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Abstract:
This research presents a new control method for a twin‐
rotor MIMO system that models the behavior of a heli‐
copter. The control strategy combines feedback lineariza‐
tion with a non‐linear observer called the Thau Observer
and takes full advantage of the system’s state infor‐
mation. The proposed method is tested in both simu‐
lated and real‐world experiments, and it is evaluated
for its ability to perform regulation and trajectory track‐
ing tasks. The results demonstrate the effectiveness and
superior performance of the proposed control method in
controlling twin‐rotor MIMO systems.

The main advantage of the proposed method is its
nonlinear control, which has more power and uses more
precise physical parameters of the system than the lin‐
earized model.

Keywords: TRMS, robotics, UAVs control, non‐linear con‐
trol, non‐linear observer

1. Introduction
Feedback linearization is a widely‐used control

technique for aerodynamic systems. This method lin‐
earizes non‐linear systems globally, which provides a
linear closed‐loop system for controlling aerodynamic
systems. Feedback linearization has been shown to be
effective in controlling aerodynamic systems, even in
the presence of non‐linearities and cross‐couplings.
Its popularity in the ϐield of control engineering can
be attributed to its reliability and ease of implemen‐
tation. Recent research has continued to demonstrate
the effectiveness of feedback linearization for control‐
ling aerodynamic systems. For example, in a study by
Kim et al. [1], feedback linearization was applied to a
helicopter model to improve its control performance.
The results showed that the feedback‐linearization
approach effectively reduced steady‐state error and
improved the transient response of the system. In
another study by Li [2], feedback linearization was
used to control a ϐlapping‐wing aircraft. In [3,4], there
are presentations of the results of controlling aerody‐
namic autonomous systems such as quad‐rotors and
helicopters.

The Twin Rotor MIMO System (TRMS) is a well‐
established benchmark for ϐlight control experiments
and the validation of control theories. This system
simulates the dynamics of a helicopter, with two
inputs and two outputs that are cross‐coupled. The

TRMS provides a challenging platform for testing con‐
trol techniques due to its non‐linearities and complex‐
ity. Its close correlation to real ϐlight dynamics makes
it an ideal system for evaluating the performance of
control systems under challenging conditions. Its use
as a benchmark system has been widely recognized in
the control engineering community.

A number of recent studies on the TRMS have also
focused on improving its control performance [5–7],
using to validate the accuracy of important non‐linear
and hybrid control techniques such as backstepping,
adaptive feedback linearization, and robust control.
For instance, in a study by Wang and colleagues [8],
a hybrid control method was applied to the TRMS to
achieve improved regulation and trajectory tracking.
Another study by Zhang et al. [9] applied a model
predictive control (MPC) approach to the TRMS, with
the aim of improving its regulation and tracking per‐
formance.

The present workmakes a signiϐicant contribution
to the ϐield of feedback linearization and the control of
aerodynamic systems. By combining the feedback lin‐
earization control theory with the Thau observer, we
were able to achieve better control performance than
in previous studies. The use of the twin‐rotor MIMO
system as a benchmark allowed us to validate the
effectiveness of our control approach in a real‐world
scenario. The simulation and real‐time experiments
conducted in this work showed promising results in
both regulation and trajectory‐tracking tasks, demon‐
strating the potential of this control approach in prac‐
tical applications.

This proposed new method can be used to con‐
trol robot systems in general Using this approach to
control real helicopters may be possible, taking into
consideration the helicopter system’s speciϐications.

The remainder of this paper is organized as fol‐
lows. Section 2 presents the mathematical model of
the twin‐rotor MIMO system. Section 3 focuses on the
feedback linearization control theory and its mathe‐
matical proof of stability in the closed‐loop system,
including the system, controller, and observer. The
results of both the simulation and real‐time exper‐
iments are presented and discussed in Section 4.
Finally, in Section 5, we provide conclusions and
future work suggestions to further advance our ϐind‐
ings. Throughout the paper, we illustrate and analyze
the results to aid in a comprehensive understanding of
our work.
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Figure 1. Twin Rotor MIMO System (TRMS)

2. The TRMS Model
In this sub‐section we will present the TRMS

model, we will follow a physical modelling using the
laws of aerodynamics, mechanics and electricity to
have a non‐linear model.
‐ As it is a being a nonlinear and multi‐variable sys‐
tem; the dynamics of the TRMS can be translated
through equations describing the moments of force
and inertia.

‐ The mathematical model is developed by making
some simpliϐications; we suppose that:
‐ Motor dynamics can be described by ϐirst‐ order
differential equations as a function of the joint
variables of the mechanism and vice‐versa.

‐ The friction in the system is of the viscous type.
‐ Rotation can be described in principle as the
movement of a pendulum.
These are simplifying assumptions, they are made

to simplify the modelling, these three assumptions
presented above are argued, by the fact of the chosen
operating range, aswell aswhich slowoperatingmode
chosen,without forgetting themechanical structure of
the system that allows us to make the 3rd hypothesis.

Modeling of the plant used here follows the same
method as our precedent works [11, 21]; after rear‐
rangement of equations ofmoments and forceswe can
get the following non‐linear state representation:

We have the state vector: 𝑥 = [𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6]
𝑇 =

[𝜓𝜓̇𝜑𝜑̇𝜏1𝜏2]
𝑇

Where𝜓 and𝜑 are the pitch and yaw angle respec‐
tively.

𝜏1 and 𝜏2 are the torques of the twomotors of pitch
and yaw respectively.

𝐴 (𝑥) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜓̇
1
𝐼1
[𝛼1𝜏21 + 𝑏1𝜏1 +𝑀𝑔sin𝜓 + 𝐵1𝜓𝜓̇

+𝐵2𝜓𝑠𝑖𝑔𝑛𝜓 + 𝐾𝑔𝑦𝑀1𝜑̇cos𝜓 (𝛼1𝜏21 + 𝑏1𝜏1)]
𝜑̇

1
𝐼1
[𝛼2𝜏22 + 𝑏2𝜏2 + 𝐵1𝜑𝜑̇

+𝐵2𝜑𝑠𝑖𝑔𝑛𝜑 + 𝐾𝑐1.75 ൫𝛼2𝜏22 + 𝑏2𝜏2൯]
−𝑇10

𝑇11
𝜏1

−𝑇20
𝑇21

𝜏2

Table 1. The TRMS parameters – from the “feedback”
manufacturer

Parameters Values
I1 – main rotor moment of inertia 6.8.10‐2 Kg/m2

I2 – tail rotor moment of inertia 2.10‐2 Kg/m2

a1 – nonlinearity parameters 0.0135
b1‐nonlinearity parameters 0.0924
a2‐ nonlinearity parameters 0.02
b2‐ nonlinearity parameters 0.09
Mg‐moment of gravity 0.32 N.m
B1𝜓 – parameter of the friction
moment function

6.10‐3 N.m.s/rad

B2𝜓 – parameter of the friction
moment function

1.10‐3 N.m.s/rad

B1𝜙 – parameter of the friction
moment function

1.10‐1N.m.s/rad

B2𝜙 – parameter of the friction
moment function

1.10‐2 N.m.s/rad

Kgy – gyroscopic moment
parameter

0.5 S/rad

K1‐gain of motor 1 1.1
K2‐ gain of motor 2 0.8
T11 – motor 1 denominator
parameter

1.1

T10 – motor 1 denominator
parameter

1

T21 – motor 2 denominator
parameter

1

T20 – motor 2 denominator
parameter

1

T𝑝 – coupling moment parameter 2
T0 – coupling moment parameter 3.5
Kc− ‐ coupling moment gain ‐0.2

This system is in the form
𝑥̇ = 𝐴 (𝑥) + 𝐵 (𝑥) 𝑢

Where

𝐵 (𝑥) = ቎
0 0 0 0 0 𝐾2

𝑇21
0 0 0 0 𝐾1

𝑇11
0 ቏

𝑇

3. Input‐Output Feedback Linearization
3.1. Feed‐back Linearization Controller

The exact linearization of nonlinear systems con‐
stitutes a natural and promising method, making it
possible to obtain a linear input‐output behavior by
implement a loop. Subsequently, the whole linear the‐
ory can be applied [10–12]. Advanced control meth‐
ods often include several loops including a feed‐
back linearization. Input‐output linearization plays an
important role in a ϐield like robotics, where the calcu‐
lated torque method is a special case of input‐output
linearization [13].
3.1.1. Case of Multi‐variable Systems

Consider the following nonlinear system in afϐine
form as input:

෍ ∶ ቊ𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢
𝑦 = ℎ(𝑥) (1)

67



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 3 2025

With 𝑥 ∈ ℝ𝑛; 𝑢 ∈ ℝ𝑚 and 𝑦 ∈ ℝ𝑝 as the state
vector, input and outputs of the system, respectively.

𝑓 (𝑥), 𝑔(𝑥) and ℎ (𝑥) are sufϐiciently regular func‐
tions in a domain𝐷 ⊂ ℝ𝑛; Applications𝑓∶𝐷 → ℝ𝑛 and
𝑔∶ 𝐷 → ℝ𝑛 call the vector ϐields in the domain D; and
the application ℎ∶𝐷 → ℝ𝑛 is the output immersion.

The solution for SISO systems can be easily gen‐
eralized to multivariate systems. We then obtain the
sufϐicient condition given by [11].
3.1.2. Decoupling by Regular Static Looping

Given the system in the form of (1), we try to ϐind,
if possible, a regular static state looping, such as

𝑢 = 𝛼 (𝑥) + 𝛽 (𝑥) 𝑣 (2)

With 𝛽(𝑥) inversible, such as, for all 𝑖 = 1.....𝑝, given:

𝑑𝑦(𝑘)𝑖 𝜀𝑠𝑝𝑎𝑛𝑘 ቄ𝑑𝑥, 𝑑𝑣𝑖 , … , 𝑑𝑣(𝑘)𝑖 ቅ , 𝑘 ≥ 0 (3)

𝑑𝑦(𝑘)𝑖 ∉ 𝑠𝑝𝑎𝑛𝑘 {𝑑𝑥} (4)

Let 𝑑ℎ
𝑑𝑥𝑓 (𝑥) = 𝐿

𝑓
ℎ(𝑥) be called the Lie derivative

of h in the direction of f. Condition (3) represents the
decoupling stress itself, and condition (4) guarantees
the controllability of the closed loop output.

The solution to this problem is given by a result
similar to [11]; however, the condition here becomes
necessary and sufϐicient.

Let (𝜌1, … , 𝜌𝑝) be the set of inϐinite zeros per row
of the system. Remember that these are deϐined as
follows:

𝜌𝑖 ∶= (inf 𝑟𝑖 ∈ ℕ, |∃𝑗 ∈ 𝑚, 𝐿𝑔𝐿𝑟𝑖−1𝑓 ℎ𝑖 ≠ 0) (5)

Recall that 𝜌𝑖 corresponds to the ϐirst derivative of 𝑦𝑖 ,
which explicitly shows the control law u:

𝑦(𝑝𝑖) = 𝐿𝑝𝑖𝑓 ℎ (𝑥) + 𝐿𝑔𝐿𝑝𝑖−1𝑓 ℎ (𝑥) 𝑢 (6)

With the multiplicative term of u designating the con‐
catenation of the terms 𝐿𝑔𝐿𝜌𝑖−1𝑓 ℎ (x), ∀ 𝑗 ∈ 𝑚.

Let Δ(𝑥) be the matrix deϐined by:

△(x) = ቎
Lg1L

𝜌i−1
f h1 (x) ⋯ LgmL

𝜌i−1
f h1 (x)

⋮ ⋱ ⋮
Lg1L

𝜌i−1
f hp (x) ⋯ LgmL

𝜌i−1
f hp (x)

቏ (7)

Thismatrix is called the systemdecouplingmatrix.
This condition on Δ(x) being satisϐied — the state

feedback deϐined by equation (2) — decouples the
system Σ, such that:

ቊ𝛼 (𝑥) = −Δ (𝑥)−1Δ0 (𝑥)
𝛽 (𝑥) = Δ (𝑥)−1 ቋ (8)

Moreover, the looped system has a linear input‐
output behavior described by:

𝑦(𝜌𝑖) = 𝑣𝑖∀ 𝑗 ∈ 𝑚 (9)

The linear system obtained by this mathematical
transformation is a chain of integrators with 𝜌𝑖 poles
at the origin; it is therefore unstable, hence the need

for a stabilizing control that guarantees a certain level
of performance for the system according to a speci‐
ϐication. Loads [13]. In this paper we have contented
ourselves with a placement of poles by linear state
feedback.This can also be a dynamic output feedback,
which uses the states of the physical system estimated
by the Thau observer.
3.2. Thau Observer

The results obtained by Thau were generalized by
Kou et al. [15] and Banks [16]. This method does not
constitute a systematic technique for the synthesis of
an observer, but rather gives a sufϐicient condition of
the exponential stability of the observation error [14].

Let us consider the nonlinear system,which can be
put into the following form:

ቊ𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑓(𝑥)
𝑦 = 𝐶𝑥 (10)

Where 𝑥(𝑡) ∈ ℜ𝑛 represents the state of the
system,

𝑓 (𝑥) ∶ ℜ𝑛 ⟶ℜ𝑛 is a differentiable vector ϐield.
𝑢(𝑡) ∈ ℜ𝑚 is the control vector.
𝑦(𝑡) ∈ ℜ𝑝 is the output vector.
Thus, the system ̇𝑥̂ = 𝐴𝑥̂+𝐵𝑢+𝑓 (𝑥̂)+𝐿 (𝑦 − 𝐶𝑥̂)

is an exponential observer of the state of the system.
The proof of this theorem is in [16].

The lemma in [18] characterizes the exponential
convergence of this observer.
3.3. Application on TRMS

Given the followingnonlinearTRMSmodel (shown
in the 2nd section):

The state and output vectors are given by:

𝑥 = ൣ𝜓 𝜓̇ 𝜑 𝜑̇ 𝜏1 𝜏2൧
𝑇 𝑦 = ൣ𝜓 𝜑൧𝑇

‐ Centralized architecture
We start with the successive derivations of the ϐirst
output 𝜓, which makes the term of the commands
appear in its third derivative,This allows us to know
its relative degree, 𝜌𝑖 = 3. The expressions containing
the sign functions are not differentiable, so that they
will be considered disturbances and omitted from the
nonlinear model for the synthesis of the linearization
feedback. The synthesis model is given by Either 𝜓 =
𝑥1; 𝜓̇ = 𝑥2; 𝜑 = 𝑥3; 𝜑̇ = 𝑥4; 𝜏1 = 𝑥5; or 𝜏2 = 𝑥6.

𝑓1(𝑥) = 𝑥2

𝑓2 (𝑥) =
𝑎1
𝐼1
𝑥25 +

𝑏1
𝐼1
𝑥5 −𝑀𝑔sin (𝑥1) −

𝐵1𝜓
𝐼1

𝑥2

−
𝑘𝑔𝑦
𝐼1

cos (𝑥1)𝑥4(𝑎1𝑥25 + 𝑏1𝑥5)

𝑓3 (𝑥) = 𝑥4

𝑓4 (𝑥) =
𝑎2
𝐼2
𝑥26 +

𝑏2
𝐼2
𝑥6 −

𝐵1𝜑
𝐼2

𝑥2

− 𝑘𝑐
𝐼2
1.75(𝑎1𝑥25 + 𝑏1𝑥5)

𝑓5 (𝑥) =
𝑇10
𝑇11

𝑥5
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𝑓6 (𝑥) =
𝑇20
𝑇21

𝑥6

𝑓 (𝑥) = [𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥)]
𝑇

𝑔 (𝑥) = 𝐺 = ቎
0 0 0 0 𝑘1

𝑇11
0

0 0 0 0 0 𝑘2
𝑇12

቏ 𝑒𝑡 ℎ (𝑥)

= ቆ𝑥1𝑥3ቇ

Calculation of the successive Lie derivatives yield:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝐿𝑓ℎ (𝑥) =
𝜕ℎ(𝑥)
𝜕𝑥 𝑓 (𝑥)

= ቈ1 0 0 0 0 0
0 0 1 0 0 0቉ 𝑓 (𝑥)

= ቈ𝑓1(𝑥)𝑓3(𝑥)቉ = ቈ𝑥2𝑥4቉

𝐿2𝑓ℎ (𝑥) =
𝜕ቂ𝐿𝑓ℎ(𝑥)ቃ

𝜕𝑥 𝑓 (𝑥)

= ቈ0 1 0 0 0 0
0 0 0 1 0 0቉ 𝑓 (𝑥)

= ቈ𝑓2(𝑥)𝑓4(𝑥)቉

𝐿3𝑓ℎ (𝑥) =
𝜕ቂ𝐿2𝑓ℎ(𝑥)ቃ

𝜕𝑥 𝑓 (𝑥)

(11)

𝐿3𝑓ℎ (𝑥)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘𝑔𝑦
𝐼1

sin(𝑥1)𝑥4(𝑎1𝑥25 + 𝑏1𝑥5) −𝐵1𝜓
𝐼1

−𝑀𝑔cos (𝑥1)𝑥2
0 0
… −𝑘𝑔𝑦

𝐼1
cos (𝑥1)

(𝑎1𝑥25 + 𝑏1𝑥5)
… 𝐵1𝜑

𝐼2

0 …
0 ⋯

𝑏1
𝐼1
− 𝑘𝑔𝑦

𝐼1
cos (𝑥1) 0

𝑥4(2𝑎1𝑥5 + 𝑏1)
−𝑘𝑐

𝐼1
1.75(2𝑎1𝑥5 + 𝑏1)

2𝑎2
𝐼2
𝑥6 −

𝑏2
𝐼2

⎤
⎥
⎥
⎥
⎥
⎦

𝑓(𝑥) (12)

△0 (𝑥) = 𝐿3𝑓ℎ (𝑥)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘𝑔𝑦
𝐼1

sin (𝑥1)𝑥4𝑥2(𝑎1𝑥25 + 𝑏1𝑥5) − 𝑀𝑔cos (𝑥1) 𝑥2
−𝐵1𝜓

𝐼1
𝑓2(𝑥)
0

−𝑘𝑔𝑦
𝐼1

cos (𝑥1) ൫𝑎1𝑥25 + 𝑏1𝑥5൯ 𝑓4(𝑥)
𝑇10𝑘𝑔𝑦
𝑇11𝐼1

𝑐𝑜𝑠(𝑥1)𝑥4𝑥5(2𝑎1𝑥5 + 𝑏1) −
𝑇10𝑏1
𝑇11𝐼1

𝑥5
0

0
0
0

𝐵1𝜑
𝐼2
𝑓4(𝑥)

𝑇10𝑘𝑐
𝑇11𝐼2

1.75(𝑎1𝑥25 + 𝑏1𝑥5)
−2𝑎2

𝐼2
𝑇20
𝑇21

𝑥26 −
𝑇20𝑏2
𝑇21𝐼2

𝑥6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

𝐿𝑔𝐿2𝑓ℎ (𝑥) =
𝜕 ቂ𝐿2𝑓ℎ (𝑥)ቃ

𝜕𝑥 𝐺 (14)

𝐿𝑔𝐿2𝑓ℎ (𝑥)

=
⎡
⎢
⎢
⎢
⎣

𝑘𝑔𝑦
𝐼1

sin(𝑥1) 𝑥4(𝑎1𝑥25 + 𝑏1𝑥5) − 𝑀𝑔cos (𝑥1) 𝑥2
0
…
…

−𝐵1𝜓
𝐼1
0

−𝑘𝑔𝑦
𝐼1

cos (𝑥1) (𝑎1𝑥25 + 𝑏1𝑥5)
𝐵1𝜑
𝐼2
0 …
0 ⋯

𝑏1
𝐼1
− 𝑘𝑔𝑦

𝐼1
cos (𝑥1) 𝑥4(2𝑎1𝑥5 + 𝑏1) 0

−𝑘𝑐
𝐼1
1.75(2𝑎1𝑥5 + 𝑏1)

2𝑎2
𝐼2
𝑥6 −

𝑏2
𝐼2

⎤
⎥
⎥
⎥
⎦

𝐺

(15)
△(𝑥) = 𝐿𝑔𝐿2𝑓ℎ (𝑥)

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑘1𝑏1
𝑇11𝐼1

0
−𝑘1𝑘𝑔𝑦

𝑇11𝐼1
cos (𝑥1)𝑥4(2𝑎1𝑥5 + 𝑏1)
− 𝑘1𝑘𝑐

𝑇11𝐼2
1.75(2𝑎1𝑥5 + 𝑏1)

𝑘2
𝑇21

൬2𝑎2𝐼2 𝑥6 −
𝑏2
𝐼2
൰

⎤
⎥
⎥
⎥
⎥
⎦
(16)

One can easily verify that the determinant of Δ(x)
is different from 0:

𝑑𝑒𝑡 [△(𝑥)] = 𝑘1𝑏1
𝑇11𝐼1

𝑘2
𝑇21

ቆ2𝑎2𝐼2
𝑥6 −

𝑏2
𝐼2
ቇ

−
𝑘1𝑘𝑔𝑦
𝑇11𝐼1

cos (𝑥1) 𝑥4(2𝑎1𝑥5 + 𝑏1)
𝑘2
𝑇21

⋅ ቆ2𝑎2𝐼2
𝑥6 −

𝑏2
𝐼2
ቇ (17)

With the condition that the sum of the relative
degrees of the two outputs of the system equal to
n = 6 (the order of the system), the control deϐined by
the equation (2), and (8) globally linearizing and fully
decoupling the TRMS system (no dynamic zeros).

The linear system thus obtained is in the form of
two decoupled triple integrators, described by:

ቊ𝑦
3
1 = 𝑣1
𝑦32 = 𝑣2 (18)

With implemented control as:

𝑢 = 𝛼 (𝑥̂) + 𝛽 (𝑥̂) 𝑣

where

𝛼 (𝑥̂) = −Δ (𝑥̂)−1Δ0 (𝑥̂) = −𝐿𝑔𝐿2𝑓ℎ (𝑥)
−1𝐿3𝑓ℎ (𝑥)

𝛽 (𝑥̂) = 𝐿𝑔𝐿2𝑓ℎ (𝑥)
−1

To stabilize for the desired performance, linearized
state feedback by input‐output linearization under
the state delivered by the Thau observer with inte‐
gral action will be applied to the auxiliary command
inputs.
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3.3.1. Regulation

1) Linearized state feedback

⎧⎪
⎨⎪⎩

𝑣1 = 𝑘11𝑦𝑐1 − 𝑘11𝑧1 − 𝑘12𝑧2 − 𝑘13𝑧3
−𝑘14 ∫

𝑡
0 𝑒1𝑑𝑡

𝑣2 = 𝑘21𝑦𝑐2 − 𝑘21𝑧4 − 𝑘22𝑧5 − 𝑘23𝑧6
−𝑘24 ∫

𝑡
0 𝑒2𝑑𝑡

(19)

With:

𝑒1 = 𝑦𝑐1 − 𝑦1 𝑒𝑡 𝑒2 = 𝑦𝑐2 − 𝑦2
The 𝑧𝑖𝑓, or 𝑖 = 1,… , 6, is the state of the linearized
system obtained by a Luemberger observer with the
outputs of the system as and the auxiliary commands
𝑣1 and 𝑣2. 𝑥̂𝑖𝑓, or 𝑖 = 1,… .6, is the physical state of
the system estimated by the Thau observer withthe
outputs of the systeas inputs and the control signal
applied to the systems 𝑢1 and 𝑢2.
‐ For the pitch angle dynamics subsystem, we
imposed closed‐loop dynamics based on the
following speciϐications:
‐ Depreciation 𝜉 = 0.53 and 𝑡𝑚 = 0.777 s as
response time,and

‐ Two auxiliary poles, 𝑝3 = −2 and 𝑝4 = −6; the
latter is dedicated to the integral action to regulate
the dynamics of the rejection of disturbances.

‐ For the yaw‐angle dynamics subsystem,we imposed
a closed‐loop dynamics based on the following spec‐
iϐications:
‐ Depreciation 𝜉 = 0.56 and 𝑡𝑚 = 1.0185 s as
response time, and

‐ Two auxiliary poles, 𝑝3 = −1.5 𝑎𝑛𝑑 𝑝4 = −15; the
latter is dedicated to the integral action to regulate
the dynamics of the rejection of disturbances.

3.3.2. Tracking

൝𝑣1 = 𝑦(3)𝑐1 + 𝑘11𝑒1 + 𝑘12𝑒̇1 + 𝑘13 ̈𝑒1 − 𝑘14 ∫
𝑡
0 𝑒1𝑑𝑡

𝑣2 = 𝑦(3)𝑐2 + 𝑘21𝑒2 + 𝑘12 ̇𝑒2 + 𝑘23 ̈𝑒2 − 𝑘24 ∫
𝑡
0 𝑒2𝑑𝑡

(20)
Where 𝑦(3)𝑐1 and 𝑦(3)𝑐2 are the third derivatives of the

reference trajectories of the pitch angle and the yaw
angle, respectively.
‐ Linearized state-feedback

𝑒1 = 𝑦𝑐1 − 𝑦1 𝑎𝑛𝑑 𝑒2 = 𝑦𝑐2 − 𝑦2
𝑒̇1 = 𝑦̇𝑐1 − 𝑧2 𝑎𝑛𝑑 𝑒̇2 = 𝑦𝑐2 − 𝑧5
𝑒̈1 = 𝑦̈𝑐1 − 𝑧3 𝑎𝑛𝑑 𝑒̈2 = 𝑦̈𝑐2 − 𝑧6

‐ For the pitch‐angle dynamics (pitch) subsystem, we
have imposed a closed‐loop dynamics by choosing
the following poles:

𝑝1 = −6, 𝑝2 = −10, 𝑝3 = −2, and 𝑝4 = −8

‐ For the yaw‐angle dynamics subsystem (Yaw), we
have imposed a closed‐loop dynamics by choosing
the following poles:

𝑝1 = −5, 𝑝2 = −15, 𝑝3 = −10, and 𝑝4 = −10.

3.3.3. Application of the Thau observer

Knowing that input‐output linearization by state
looping requires knowledge of all the states of the
system and that in the case of the TRMS, this is
not entirely accessible – the synthesis of nonlinear
state observers is imposed. Our choice is directed
towards the Thau observer, which is considered an
exponential observer, this will facilitate the establish‐
ment of the stability of the global closed‐loop scheme,
something that is far from easy with an asymptotic
observer. In addition, it is simple to implement and,
effective. Above all, the nonlinear model of our system
is put in the appropriate form for synthesis by such an
observer.

We assume that the performance of the TRMS sen‐
sors is acceptable because TRMS is a good benchmark
for the feedback society.

The form of the Thau observer of the TRMS is
written

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑓(𝑥) (21)

where A, B and C are the matrices of the system
deϐined in the Equations (17), (19) and (21), respec‐
tively.

𝑓 (𝑥) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
[a1𝑥25 −Mgsin (𝑥1) − kgy cos (𝑥1)

𝑥4 ൫𝑎1𝑥25 + 𝑏1𝑥5൯ − 𝐵1𝜓𝑠𝑖𝑔𝑛(𝑥2)]/𝐼1
0

[a2𝑥26 − 1.75kca1𝑥25 − 𝐵1𝜑𝑠𝑖𝑔𝑛(𝑥4)]/2
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
(22)

In this case, the Thau observer is described by:

̇𝑥̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝑓 (𝑥̂) + 𝐿(𝑦 − 𝐶𝑥̂) (23)

where 𝐴, 𝐵 and 𝐶 are the matrices given previously,
and 𝑓 (𝑥̂) is described by:

𝑓 (𝑥̂) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
[a1𝑥̂25 −Mgsin (𝑥̂1) − kgy cos (𝑥̂1)

𝑥̂4 ൫𝑎1𝑥̂25 + 𝑏1𝑥̂5൯ − 𝐵1𝜓𝑠𝑖𝑔𝑛(𝑥̂2)]/𝐼1
0

[a2𝑥̂26 − 1.75kca1𝑥̂25]/𝐼2
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

For the linear part of the observer, we place the fol‐
lowing poles, which can verify the third assumption
in Thau theorem [14] and adjust the dynamics of the
estimation:

PO = [−30;−29.5258;−0.0984;−0.6983;
− 2.6028;−0.4742].

This will be used to calculate the gain L of the
observer by a multivariable state feedback calcula‐
tion technique applied to the dual system through the
matrices 𝐴𝑇 and 𝐶𝑇 . The instruction “place” is used in
matlab to calculate the gain of estimation L.
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3.3.4. Analysis of the stability of the global diagram of
the closed loop

Thanks to the nonlinear separation principle
investigated by Vidyasagar [18], it is possible to apply
this principle, termed weakened separation princi‐
ple [19], to deduce the stability of a global scheme
of a nonlinear control in aclosed loop inthe presence
of an observer with exponential convergence in this
loop, in particular if the control is exponentially stabi‐
lizing [17]. This is the case resulting from control by
linearizing input/output loop provided with an auxil‐
iary control stabilizing by feedback of state.

Consider the nonlinear system deϐined by the
equation

ቊ𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢
𝑦 = 𝐶(𝑥)

Then, the separation principle can be applied if and
only if 𝑓(𝑥) is bounded. It can therefore be considered
to be a disturbance for the system, andobserver‐based
control can ensure the internal stability of the system
and there will be no explosion of the state of the sys‐
tem [20].

Let be the nonlinear system given in the 2nd sec‐
tion. If the following hypotheses hold:
‐ The synthesized observer is globally, uniformly and
exponentially stable observation error.

‐ There is a control law such that the system without
an observer is globally and exponentially stable.
Then, the looped system via observer is globally

and exponentially stable [17].
We note that the control by the linearizing

input/output loop provided with a stabilizing auxil‐
iary control by return of looped state with a Thau
observer veriϐies the hypotheses given above. We can
then deduce that global stability in the closed loop is
assured.

4. Simulation
In this part we will apply the command to the

nonlinear model presented in section 2 using Matlab
(solver ode45):
‐ Regulation: The input for this experiment is a step
signal, The obtained results are presented in Fig‐
ures 2 and 4.

‐ Figures 3 and 5 show an enlarged view of the ϐirst 5
seconds from the control signals.
In the ϐirst mode of regulation (Figures 3 and 4),

we note that the transient state is excellent without
overshoot, and has a mean square error of order 10‐4.
The control signal was also excellent; note that there
are peaks in the ϐirst fractions of a second in Figures 3
and 5, which is a typical phenomenon of control by
feedback linearization. in practice, the actuator does
not even notice because the problem is quickly cor‐
rected by the corrector, and we then notice a signal
free of peaks and not noisy, visible from both angles.
‐ Trajectory tracking

In the second simulation, the model is excited by
a sinusoidal input. The obtained results are presented
in Figures 6 and 7.

Figure 2. Pitch angle control by linearizing control in
simulation

Figure 3. An enlarged view of the first 5 seconds of
Figure 2

Figure 4. Yaw angle control by linearizing control in
simulation

Figure 5. An enlarged view of the first 5 seconds of
Figure 4
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Figure 6. Trajectory tracking for the pitch angle
controlled by the linearizing control in simulation

Figure 7. Trajectory tracking for yaw angle controlled by
linearizing control in simulation

Table 2. Regulation error values

Feedback-lin
M‐A of error Pitch MAE = 0.0100

Yaw MAE = 0.0060
M‐S of error Pitch MSE = 6.6811e−04

Yaw MSE = 4.4122e−04

Table 3. Tracking error values

Feedback-lin
MA of error Pitch MAE = 0.0066

Yaw MAE = 0.0023
MS of error Pitch MSE = 5.7529e−05

Yaw MSE = 7.0992e−06

This is to test its performance in trajectory track‐
ing. This sinusoidal signal is characterized by:
‐ For the pitch: amplitude: 0.4, frequency: 0.2, cen‐
tered at 0.2

‐ For yaw: amplitude: 0.8, frequency: 0.2, centered at
0.
For the second mode in Figures 6 and 7 – trajec‐

tory tracking – we noticed a tracking error trending
towards zero. Given that the setpoint curve is exactly
the same as the response curve, we can hardly dif‐
ferentiate them; with an optimal control signal and
without noise, it is suitable for the actuators while
respecting the speciϐications mentioned above.

Below are two tables containing the quadratic
error and the absolute error between the setpoint and
the response for the two modes.

In the simulation, we see that this controller has
proven its effectiveness on this system, although it
is complex and difϐicult to implement compared to

Figure 8. Diagram of the TRMS

the linear methods. In feedback linearization control,
difϐiculties arise from the cascade of two laws of con‐
trol: the inner control, which linearizes the systemand
depends on the physical state of the of the system,
and the outer or auxiliary control, which stabilizes and
provides performance in the closed loop. This control
depends on the mathematical (linearized) state; if the
inner control fails, the outer control can’t stabilize and
give satisfactory performance in the closed loop.

The limitations of this scheme are:
‐ Non‐robustness, because of the naivety of this com‐
mand which is entirely based on the mathematical
model of the system.

‐ Instability of the dynamics of zeros.
‐ Inapplicability to the non‐linearizable class of non‐
linear systems.
By applying this method, we not only obtained

the stability of the system, but also the performances,
which were very excellent in accordance with the
speciϐications.

Experimental Results

In this subsection, we will implement the control
laws directly in the real system to verify their robust‐
ness and efϐiciency in a real application.

Note at the beginning that the application of this
nonlinear control on the TRMS allowed us to run the
experiments from any initial set of conditions as long
as they belonged to the basin of attraction of the sys‐
tem; the stability of the systemwas preserved, and the
performances were similar.

We note from the results obtained in Figures 8
and 9 that we could not obtain satisfactory results
in the pursuit, and we were therefore satisϐied with
the regulation. The same input used in the simulation
has been inserted into the system. We applied a step
disturbance on each angle to check its performance
as well as its robustness in disturbance rejection. This
disturbance was applied at the 50th second.
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Figure 9. Pitch control by linearizing control in
experiment

Figure 10. Experimental yaw control using the feedback
linearizing control

We note in Figures 9 and 10 presented above the
results for the regulation are quite satisfactory, prov‐
ing the stability of the system.

The auxiliary controller also did its job by achiev‐
ing the performance required in the speciϐications. For
example, we mention that the response time is less
than 4 seconds for the yaw angle, with an overshoot
of less than 10%, and for the pitch angle, the response
time is 3 seconds with an overshoot of 0%.

We also note the robustness of the control scheme
in terms of rejection of disturbances and, in particu‐
lar, performance. In terms of speed of rejection, it is
approximately 3 seconds, with a small overshoot for
the two angles and a clear performance for the yaw
angle. Elsewhere, the steady state error is almost zero,
thus improving accuracy.

5. Conclusion
In this paper, a nonlinear control based on global

linearization and stabilization of the closed‐loop sys‐
temwas developed and applied to TRMS. This strategy
requires accessibility to all states of the system, which
is not possible in the case of TRMS because this plat‐
formhas only two sensors thatmeasure pitch and yaw
angles. This means an observer is required in order
to implement this control. We have chosen a nonlin‐
ear observer the Thau observer, for its simplicity and
efϐiciency. This has been proven by the satisfactory

results obtained in regulation. A linear‐state feedback
system was used as an auxiliary control in order to
stabilize the system and obtain the required perfor‐
mance.

It is concluded that this control yielded excellent
results for the two objectives: regulation and enslave‐
ment. These results were quite satisfactory in real
time for stability and regulation. For tracking, however
it needs to be robust to reinforce stability, improve
performance in regulation, and succeed in pursuit.
This will be the main motivation for the next work.
In nonlinear control, to implement an efϐicient track‐
ing scheme, the control should be robust because the
exact parameters used in the mathematical model of
the system are not known. The main motivation for
future work is to develop robust feedback lineariza‐
tion.
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