
Open Access. © 2023 Kamola, published by Sciendo. This work is licensed under the Creative Commons Attribution‐
NonCommercial‐NoDerivatives 4.0 License

VOLUME 17, N∘ 2 2023
Journal of Automation, Mobile Robotics and Intelligent Systems

A COMPACT DQN MODEL FOR MOBILE AGENTS
WITH COLLISION AVOIDANCE

A COMPACT DQN MODEL FOR MOBILE AGENTS
WITH COLLISION AVOIDANCE

A COMPACT DQN MODEL FOR MOBILE AGENTS
WITH COLLISION AVOIDANCE

A COMPACT DQN MODEL FOR MOBILE AGENTS
WITH COLLISION AVOIDANCE

Submitted: 11th April 2023; accepted: 31st May 2023

Mariusz Kamola

DOI: 10.14313/JAMRIS/2‐2023/13

Abstract:
This paper presents a complete simulation and reinforce‐
ment learning solution to train mobile agents’ strategy
of route tracking and avoiding mutual collisions. The aim
was to achieve such functionality with limited resources,
w.r.t. model input and model size itself. The designed
models prove to keep agents safely on the track. Colli‐
sion avoidance agent’s skills developed in the course of
model training are primitive but rational. Small size of
themodel allows fast trainingwith limited computational
resources.

Keywords: Q‐learning, DQN, Reinforcement learning.

1. Introduction
In order to accomplish a task, an unmanned agent

must operate with adequate situational awareness
and execute an adequate decision support algorithm.
The complexity of both of the above components
should bematched – be it a case of an autonomous car
or a mere line‐following toy robot.

The aim of work presented in this paper was to
develop rich representation of road topology, yet cre‐
ate a representation suitable for processing by a rel‐
atively simple decision model of an autonomous and
mobile agent. The agent’s main goal is to reach its des‐
tination, by riding on a road and taking turns, simul‐
taneously observing other moving agents in order to
avoid collisions.

The range of stimuli processed by the autonomous
vehicle is determined by their physical observability,
the cost and power consumption of measurement and
communication equipment, and the cost and power
consumption of hardware the decision model is run‐
ning on. Autonomous cars are nowadays by far the
most sophisticated civil agents, equipped with LiDAR,
radar, cameras, and GPS as well as a huge number
of sensors collecting the state of the car itself. These
real‐time data must be completed with accurate, up‐
to‐date and rich maps of the neighborhood in order to
navigate efϐiciently, which poses problems either with
storage or bandwidth demand, depending on where
the maps actually reside.

In order to consume such rich input data streams
in timely fashion, adequate processing power is
needed. Tesla’s Autopilot processor, NVIDIA DRIVE
PX2, consumes 250 watts, which is much more than
the power of the car headlights. This ϐigure does not

include powering all remaining sensors and commu‐
nication devices. Moreover, as for energy used for
hardware manufacturing and operation, contempo‐
rary decisionmodels carry substantial training carbon
footprint. For example, the training of a natural lan‐
guagemodern neural model consumes over 650MWh
of direct and associated energy (mainly cooling) [1].

The case of an autonomous car can be consid‐
ered an extreme one – yet striving to achieve planned
goals but with smaller resources is more and more
pronounced. Various neural model reduction tech‐
niques have been proposed [2], and the hardware
itself becomes more energy efϐicient, including the
autonomous car computers as well. But still it is a
common approach to throw all training data into a
complex neural network model, use a great deal of
resources to train it, and perform model compression
as the last stage before the deployment.

Here we propose an environment and decision
model for an autonomous vehicle that uses less
resources, due to careful encoding of the agent’s input.
With such lean processing infrastructure,model train‐
ing is simple and ready for educational purposes as
well as for further development for industry use.

1.1. Related Work

Our work contributes to the wide and active area
of research for autonomous driving, whose main and
most challenging topic is control algorithms for self‐
driving cars. These can be developed in two contrary
methodologies: the modular one, encompassing per‐
ception, planning, and control blocks, or the end‐to‐
end one, mingling the above functionalities into a
single decision model. The state of the technology
achieved through the two approaches is presented in
detail in Grigorescu et al. [3], andwewill point out key
advances therein which are relevant to our research.

Modules for perception, high‐ and low‐level
planning, and motion control can be accomplished
diversely in each class, adequately to available
resources (hardware, data, power, money). For
example, there are efforts to replace state‐of‐the‐art
LiDAR sensors with cheaper 2D stereoscopic cameras
and 3D reconstruction models (PointNet, AVOD),
trained on real LiDARmeasurements. Detected spatial
objects can be labelled semantically afterwards with
a bunch of models: SegNet, IC‐Net, ENet, and the like,
derived from general computer vision architectures
such as AlexNet, ResNet, and more.

28



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Planning involves a range of tasks, starting from
high‐level path planning and going down to low‐level
behavior arbitration (lane control, collision avoidance,
etc.) While path planning usually employs a sort of
white‐boxmodelworkingonmapdata anda local road
occupancy grid, behavior arbitration models are neu‐
ral ones and come in two ϐlavors. Deep reinforcement
learning is built on simulated environment, develop‐
ing an optimal policy based on the reward function –
yet the policy contains non‐learnable parts that are
essential for maintaining vehicle safety. Interestingly,
the opposite approach – imitation learning – aims
actually to learn correct reward function from real
scenarios by human drivers. Both approaches have
drawbacks, suffering from data quality: simulation
output inadequate to reality or scarcity of corner
cases, respectively.

Motion control is usually effected by state‐of‐the‐
artmodel predictive control (MPC)which, after having
learned vehicle dynamics properties, takes advantage
of optimal control theory in order to provide control
signals on a considerable control horizon. Applied
iteratively, it can adapt to disturbances and modify
control trajectory computed so far.

End‐to‐end methodology transfers knowledge
from existing models, which makes it possible to
consume raw and granular data, such as object
locations, including the agent itself, and transform it
by a multilayer network into decisions believed to be
optimal. PilotNet by Nvidia and AutoPilot by Tesla are
examples of such complex, monolithic models.

Deep Q‐learning (DQN) is now the key planning
algorithm, and also central to our interest here. It is
presented in detail in Section 2.2. A neural model is
taught to estimate the action‐value function Q of total
rewards (immediate and discounted future ones) for
a control decision, given the current system state. The
framework has been enriched so far by a number of
extensions, for instance [4]:
‐ Double Q‐learning: two network models are trained
using different batch data, in order to reduce bias in
Q estimation;

‐ Prioritized Replay: samples for training are drawn
withprobability relative to their temporal difference
errors, for example, errors of predicted Q values,
in order to improve the model where it performed
worst;

‐ Dueling Networks: a model of Q gets accompanied
with a model of V, a value of state regardless of con‐
trol taken there; bothmodels aremerged in order to
focus learning on states where the control is really
crucial;

‐ Multi‐step Learning: control action takes place only
every n‐th step, letting the object evolve; it leads to
faster learning in speciϐic tasks;

‐ Distributional RL: reward value is modeled as dis‐
tribution over predeϐined discrete space, allowing
for more insight and resulting in faster training; the

distribution gets updated by small corrections (Cat-
egorical DQN) or gets incorporated into the main
model (Quantile Regression DQN; see [5]);

‐ Noisy Nets: a noisy input is added to the network
model, allowing agents to learn states where the
noise is relevant (high weights) for Q value.
DQN models are often successfully extended to

provide end‐to‐end driving functionality, as in [6],
where raw camera images as well as vehicle speed
and orientation w.r.t. road waypoints are the network
inputs. To account for vehicle dynamics, the latter
inputs go through recurrent layers (LSTM, long short‐
term memory), while visual ones go through typical
convolution layers. The authors report good results,
also if the visual part is trained from scratch, without
transfer learning of any sort.

2. The Solution
Let us assume that the goal is to provide an

autonomous vehicle with situational data and equip
it with a decision model so that it would be able to
navigate a road system to reach a destination, while
avoiding collisions with other agents. The basic task
is therefore staying on the road and complying with
trafϐic rules. The secondary task is to interact with
other vehicles to avoid collisions. Below, we present
how topology and trafϐic rules are prepared for the
agent and describe the decision model used.
2.1. Road Topology Representation

Inwide range of transport environments, there are
two components present: the physical infrastructure
and trafϐic rules imposed in it. We propose to merge
them into a singlemap, where RGB colors encode both
components. An example result of such process is pro‐
vided in Figure 1. Channels in red and blue (in range of
luminance 0 to 255) are used to encode recommended
speed in east‐west andnorth‐south directions, respec‐
tively. Speciϐically, to make the map more human‐
friendly in appearance, we use only a part of this
range. Thus, the horizontal component can vary from
150, which means “fast westward” to 250, meaning
“fast eastward”. Luminance value of 200 is therefore
the new zero in such a coordinate system. Movement
gradients encoded on arbitrary R, G, or B channels are
widely used elsewhere – such as in computer graphics,
to visualize so‐called graphical ϐlows [7].

The green channel, apparently superϐluous, has
been used to encode indulgence in reward for driving
according to the recommended speed and direction.
This concept is strictly related to the class of deci‐
sion model discussed later, but it also makes practical
sense in the phase of trafϐic rules encoding. Consider
the intersection that is located centrally in Figure 1.
Without such a recommendation‐cancelling signal it
would be impossible to encode driving directions for
the four possible maneuvers there: two possible turns
(north‐to‐west and west‐to‐north) as well as for just
riding straight. Therefore, setting G luminance to zero
there means no punishment, whatever particular rec‐
ommendations encoded in channels R and B are.

29



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Figure 1. Example of road system with color‐coded
driving directions

And on the opposite, the value of 255 denotes that
ϐine or reward is applied in full.

Considering the above rules, the colors of the plane
in Figure 1 encode driving recommendations shown
with arrows. In particular, the purple intersection RGB
color is (200,0,200), that is, allowing unpunished driv‐
ing in any direction. The recommended speed vector
has been set to zero there for clarity and fairness w.r.t.
the four maneuvers. The off‐road parts color has been
set to (200,255,200), which in essence results in max‐
imumpunishment, regardless of the driving direction.
In Figure 1 they have been given a dotted pattern for
better ϐigure readability.

The proposed coloring approach carries quite a lot
of information in just three channels. A part of the
map in an agent’s neighborhood can be fed into the
model either physically (if a camera‐equipped agent
moves on such colored plane in a lab), or virtually (by
retrieving it in real time fromadatabase). It can consti‐
tute an extremely lean alternative to bulky, 3D urban
maps, yet it can be created from information stored
there. The sizes of current 3D maps for self‐driving
cars are measured in terabytes: it is 4 TB in case of
San Francisco, many orders of magnitude bigger than
in our approach [8].

2.2. Decision Model

The decision model class used was a DQN, being a
variant of the Q‐learning approach used widely when
the state of an agent cannot be easily discretized [9].
DQN follows the original paradigm in the sense that, in
a given state x of the agent, it provides the best known
control 𝑎 – w.r.t. the immediate as well as the follow‐
ing steps by the agent. The difference is that while
classical Q‐learning retrieves the value from a control‐
by‐state table, DQN actually calculates the discrete
control on the spot. This brings considerable implica‐
tions to the learning procedure, described later.

Figure 2. State components at agent location

We calculate the state information fed into DQN
from the actual situation on the road and from the last
step, so that it covers the following aspects:
1) agent’s current driving direction vs. recommenda‐

tions on the map,
2) indulgence to driving direction recommendations

(channel G),
3) distance to the current goal,
4) presence of other agents or other moving

obstacles.
Figure 2 presents how the above state components

get calculated at the current agent location. The agent
is marked with a turtle icon because the graphics
comes from Turtlesim simulator [10] used further for
experimentation. Component 1 is denoted by two val‐
ues, colinear 𝑐 = 𝑣 cos𝜑 − 𝜗 and perpendicular 𝑝 =
𝑣 sin𝜑 − 𝜗, where 𝑣 is the driving recommendation
speed (blue arrow) and 𝜑 − 𝜗 is the angle between
agent’s actual and recommended driving azimuths,
respectively. Together, 𝑐 and 𝑝 describe conformity of
agent’s movement to the recommendations. Compo‐
nent 2, denoted 𝑔, is just the value of G channel of
the map; component 3, denoted 𝑑, is the Euclidean
distance to the current goal (an arbitrary location on
the map, which can be via a point of a longer route).
Components with signs are presented with arrows in
Figure 2, although they are in fact scalar values.

In reality, an agent, be it a robot, a driver, or a car,
is able to collect the above data not only at its location
point but also in the neighborhood – particularly in
front of itself. To represent such situational awareness
with the means provided so far, we decided to express
components 1–4 not exactly at the current agent loca‐
tion, where some of them would be useless, but on
a grid in front of it. Consequently, all components
become matrices of size𝑁 ×𝑁 elements, correspond‐
ing to cells of the grid, as shown in Figure 3. Therefore,
component 1 values 𝑐 and 𝑝 become actually matri‐
ces C and P, calculated for average plane colors in
cells. Coarse grid is used here analogously to pixelized
vision organs of insects, which apparently do not hin‐
der them from performing high‐precision tasks, such
as dragonϐly interception skills [11]. Component 2 is
calculated with the same averaging process, resulting
in matrix G.

30



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Figure 3. State components for a location grid

Component 4 distances are calculated for grid
cells’ centers, resulting in matrix D. Component 4 is
introduced here to complete situational awareness, as
binary matrix B, whose elements are set to 1 for cells
that contain another agent.

The above matrices comprise the current situa‐
tion, S = (C,P,G,D,B). Note that S is constructed so
that it presents the neighborhood relative to current
agent’s location and position, rather than revealing
the location coordinates themselves. This forces the
agent’s decision model to depend only on local situ‐
ation and imposes the desired degree of generaliza‐
tion by design. The agent cannot learn the plane “by
heart,” remembering speciϐic successful trajectories at
certain locations. Rather than that, it learns desired
behaviors for certain local situations, such as taking
a turn on an intersection or passing a turning curve.
Learning that behavior once, for one particular inter‐
section or curve, will make it able to cope with any
number of similar objects, wherever they are on its
route.

DQN uses a neural network in order to evaluate Q
value, that is, thequality of eachof thepossible actions,
for a given state x of the agent. Then, in the greedy
approach which we use, the action that gives best Q
value is taken:

𝑢 = max
𝑎

𝑄(x, 𝑎). (1)

The neural network behind Q is simultaneously
used to direct an agent, and is trained with a history
of recorded agent steps, so that it estimates as well as
possible the intermediate consequences of an action:

𝑄(x, 𝑎) = 𝑟(x, 𝑎) + 𝛾max
𝑎′

𝑄(x′, 𝑎′), (2)

where 𝑟(x, 𝑎) is the reward for the current step being
taken, which leads to the next state x′. The joint qual‐
ity of the following actions is again estimated by the
model, and the best action is assumed to be taken, as
in (1) – but with the discount coefϐicient 𝛾.

In order to make the reinforcement learning
deϐined by (1) and (2) perform correctly, one has to
take care with implementation details. We based our
implementation on the framework reported in [12],
which allows control of every implementation detail.

We found the approach of much educational
value, and offering precise control on implementation
details – and ϐinally we preferred it over the popular
OpenAI Gym framework [13]. One of the important
implementation details is that two twin networks are
used, the main network 𝑄 being subject to proper
training, and the target network, denoted 𝑄, whose
weights get updated from 𝑄 periodically in the pro‐
cess of learning. Consequently, 𝑄 evolves slowly and
is used to predict quality of future actions. Therefore,
(2) becomes

𝑄(x, 𝑎) = 𝑟(x, 𝑎) + 𝛾max
𝑎′

𝑄(x′, 𝑎′). (3)

The next detail lies in model input structure, that
is, the agent state at step 𝑛. In our approach, such a
state is composed not only of the current situation,
but also the situation in the previous step, x(𝑛) =
(S(𝑛), S(𝑛 − 1)). While such model input may seem
superϐluous, it describes well the ϐirst‐order system
dynamics. It also neatly conforms to model input
structure, whichmust be a tensor. Describing dynamic
phenomena implicitly in neural network models is
quite an established practice. Confront, for instance,
two action‐recognition models, kinetics‐i3d [7] and
TSM [14]. While object movement directions in input
video are calculated separately for the earlier one, and
provided explicitly on the input, the lattermodel infers
them by time‐domain convolutions – which is exactly
what we opt for.

The reward 𝑟(x, 𝑎) and the next state x′ as the
effect of action 𝑎 taken in state x, is provided in Q‐
learning by the environment. The environment can
be the real word but, for the sake of model train‐
ing efϐiciency, the most practical approach is to uti‐
lize some sort of a simulator or emulator. We used
Turtlesim [10], with custom extensions made in order
to calculate our situation components. The middle‐
ware between DQN routine and the simulator was an
Environment class, implemented in Python. The class
takes care of proper initialization and actual control of
multiple agents, as well as of composing the situation
S. The reward 𝑟 gets calculated as a sum of the follow‐
ing components:
𝜚𝑓 reward for driving according to recommendations
𝜁𝑟 penalty for driving reverse to recommendations
𝜁𝑣 penalty for speeding
𝜚𝑡 reward for approaching the current target

(measured by velocity in straight line to target)
𝜁𝑓 terminal penalty for falling off the track or

crashing with another agent.

All parameters but the last one are based on con‐
tinuousmeasurements of agent position ormovement
on the plane.

DQN training procedure is, in essence, a standard
one. An agent is let to play an episode, that is, perform
a number of steps, being controlled by the current
model 𝑄, while its steps get recorded as training sam‐
ples. Once there are enough samples memorized, one
epoch of 𝑄 model training is performed every couple
of episodes. After a number of such training sessions,

31



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Figure 4. Neural network structure

𝑄 model is transferred onto 𝑄 and used for further
decisions.

Such a plain scheme can be, however, imple‐
mented with subtle differences regarding things such
as initial behavior or extensions to a multi‐agent sce‐
nario, which is particularly our case and our contri‐
bution. All in all, DQN procedure has quite a large
number of metaparameters, and full grid search could
be prohibitive.

3. Experiments and Results

Our structure of neural network for 𝑄 function
modeling is shown with all variants in Figure 4. In
its basic form it is similar to widely used classiϐica‐
tion models used in, for instance, optical character
recognition. The input contains road situation (blue)
and collision structures (orange). The ϐirst three layers
of the main network perform 3D convolutions in 20
ϐilters, with convolution window of size 2 × 2 × 10,
while the input size is𝑁×𝑁×10 (the third dimension
corresponds to 5‐tuple (C,P,G,D,B), taken twice, at the
current step𝑛 and theprevious step,𝑛−1. The last two
layers are dense ones, and the output size is 2×3, that
is, two values of speed (slow and fast) by three values
of direction (turn left, drive straight, or turn right).

Model training and evaluation has been performed
on a track shown in Figure 3. The agent scenario is to
approach targets 0 to 4, in a loop. Once an agent gets
close to a target, it is given another one. The plane is
colored accordingly, giving an agent hints about the
general driving direction – save for the intersection
where no driving preference is provided lest it divert
any of trafϐic streams that should pass the intersection
straight ahead.

The training is performed on four training seg‐
ments, corresponding to the targets 0–3. An agent is
spawned on a track fragment within the rectangular

Figure 5. Location of training segments

areas, and directed towards the goal. Both the ini‐
tial position and orientation are subject to random
disturbances.

The training segments are chosen so that agents
can learn skills typical to this track, such as driving
straight and taking slight and perpendicular turns in
both directions. Note that learning each type of turn is
done only in one part of the track, but is expected to be
utilized by the agent elsewhere on its route.

Among many parameters, we decided to keep
reward components constant, with values 𝜚𝑓 = 0.5
[sec/m], 𝜁𝑟 = 𝜁𝑣 = −10 [sec/m], 𝜚𝑡 = 2 [sec/m], 𝜁𝑓 =
−10. Importantly, rewards 𝜚𝑓 and 𝜚𝑡 are small w.r.t. all
penalties, therefore leaving much freedom of strategy
to agents, unless they really violate rules imposed
by the 𝜁’s. After extensive preliminary tests, we have
found that solution quality is not much sensitive to

32



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Table 1. Solution quality in various training and testing settings

Training grid 5x5 grid 7x7 grid 11x11
variant 6 agents 10 agents 6 agents 10 agents 6 agents 10 agents

max mean max mean max mean max mean max mean max mean
I 0.64 0.34 0.53 0.38 3.52 0.37 1.05 0.33 3.05 1.53 1.07 0.65
II 3.27 0.70 0.63 0.27 3.34 0.98 0.84 0.44 1.71 0.71 0.55 0.28
III 5.27 1.07 0.61 0.28 0.60 0.36 0.35 0.23 4.66 0.78 0.62 0.47

DQN‐related parameters. Consequently, we decided
to keep them close to the values from the original
project [12]. In particular, reward discount was set to
0.9, thememory buffer contained 20,000 recent steps,
model 𝑄 was trained every 4 steps, and transferred
onto 𝑄 after every twentieth training session.

The experiments were designed to verify impor‐
tance of the training length and the size of agent’s loca‐
tion grid. The veriϐication was measured by the mean
number of loops done by an agent, until failure. It was
calculated in variants with 1, 6, and 10 agents run
simultaneously. The training for multiagent variants
was done with 6 agents simultaneously, all learning
the same uniform strategy.

The learning in multiagent setting can be
perceived as an extension of a simpler one‐agent
scenario, where a part of the model handles
interaction between agents. We trained multiagent
models in three variants:
I) Uniformly, by training from scratch. In such a case,

the agents learn at the same time, traversing their
routes and avoiding collision.

II) By transfer of some part of a one‐agent model
onto multiagent model. Selected weights in the
ϐirst convolution layer get initialized from the
best single‐agent model, and frozen, while other
weights undergo training as in approach I. Part of
the model with the frozen weights has a grey color
in Figure 4.

III) By sequentially training a branched model, whose
onebranchprocesses only track‐relateddata and is
similar to the uniformmodel (I). The other branch
processes only collision‐related data, and its train‐
ing starts later, once the ϐirst branch is trainedwell.
The two branches are merged canonically in the
second last dense layer. The other branch is drawn
in the lower part of Figure 4.
Comparison of model performance, in terms of

average number of loops by an agent before failure, is
given comprehensively in Table 1. Bold numbers rep‐
resent best results in a range of model training epochs
(1500, 1750, and so on until 3000), while italics stand
for theirmean value.Modelswere trained for the same
ϐield of view of 200 by 200 pixels – divided into grids
of 5x5, 7x7, and 11x11 cells, respectively. Additionally,
we ran performance checks on a more crowded track,
for example, with 10 agents.

The results consistently show that increasing the
number of agents impairs overall performance. Other
results are not consistent across training variants –
especially the hypothetical improvement for ϐiner
grid resolutions. Interestingly, the solution quality

Figure 6. Sample agent trajectories, variant IIIwith 6
agents and grid resolution 5x5

increase is observed clearly only for variant I, and in
the mean sense (ϐigures in green in Table 1.)

Otherwise, we may clearly point out that results
considered best formodels II and III deϐinitely outper‐
form the plain and uniform one (I) – compare ϐigures
in red, columnwise. Let us examine the best result
ever, obtained by variant III in 5x5 grid, and bestmean
result obtained by variant II in 7x7 grid. Sample agent
traces for the earlier case are shown in Figure 6.

We canobserve that agents, started at various loca‐
tions, quickly converge to optimal trajectory. In a track
sectionon the left to the intersection,where there is no
apparent obstacle in view, agents tend to fan out and
take alternative, equally optimal routes.

No departures from the track are observed and the
only scenario terminations are due to agent collisions.
Most of them happen at the intersection or immedi‐
ately in front of it (which is a crash zone size artefact).
In this setting, agents plainly did not develop any crash
avoidance strategy.

Occasional crashes in other parts of the track are
result of respawns of agents that happen to take place
in too close proximity of another agent and can be eas‐
ily eliminated by improving agent respawn procedure
in the testing phase.

Sample agent traces in the latter selected case are
shown indetail in intersection area inFigure7. Agents’
goal is to pass the intersection straight ahead. Here

33



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Figure 7. Collision avoidance, variant II with 6 agents
and grid resolution 7x7

we can observe that developed strategy is to avoid
collision by slowing down and diverging from own
course – to either right or left. Skipping right results
in almost immediate track fallout and episode termi‐
nation. The decision of skipping left is taken if agent
has spotted another agent crossing the intersection
slightly later. It turns left sharply, taking course paral‐
lel to it. Consequently, the agent is pushed off the track
or strays left, departing from its goal and eventually
being terminated.

4. Conclusion
Here we presented a complete simulation and

reinforcement learning environment, capable of train‐
ing autonomous mobile agents to reach their goals.
Our main contributions are twofold. First, a plane col‐
oring scheme is proposed that efϐiciently encodes both
track shape and basic trafϐic rules. It allows feeding
the neural network model with very compact input,
withoutneedof transfer learning frombig general pre‐
trained computer‐vision models.

Second, three variants of network architectures
and their training procedures are proposed and exam‐
ined, with the aim of somehow decoupling track con‐
trol and collision avoidance agent skills. Experiments
show that model structure matters in this regard: for
instance, model variant II clearly develops a primitive
but rational strategy of avoiding collision by falling off
the track. Further improvements, including some sort
of self‐developed road code, would probably require
reformulation of agent reward, and are a valuable
topic for further research.

The inherent compact size of the model was a
design guideline in our work. Being not a result of
quantization or any other compression of a much
largermodel, it can be used directly by agents not only
in the execution phase but also in training or updating
the model itself. Practical veriϐication of this claim is
also an important research direction.

AUTHOR
Mariusz Kamola∗ – Institute of Control and
Computation Engineering, Warsaw University
of Technology, Warsaw, 00‐665, Poland, e‐mail:
Mariusz.Kamola@pw.edu.pl.
NASK – National Research Institute, Warsaw, 01‐045,
Poland, e‐mail: Mariusz.Kamola@nask.pl.
∗Corresponding author

ACKNOWLEDGEMENTS
The author thanks Mr. Wojciech Dudek, PhD, Warsaw
University of Technology, for careful development and
maintenanceof theTurtlesimsimulator, andhis advice
and help in the course of research reported here.

References
[1] E. Strubell, Ananya Ganesh, and Andrew McCal‐

lum. “Energy and Policy Considerations for Deep
Learning in NLP,” Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, 2019. doi: 10.48550/arXiv.1906.02243.

[2] Y. Cheng, et al. “Model compression and acceler‐
ation for deep neural networks: The principles,
progress, and challenges.” IEEE Signal Process-
ing Magazine vol. 35, no. 1, 126–136, 2018. doi:
10.48550/arXiv.1710.09282.

[3] S. Grigorescu, et al. “A survey of deep learning
techniques for autonomous driving,” Journal of
Field Robotics, vol. 37, no. 3, 362–386, 2020.

[4] M. Hessel, et al. “Rainbow: Combining
improvements in deep reinforcement learning,”
Proceedings of the AAAI conference on artiϔicial
intelligence, vol. 32, no. 1, 2018.

[5] W. Dabney, et al. “Distributional reinforcement
learning with quantile regression,” Proceedings
of the AAAI Conference on Artiϔicial Intelligence,
vol. 32, no. 1, 2018.

[6] M. Ahmed, C. P. Lim, and S. Nahavandi. “A
DeepQ‐Network Reinforcement Learning‐Based
Model forAutonomousDriving,”2021 IEEE Inter-
national Conference on Systems, Man, and Cyber-
netics (SMC), IEEE, 2021.

[7] J. Carreira, and A. Zisserman. “Quo vadis, action
recognition? a new model and the kinetics
dataset,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.
doi: 10.48550/arXiv.1705.07750.

[8] “Howdo self‐driving cars know theirway around
without a map?”, https://bigthink.com/techn
ology‐innovation/how‐do‐self‐driving‐cars‐
know‐ their‐way‐around‐without‐ a‐map/
(accessed 2023.03.31).

[9] M. Sewak. “Deep QNetwork (DQN), Double DQN,
and Dueling DQN: A Step Towards General Arti‐
ϐicial Intelligence,”Deep Reinforcement Learning:

34

https://bigthink.com/technology-innovation/how-do-self-driving-cars-know-their-way-around-without-a-map/
https://bigthink.com/technology-innovation/how-do-self-driving-cars-know-their-way-around-without-a-map/
https://bigthink.com/technology-innovation/how-do-self-driving-cars-know-their-way-around-without-a-map/


Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

Frontiers of Artiϔicial Intelligence 2019, 95–108.
doi: 10.1007/978‐981‐13‐8285‐7_8.

[10] W. Dudek, N. Miguel, and T.Winiarski. “SPSysML:
A meta‐model for quantitative evaluation of
Simulation‐Physical Systems,” arXiv preprint
arXiv:2303.09565 (2023). doi: 10.48550/arXiv.
2303.09565.

[11] F. S. Chance. “Interception from a Dragonϐly Neu‐
ral Network Model,” International Conference on
Neuromorphic Systems, 2020.

[12] “Self‐driving cars with Carla and Python,” https:
//pythonprogramming.net/introduction‐
self‐driving‐autonomous‐cars‐carla‐python
(accessed 2023.03.31).

[13] OpenAI Gymhomepage, https://openai.com/res
earch/openai‐gym‐beta (accessed 2023.03.31).

[14] J. Lin, C. Gan, and S. Han. “TSM: Temporal shift
module for efϐicient video understanding.” Pro-
ceedings of the IEEE/CVF international confer-
ence on computer vision, 2019.

35

https://pythonprogramming.net/introduction-self-driving-autonomous-cars-carla-python
https://pythonprogramming.net/introduction-self-driving-autonomous-cars-carla-python
https://pythonprogramming.net/introduction-self-driving-autonomous-cars-carla-python
https://openai.com/research/openai-gym-beta
https://openai.com/research/openai-gym-beta

	Introduction
	Related Work

	The Solution
	Road Topology Representation
	Decision Model

	Experiments and Results
	Conclusion

