement Using Transfer Learning

In the current scenario, deep learning has achieved
the remarkable strengths in training deep neural net‐
works to achieve accuracy in predictions and decision
making. The network is capable enough to get trained
through labels, sentences, images, and predictions as
well. Transfer learning is the advanced attraction and
charm in the ϐield of AI as it allows reusing an exist‐
ing labeled data network trained on some speciϐic
task or domain. This pre‐trained model can be used
for some other problem of interest having the same
nature. The pre‐trained model is used as the initial
step for a different model being developed for some
other task that involves computer‐vision or Artiϐicial
Intelligence. Neural networks basically perform the
edges detection at the ϐirst layer and form it to the
middle layer; later on it performs the problem‐speciϐic
features at the ϐinal layers. When we develop a model
using smart and advanced transfer learning technol‐
ogy, the task involved in initial and middle layers gets

Figure 3.Workflow of transfer learning

reduced, only we have to perform the retraining pro‐
cess at the latter layers.

As Figure 3 is showing the pre‐trained models
are used as the initial step in building or customiz‐
ing any existing model. In the transfer learning, the
customized model uses pre‐trained model to train its
neural networks on a new dataset [9]. By the growing
advancements of transfer learning it is offering a num‐
ber of beneϐits to the researchers that majorly include
reducing training time, improving performance, etc.
It involves the use of various pre‐trained models as
a starting point that is trained on a problem; this
reduces the development efforts and time. It is ϐlexible
approach also it allows custommodel building. Anum‐
ber of top rated models are provided by Keras trained
on ImageNet to perform image processing tasks like
VGG, ResNet, and Inceptionv3 [10].
1.5. Contributions

This research primarily contributes the following:

1.5.1. Demonstrating how deep learning techniques
can be used for object detection using transfer learn‐
ing techniques

1.5.2. Identify and compare accuracy and precision
of different CNN‐based pre‐trained models.

1.5.3. For achieving state‐of‐the‐art performance,
these models are evaluated on the DOTA dataset.
1.6. Organization of Paper

Section 1 contains the fundamental aspects of
New Paradigms of AI‐based Computing along with
facets of deep learning and the advancements of trans‐
fer learning in today’s AI world. Section 2 gives a
brief discussion of object detection in satellite images.
Section 3 highlights the survey about various exist‐
ing tools and techniques for object detection in satel‐
lite images using deep learning approaches. Sec‐
tion 4 gives in‐depth study of high level and architec‐
tural view of transfer learning paradigms. Section 5
deϐines the comparative analysis of various CNNbased
pre‐trained models for object detection. Section 6 is
dedicated to the details of dataset used for the experi‐
mentation.
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performance, etc. It involves the use of various pre-
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time. It is flexible approach also it allows custom 
model building. A number of top rated models are 
provided by Keras trained on ImageNet to perform 
image processing tasks like VGG, ResNet, and 
Inceptionv3 [10]. 
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This research primarily contributes the following: 
1.5.1 Demonstrating how deep learning techniques 
can be used for object detection using transfer 
learning techniques 
1.5.2 Identify and compare accuracy and precision 
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objects availability in an image or video. With the 
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identification and localization can also be done on 
the images. Whenever it is required to count or track 
the precise locations of the objects in an image or 
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Object detection in satellite images is a challenging 
issue as these types of images have different kind of 
resolutions and dimensions as compared to normal 
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information for Earth observation, change detection, 
agricultural areas, etc. Over recent years the spatio-
temporal earth observation data is increasing 
drastically. This data is useful to extract important 
and hidden information to monitor, control or 
analyze land-surface dynamics in a huge range. Some 
application areas of satellite image processing 
involve distortion of settlements, urban growth, 
vegetation cover areas, water availability etc [11]. 
Most commonly this kind of study involves various 
classes like buildings, trees, grassland, shorelines, 
aircrafts, overpass, oiltank, playgrounds, etc (Figure 
4 is showing). Most commonly, extraction of various 
deep internal features from remote imagery is done 
through convolutional neural network (CNN).  
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Section 7 moves towards model implementations
in which model training, processing and results are
discussed. Section 8 shows the summary and future
direction for the research.

2. Object Detection in Remote Sensed Imagery
Since this is the age of Artiϐicial Intelligence, com‐

puter vision technology is used and applied to inter‐
pret and analyze the images to extract important and
useful information from it. Among all those computer
vision image processing techniques, object detection
plays a vital role to detect various objects availability
in an image or video. With the improved versions
of object detection, object identiϐication and localiza‐
tion can also be done on the images. Whenever it is
required to count or track the precise locations of the
objects in an image or video, object detection also
helps in labeling the objects in an image.

Object detection in satellite images is a challenging
issue as these types of images have different kind of
resolutions and dimensions as compared to normal
images. Still a lot of research has been done in the
ϐield of satellite and aerial imagery to get desired
information for Earth observation, change detection,
agricultural areas, etc. Over recent years the spatio‐
temporal earth observation data is increasing dras‐
tically. This data is useful to extract important and
hidden information to monitor, control or analyze
land‐surface dynamics in a huge range. Some appli‐
cation areas of satellite image processing involve dis‐
tortion of settlements, urban growth, vegetation cover
areas, water availability etc [11]. Most commonly this
kind of study involves various classes like buildings,
trees, grassland, shorelines, aircrafts, overpass, oil‐
tank, playgrounds, etc (Figure 4 is showing). Most
commonly, extraction of various deep internal fea‐
tures from remote imagery is done through convolu‐
tional neural network (CNN).

3. Various Tools & Techniques
In 1983, Chittineni et al. [12] proposed a frame‐

work for line and edge detection in multi‐dimensional
images. They have represented edges as the direct
jump to functions and the weighted sum to expand
grey‐tone surface in multi‐dimensional images. In
their work, the noise is assumed as Gaussian. Compu‐
tational efϐiciency is achieved by recursive relations.
The experiments are performed on Landsat satellite
data.

During the years 1993 and1994, Ionescu et al. [25]
focused their research on determining the features of
SAR images, since these images have a higher level of
complexity due to noise and quality issues associated
with them. Feature extraction from SAR images of
large‐scale objects, such as rivers, lakes, and highways,
was accomplished in this paper using an automated
algorithm. To detect homogenous areas, the water‐
shed algorithm was employed. In the above areas,
possible objects are detected based on similarities
between neighboring regions and differences from
background areas. For the experiments, images of the
Ottawa area are used through SAR imagery.

The detection of forest cover changes from Land‐
sat TM data was ϐirst described by Coppin et al.
[ext 6] in 1994. The sensor calibration offsets are
minimized by using multiple years of imagery. The
water reϐlectance value is obtained with a correlation
mechanism between bi‐temporal band pairs typically
ranging from 0.9884 to 0.9998 combined with dark
object subtraction. We applied two different change
detection algorithms to bi‐temporal vegetation index
pairs for intervals of two, four, and six years. Radio‐
metrically deϐined change classes are investigated.
This study demonstrates how reϐlective TM data can
be used to stratify forest cover change in a forest
cover change assessment phase before more detailed
analysis.

The Indian Remote Sensing (IRS) satellite imagery
was used by Mandal et al. [15] to detect man‐made
objects like roads, bridges, airports, and industrial
areas in 1996. For the initial classiϐication, the image
pixels are classiϐied into six types of land cover using a
multi‐valued recognition system. Some heuristic rules
about spatial knowledge and their inter‐relationships
are applied on clustered images to identify certain
targets. By usingmultiple classiϐications, the detection
process became more effective.

In 1996, Rong et al. [13] presented amodel for tar‐
get detection for not only man‐made things, but also
for natural backgrounds. They have used a kind of self‐
organizing model for background learning, and then
applied some reinforcement learning on that model
through contextual information. Experimental results
show that they have achieved optimal results in their
work.

In 1999, Ng et al. [14] tried to detect human faces.
With this model, faces can be detected in multiple
views and poses can be estimated at a near‐frame rate.
Their work extends SVMs tomodel the 2D appearance
of human faces that undergo nonlinear changes over a
view sphere.

As part of their development of a system for image
analysis, Garnesson et al. [15] proposed the Multi
Expert System for Scene Interpretation andEvaluation
(MESSIE) based on geometry, context, and radiom‐
etry. The system basically operates on geometrical
modelling. A study is undertaken to ascertain the
class of an object by examining its general structure.
The developedmodel identiϐies objects of interest ini‐
tially. Additionally, by examining the characteristics
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of gathered salient objects, one can conclude further
search for new objects in the scene. A study identiϐies
roads and buildings using suburban images.

An automated method for detecting and classify‐
ing hidden targets in hyper‐spectral images was pro‐
posed by Ren et al. [16] in 1998, which is capable
of identifying targets without previous knowledge. A
benchmark is achieved in three phases. First, we will
choose a band. Second, we will apply a band rationing
approach, and, ϐinally, we will use ATDCA (Automatic
Target Detection and Classiϐication Algorithm). By
analyzing image scenes from the Hyper‐spectral Digi‐
tal Imagery Collection Experiment (HYDICE), we eval‐
uate the effectiveness of the CADCM. These results
demonstrate that this model is capable of detecting
targets hidden by natural background shades, man‐
made objects, or shade effects.

Shufelt et al. [17] examined the performance eval‐
uation of four monocular building extractionmethods
by using image space and object space matrices on
83 images of 18 buildings in 1999. In this analysis,
they examine how image obliquity effects system per‐
formance, as well as object complexity. Additionally,
they analyzed the impact of edge fragmentation on the
system. To extract buildings, we used photogrammet‐
ric primitive representations and strict object space
modeling.

According to Shanks et al. [18], they developed a
system that detects cloudiness and aerosol pollution
on remote sensing signals to minimize their deleteri‐
ous effects. They have reviewed existing cloud impacts
reduction techniques in this paper.

From airborne light and range (LIDAR) imagery,
Haithcoat et al. developed an automated method for
extracting the footprint of buildings and reconstruct‐
ing their 3D shape in 2001 [19]. The objects higher
than the ground surface are ϐirst extracted from a dig‐
ital surface model (DSM). The size, height, and shape
of a building distinguish it from other objects. In order
to improve the quality of the extracted building foot‐
prints, an orthogonal algorithm is applied. Ridgelines
and slopes are used to identify roofs. In the ϐinal step
of accuracy assessment, the results are comparedwith
manually digitized building reference data.

Building features can be extracted from images in
three steps byChenet al. [20] in 2002. Anartiϐicial neu‐
ral network–supervised algorithm is used to catego‐
rize roofs using RGB color bands and image textures.
A hybrid approach of edge and region segmentation
is then applied to extract useful spatial information
about objects. The results are then reϐined using the
spatial information. Tests are conducted on AUSIM‐
AGE/spl trade digital imagery.

The model developed by Secord et al. [21] used
LIDAR aerial images and range data to approach trees.
In this paper, they proposed a two‐step process for
detecting trees, including segmentation and classi‐
ϐication. Here, weighted features are used to seg‐
ment using the region‐growing algorithm. Weights
are determined using the random walk learning
method. This approach allows for control of the rate
of misclassiϐication through weighted support vector
machines. Experiments demonstrate its effectiveness.

Chaudhuri et al. [22] used multispectral imagery
in 2008 to discover bridges over water bodies. Mul‐
tispectral images are classiϐied into eight types of
land cover using the multi‐seed supervised classi‐
ϐication technique. Tri‐level images are created by
identifying water, concrete, and background informa‐
tion from classiϐication. Furthermore, the study uses
a knowledge‐based approach to reveal the spatial
arrangement of the bridge and its surroundings. A
recursive scanning method is used to extract the river
features. Bridge pixels are identiϐied using neighbor‐
hood operators. A spatial resolution of 23.52m is used
for testing on the IRS‐1C/1‐D satellite.

Using TerraSAR‐X ScanSAR images (19‐m resolu‐
tion) as a data source in 2010, Paes et al. [14] proposed
concepts for ship detection. TSX images are compared
with the K‐distribution by means of the Kolmogorov‐
Smirnov test to determine the goodness of ϐit. This
isdone in a develop‐and‐verify target detection algo‐
rithm.

Using a neighborhood model based on loose spa‐
tial contingency, Grant et al. [23] presented a method
for detecting amorphous objects in 2012 that uses
a maximum probability to tell whether a pixel sur‐
rounded by the object of interest contains it as well.
The evaluation is done on hypothesis imagery.

Using panchromatic satellite imagery, Elbakary
et al. [24] developed a method for detecting shadows
in 2014. This method uses a geometric active con‐
tour model. On the image, shadows and dark areas
are segmented after detection. To distinguish the real
shadows fromother shadows, they proposed selecting
the best threshold and boundary complexity metric.
Performance is also validated through experiments.

In 2016, the automatic content‐based analysis [25]
presented by Sevo et al. allows for arbitrary objects to
be detected in aerial images. This paper implements a
two‐stage training model and then veriϐies it against
remote imagery using convolutional neural networks.
UCMerced’s data set is used to test the model’s accu‐
racy, which is 98.6%.

A feature fusion method was proposed by Yu
et al. [27] in 2019 that utilized multiple layers of
remotely sensed images to extract some of the ϐine‐
grained features, since the images have a number
of similarities and differences between classes, along
with multidirectional objects. Initially, ResNet50 is
applied to extract the features from multiple layers,
and then channel attention is applied to enhance them.
Fusion is performed using multilayer bilinear pooling
and feature connections. The training model is built
using PyTorch, a deep learning framework.

The paper by Yu et al. in 2020 [26] outlined an
approach to detect vehicles from remote imaging that
relies on convolutional capsule networks. In the begin‐
ning, an image is segmented into super pixels, and
patches are generated without redundant informa‐
tion. Finally, repetitive detection is eliminated using
non‐maximum suppression.
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Table 1. Classification based on tools used by various researchers

Algorithm/Model Methodology DataSet Findings
MSCNN (Yao et al. 2021) VHR satellite images for geospatial

applications. Challenging data set for
the NWPU VHR‐10. The images range
from 0.5 m to 2.0 m in resolution.

Filters should be replaced with
smaller ones

DCL‐based object detection method
Xiwen (Yao et al., 2021)

NWPU‐VHR‐10.v2 data set A convolution based on depth
followed by a convolution based on
points

SE‐MGMM (Xue et al. 2021) Synthetic aperture radar images Kernels with small sizes are used
Convolutional capsule Network (Yu
et al., 2020)

Open access Remote imagery Skip connections are used to identify
mappings

PTAN (A patch‐based three‐stage
aggregation network) (BingSui1, et al.
2020)

1. DOTA
2. NWPU VHR‐10

Optimizes accuracy as well as
ϐloating‐point operations with
multi‐objective neural architecture
search.

Compatibility loss clustering method
(CLCM) Yongsai Han et al., 2020

1. DOTA
2. UCAS‐AOD
3. NWPU VHR‐10
4. RSOD‐Dataset

Fine grained features frommultiple
layers

Object relationship reasoning CNN
(ORRCNN) (Li et al., 2020)

Aerial Image. data set (AID) [16], UC
Merced Land‐Use data
set&WHU‐RS19 data set

Accuracy for multiband data

AASM (Femin et al., 2020) Open access satellite images Ability and Efϐiciency are considered
R‐CNN algorithm with dialed
convolution (Wei et al., 2020)

HRSC2016 dataset Accuracy with respect to its feature
extraction

Active contour excluding edges models
(Rai et al., 2020)

Synthetic Aperture Radar (SAR)
images

Working ability on dense dataset

Deep learning algorithms on NVIDIA
DGX‐1 supercomputer (Larionov et al.,
2020)

Pre‐trained dataset of
SpaceNetϐine‐tuned on planet
database.

Time Complexity & Efϐiciency are
performed

Selective Search and Edge Boxes (Farooq
et al., 2017)

NWPU VHR‐10 Resulting in high recall rates

An enhanced deep CNN based (Deng
et al., 2017)

VHR‐10 data set Substantial number of densely
packed objects

Two‐stage training model using
convolutional neural network (Sevo
et al., 2016)

UCMerced Dataset Arbitrary objects are detected

Neighborhood model (Grant et al., 2012) hypothesis imagery and DIRSIG Amorphously shaped objects
Kolmogorov‐Smirnov (Paes et al., 2010) TerraSAR‐X (TSX) ScanSAR images

(19‐m resolutoin)
A model to detect bridges over water
bodies (Chaudhuri et al., 2008)

IRS‐1C/1‐D satellite images of 23.5
23.5m.

Multispectral imagery are processed

Experimental results indicate that the proposed
method achieves its benchmarks better than the tradi‐
tional methods in terms of completeness, correctness,
and quality.

In this study, the author seeks to visualize the
interpretations of deep convolutional neural networks
for aerial images and to comprehend how these inter‐
pretations vary across datasets or under different
network weight conditions. Their visualization ϐind‐
ings shed light on the robustness and generalizabil‐
ity of well‐known networks like VGG19, ResNet50,
and DenseNet121. AID and UCM datasets are used to
show how common classiϐication methods like convo‐
lutional networks have evolved to include object and
texture detectors [28].

Tan and Le [7] created the ϐinal family of CNNs
for image recognition covered in this study, the Efϐi‐
cientNets, using the same search space in late 2019.
The baseline model EfϐicientNet‐B0 performed simi‐
larly to MnasNet because the search space remained
unchanged and the optimization technique was same
as MnasNet. The scaling strategy, however, is what
makes EfϐicientNet successful. Tan and Le [7] pre‐
sented compound scaling, balancing scaling in the net‐
work’s depth, width, and resolution. In comparison to
AlexNet seven years earlier, as a result EfϐicientNet‐B7
achieved 97.1% acc@5 at 66M parameters.
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(a) (b)

Figure 5. (a) Not utilizing knowledge from other
domains. (b) Transfer learning utilizes prior knowledge
from another domain

3.1. Classification Based on Tools Used

Table 1 shows the comparison of models devel‐
oped by many researchers for various parameters
on the different datasets. The prime objective of this
classiϐication is to categorize various deep learning
algorithms for various parameters like accuracy, time
complexity, change detection, speed, and high recall
rate.

4. Pre‐Trained Modeling Based on CNN
4.1. High Level View of Transfer Learning Paradigm

Learning from one domain or task to another is
easy for us as humans. We do not have to start over
when we encounter a new task. Then, we can learn
and adapt faster and more accurately to the new task
from our previous experiences [29]. We have wit‐
nessed astounding leaps in the application of artiϐi‐
cial intelligence in recent years, thanks to advances in
supervised and unsupervised machine learning. Our
technology has reached a point where we can develop
automatic vehicles, robots with artiϐicial intelligence,
and disease detection systems that are human‐level or
superhuman.

Machine learning models are not capable of gen‐
eralizing beyond the circumstances encountered to
increase their performance [30]. They were inspired
by the human capacity to transfer knowledge, which
has led them to focus during training [31], which
hampers their ability to on transfer learning to
resolve these issues. When compared to the tradi‐
tional machine learning paradigm, where learning
occurs in isolation, not utilizing knowledge fromother
domains (Figure 5(a)), and transfer learning utilizes
prior knowledge from another domain (source) to
learn about a new domain (target) (Figure 5(b)).
4.2. Architectural View of Transfer Learning Paradigm

As a powerful deep learning technique in com‐
puter vision, Transfer Learning (TL) is a powerful tool
for constructing high‐performance models. Knowl‐
edge can be re‐used across different areas using TL—
the knowledge‐reusability concept. You don’t need to
reinvent the wheel with each new situation or model.
You can leverage previous experience. By applying
previous knowledge to new tasks, you can perform
themmore efϐiciently. An example of transfer learning
is when a model developed for one task is used as the
basis of a model developed for another.

Figure 6. Transfer learning vs traditional learning

This is a popular method of developing neural
networks as the starting point for computer vision
and natural language processing tasks due to the
enormous computer resources and time required for
developing neural networks on these problems, as
well as the huge leaps in performance they provide
when dealingwith related problems. In simpler terms,
transfer learning entails re‐training a model for a sec‐
ond but related task after it has been trained to per‐
form the ϐirst task. The Figure 7 illustrates transfer
learning overtraditional learning.

Looking at the diagram above (Fig. 6), we see
that both models for different tasks are trained from
scratch in the traditional approach that is without
transfer learning. A transfer learning approach, how‐
ever, uses our data set to train a pre‐trainedmodel that
can perform a different task. When you pay attention,
you can see that the data set in red (the second one) is
smaller than the ϐirst. Transfer learning consists of the
following steps:
1) Determine the weights of the network.
2) Train on your new images after unfreezing the

“head” layers that are fully connected.
3) Training with the weights from the previous train‐

ing and unfreezing the latest convolutional layers.
If we do not do #2, we will trigger large gradient
updates.

5. Comparison of Pre‐trained CNN Models for
Object Detection
As discussed in Section 4, in transfer learning, we

can use an already‐trained model for new tasks by
using a large dataset. Due to the fact that the datasets
have been vetted, we can be sure that the quality of the
datasets is high. This reduces the cost of training deep‐
learning models. In satellite object detection; across
research and industry, some datasets are highly pop‐
ular. Following (Table 2) are some of the prominent
ones:

Table 2 shows various datasets for satellite images
like DOTA, Google Earth, and others. The categories
of objects in datasets are also mentioned. DOTA has
14 categories for various objects like harbor, storage
tank, ship, baseball diamond, ground track ϐield, etc.
Number of instances and number of images shows the
count for various object classes and the number of
pictures in the dataset, respectively.
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Table 2. Datasets for Satellite Imagery [32]

Main categories Source Dataset Number of
instances

Annotation
way

Bands of
image

Number of
images

14 categories:
Harbor, storage tank,
ship, baseball
diamond, ground
track ϐield, soccer ball
ϐield, tennis court,
Airplane, large
vehicle, roundabout,
helicopter, swimming
pool, bridge,
basketball court

Google
Earth

DOTA (Xia et al.,
2017)

178,282 Oriented BB RGB 2816

Two categories:
Vehicle, Airplane

Google
Earth

UCAS‐AOD (Zhu
et al., 2015)

13,596 Oriented BB RGB 1610

Ten categories:, ship,
baseball diamond,
storage tank, tennis
court , ground track
ϐield, basketball
court, harbor, bridge,
airplane, and vehicle

Google
Earth and
Vaihingen

NWPU VHR‐10
(Cheng et al.,
2014, 2016b;
Cheng and Han,
2016a)

3675 Horizontal
BB

RGB 850

Four categories:
storage tank,
airplane, overpass
playground,

Google
Earth and
Tianditu

RSOD (Xiao et al.,
2015; Long et al.,
2017)

6850 Horizontal
BB

RGB 986

One category: oil well Google
Earth

Oil well dataset
(Wang et al., 2021)
Zhang et al. (2021)

1092 Horizontal
BB

RGB 442

In this paper, we have covered ϐive pre‐trained
models of CNN (VGG‐19, ResNet50, Inception‐V3, and
EfϐicientNet‐B7) and R‐CNN for object detection from
satellite data. These models are prominent in their
ϐields and are widely used in the industry as well. By
the successful execution of these models on DOTA we
have made a comparative analysis for ϐinding the best
model with optimal results in terms of accuracy and
precision. Here is the in‐depth discussion about each.
5.1. VGG‐19

A convolutional neural network with a depth of 19
layers is called the VGG. In their article “Very Deep
Convolutional Networks for Large‐Scale Image Recog‐
nition,” K. Simonyan and A. Zisserman from the Uni‐
versity of Oxford put forth the CNN model known as
VGG‐19. In the top ϐive tests, CNN performs at 92.7%
accuracy on the ImageNet dataset, which consists of
over 14 million images divided into 1000 classes [33].
In ILSVRC‐2014, this model was among the well‐
known ones. By sequentially substituting several 33
kernel‐sized ϐilters for AlexNet’s big kernel‐sized ϐil‐
ters (11 and 5, respectively, in the ϐirst and second
convolutional layers), it improves upon AlexNet. Up
to 1000 items can be categorized by this network
due to its pre‐training. The network was trained with
224x224‐pixel colored pictures, which indicates that
the matrix had the shape (224,224,3). Here is some
quick information on its size and capabilities.

Figure 7. Architecture of VGG‐19

According to Figure 7, the network received an
RGB image with a ϐixed size of (224 * 224), indicating
that the matrix had the shape of (224, 224,3). One
preprocessing step was applied to each pixel, which
calculated the average RGB value [34]. Using kernels
with a size of (3x3) and a stride size of 1 pixel, they
were able to cover the entire image. Spatial padding
was applied to the image to maintain its spatial reso‐
lution. A 2 x 2 pixel windowwas used for max pooling
with stride 2. To enhance classiϐication accuracy and
computation time, a Rectiϐied Linear Unit (ReLu) was
added afterward. The performance of this model was
signiϐicantly better than previous models that used
tanh or sigmoid functions. A third layer was imple‐
mentedusing a softmax function that used a1000‐way
ILSVRC as part of the classiϐication, while the ϐirst two
layers had a size of 4096.
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Figure 8. Architecture of ResNet‐12, a basic model

5.2. ResNet50

A convolutional neural network with 50 layers in
depth is called ResNet50. You may ϐind the model
performance results on Microsoft’s article titled Deep
Residual Learning for Image Recognition, which was
developed and trained in 2015. To train this model,
hundreds of thousands of photos were taken from
the ImageNet database. The network, like VGG‐19, can
categorize up to 1000 objects based on 224x224 pixel
colored images [35].

As can be observed, there are 4 comparable layers
utilizing merely different ϐilter sizes after beginning
with a single convolutional layer and Max Pooling. All
of these levels use the 3 * 3 convolution process. Addi‐
tionally, we are omitting or skipping the layer between
every two convolutions. Identity shortcut connections
are what is referred to as residual blocks and are
what havemissed connections. Simply put, the ResNet
authors demonstrate that applying a residualmapping
is signiϐicantly simpler than applying the actual map‐
ping and that this should be done for all layers. It’s also
noteworthy to note that the ResNet creators claim that
performance shouldn’t degrade aswe addmore layers
to the model [36]. Contrary to what we observed in
Inception, this is nearly identical to VGG‐19 in that
it just involves stacking ResNet layers on top of one
another while altering the underlying mapping.
5.3. Inception‐V3

Szegedy ϐirst described the Inception micro‐
architecture in their work “Going deeper with
convolution” in 2014. As can be seen in Figure 9, the
Inception Module merely applies convolutions to the
input using various ϐilter sizes, applies Max Pooling,
and then concatenates the outcome for the following
Inception module [37]. Compared to its predecessors,
Inception v3 features 42 layers and a lower error rate.
5.4. EfficientNet‐B7

EfϐicientNetB7 is a state‐of‐the‐art convolutional
neural network that was trained and released to
the public by Google with the paper “EfϐicientNet:
Rethinking Model Scaling for Convolutional Neural
Networks” in 2019.

Figure 9. Inception‐V3 architecture

Figure 10. EfficientNet‐B7 architecture

Figure 11. Comparative performances of popular
models incl. EfficientNet family

The EfϐicientNet implementations range from B0
to B7, and even the simplest implementation, Efϐi‐
cientNetB0, is outstanding. In its Top‐1 accuracy per‐
formance, it achieved 77.1% with 5.3 million parame‐
ters [38].

Mobile inverted bottleneck convolution is often
known as MBConv (and isrelated to MobileNetv2).
The following scaling coefϐicients are included in their
compound scaling formula as well.
‐ Depth = 1.20
‐ Width = 1.10
‐ Resolution = 1.15

A new family of EfϐicientNets, EfϐicientNetB0
to EfϐicientNetB7, is constructed using this algo‐
rithm [39]. The performance of this family in com‐
parison to other well‐liked models is depicted in the
straightforward graph that follows (Fig. 11).
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Figure 12. R‐CNN: Regions with CNN features

Figure 13. Numerical data of objects used

5.5. R‐CNN

One of the earliest investigations into deep
learning–basedobjectdetection isR‐CNN.VGGNetand
ResNet methods were used to train the network, and
it was during this process that the number of classes
+ background for the classiϐier layer was calculated.
The range of 0 to 1 is used to calculate the similarity
ratio. The similarity ratio of the search object to
the image is represented by this number. Regardless
of the number of classes, the R‐CNN test procedure
offers 2000 different areas [40]. Four of the closest
places from among these 2000 different regions are
suggested for each class, as seen in Figure 12.

6. Dataset
In this paper, the DOTA (Xia et al., 2018) dataset

issued for the experimentation purpose. 14 kinds of
objectswere identiϐied in thedataset. For training, 888
photos of various sizes were used. High quality pho‐
tographs in the size range of 432x559 to 5193x6054
are referred to as training images. There are 888 pho‐
tos with 49053 objects divided into 14 classes. The
test involved 277 photos. These pictures are available
in sizes ranging from 448x511 to 6313x6400. The
images consist of both nighttime black‐and‐white and
colored photographs. The DOTA dataset’s object coor‐
dinates are reorganized into rectangular dimensions.
The varying sizes of the high resolution samples in the
dataset are thought to be a crucial factor in determin‐
ing howwell deep learning models perform generally.
Therefore, it was intended to demonstrate the numer‐
ous aspects in which the crisis will manifest itself.
There are 13,772 items in all throughout the photos
utilized for the test. Figure 13 depicts the training and
testing classrooms together with the amount of items
in each one.

7. Model Implementation: Training, Process‐
ing, and Results
The deep learningmodeling tool Pytorchwas used

to implement all of the calculation’s code. As the
computing system, we have used a workstation with
an RTX 2070 SUPER graphics card, an AMD Ryzen7
3700X CPU, and 32‐GB of RAM.

 

 

 

 

 

EfficientNet 
VGG 19 

R-CNN 
ResNet50 

InceptionV3 

Figure 14. Test results of implemented deep learning
models

888 photos that were divided into 14 classes are
used for training purposes. Because of the extensive
training time, the number of epochs was limited to a
minimum.

Deep learning models VGG‐19, EfϐicientNet‐B7,
ResNet, InceptionV3, and R‐CNN were trained.

The testing phase was initiated following the
completion of each algorithm’s training operations.
According to IoU>0.5, precision and recall valueswere
computed. As a result, the rates of each algorithm’s
detection of objects from 14 classes were made. Fig‐
ure 14 displays some graphics showing the precision
and recall levels attained for this.

The graphs show precision and recall values for
studied models and object classes. The recall value
starts at 0 and grows towards 1, while the graphic
precision value starts at 1 and moves towards 0 in
determinations with a high performance rate. This
condition makes it clear that the graphics with the
highest performance rates achieve good results.
7.1. Results & Discussions

Figure 15 displays the experimentation results by
studied CNN models. The results of each model are
displayed separately. It is clear that images with high
spatial resolution give better results in comparison
to low spatial resolution images. These ϐindings lead
to the outcomes of 14 objects being detected; 5 deep
algorithmic values for each object are shown in bold
in the table of learning models Table 3.
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Figure 15. Continued
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Figure 15. Results of object detection of various deep
learning models

Table 3 lists the object detection performance ϐind‐
ings for 5 deep learning techniques over 14 classes.
The last row of the table also includes the average
performance rates for each model.

According to the results, the InceptionV3 and R‐
CNN models had the highest average performance
rates (18.78 and 41.78 respectively). R‐CNN outper‐
formed other models in detecting several classes
with state‐of‐the‐art results. VGG‐19 had the lowest
average performance, scoring 19.5, 32.64, and 15.42,
38.07, respectively. The tennis court has the highest
availability rate of any object, at 52, 34, and it was
acquired using ResNet‐50. Roundabout and bridge
had the lowest ϐinding rate, at 9.09. In all models, it
was discovered at a very low rate. The limited quantity
of training and testing samples is believed to be one of
the causes of the low availability rate of roundabout
and bridge lessons. However, it is believed that the
models are unable to deϐine objects that fall under the
roundabout and bridge object class in a way that is
accurate. These two classes are regarded as lacking
some training. The samples in the dataset are close
to the ground surface and are simpler for the model
to identify in terms of shape after examination of the
tennis court picture samples, the object class with
the highest availability rate. Models with fewer layers
tend to perform better than models with more layers,
according to research. This is interpreted as evidence
thatwhen detectingmany objects, deep learningmod‐
els shouldn’t favor those with a high number of lay‐
ers. The two most successful results in object classes
are shown in Table 4 in light of the results from the
models.

Feature comparison results of experimented pre‐
trained models are shown in Table 4. The accuracy of
these models in top‐1 and top‐5 predictions is also
determined when they were used for classiϐication
and a comparison of these accuracies is shown in the
table below (Table 5).
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Table 3. Results of object detection of various deep learning models

Mean Average Precision VGG-19 ResNet-50 Inception-V3 R-CNN EfϐicientNet-B7
Large Vehicle 12, 45 28, 54 31, 56 36, 64 23, 74
Basketball Court 9, 09 9,0 9 9,0 9 9,0 9 9,0 9
Baseball Diamond 22, 77 9,0 9 16, 23 16, 84 9,0 9
Ground Track Field 9,0 9 9,0 9 15, 38 14, 55 15, 38
Bridge 9,0 9 9,0 9 9,0 9 9,0 9 9,0 9
Harbor 17, 59 15, 03 16, 88 20, 25 17, 00
Plane 12, 16 23, 24 27, 49 31, 42 27, 39
Roundabout 9,0 9 9,0 9 9,0 9 9,0 9 9,0 9
Ship 23, 55 22, 78 24, 07 25, 41 27, 37
Small Vehicle 23, 55 14, 86 15, 45 15, 47 13, 91
Soccer Ball Field 9,0 9 9,0 9 15, 51 12, 73 10, 54
Storage Tank 9,0 9 17, 55 14, 63 17, 15 17, 79
Swimming Pool 24, 85 17, 44 24, 09 25, 56 28, 60
Tennis Court 29, 87 52, 34 49, 01 25, 56 45, 11
Average Score Rate 15.42, 38.07 17.28, 32.53 19.5, 32.64 18.78, 41.78 18.42, 37.07

Table 4. Class‐wise object classes detection result

Models Object Classes Detected Top Two Object Classes
VGG‐19 Baseball Diamond, Harbor Baseball Diamond, Harbor
ResNet Storage Tank, Tennis Court Tennis Court , Storage Tank
InceptionV3 Large Vehicle, Ground Track Field, Plane, Small Vehicle, Soccer

Ball Field, Tennis Court
Tennis Court, Large Vehicle,

R‐CNN Swimming Pool, Large Vehicle, Baseball Diamond, Harbor, Plane,
Small Vehicle, Ship, Soccer Ball Field,

Large Vehicle, Plane

EfϐicientNet‐B7 Ground Track Field, Ship, Storage Tank, Swimming Pool Swimming Pool, Ship

Table 5. Feature comparison result of studied transfer
learning models

Module Complexity No. of
Parameters

Speed

InceptionV3 Low 23.62
million

High

R-CNN Low 22.85
million

High

VGG‐19 High 138 million Low
ResNet50 Low 23 million High
EfϐicientNetB7 Low 5.3 million

‐66 million
Low

Table 6. Comparison of Models with respect to
classification accuracy

Module Top-1 Accuracy Top-5 Accuracy
InceptionV3 0.782 0.941
R-CNN 0.790 0.945
VGG‐19 0.715 0.901
ResNet50 0.770 0.933
EfϐicientNetB7 0.710 0.931

In this paper, several object detection techniques
like CNN (VGG‐19, ResNet‐50, Inception‐V3, and
EfϐicientNet‐B7) and R‐CNN etc. are discussed and
compared. From the discussions, it was found that R‐
CNN is improved more than other CNN‐based pre‐
trained models in terms of accuracy and precision
whileworkingwith theDOTAdataset. But Inceptionv3
also acquires next to top position in detectingmultiple
classes from satellite images after R‐CNN.

The results make it clear that as soon as the
number of classes for multiple object detection rises,
performance rate falls. It is also noted that object
detection becomes more challenging as the size of the
images produced by high‐resolution remote sensing
rises. It has been shown that all algorithms struggle to
detect objects in photographs that are taken above the
ground and cover substantially bigger areas. The num‐
ber of detected objects and their performance has
been found to grow as the ϐield of view narrows.
According to the classiϐications, random selection was
used to choose the photos in the dataset that would be
used for training and testing.

As per the future direction, it can be stated that
for research to be done in this domain, picking the
appropriate samples is crucial for testing structures.
A better evaluation of the outcomes will depend on
the number of samples to be utilized in the training
exceeding a particular threshold. By eliminating these
issues while doing training and testing will produce
better results. Researchers who are interested in this
area should take extra care to consider these issues.
We might advise that multispectral LIDAR data be
used to test these models.
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