
Open Access. © 2024 Jacek Długopolski et al., published by Sciendo. This work is licensed under the Creative Commons
Attribution‐NonCommercial‐NoDerivatives 4.0 License

VOLUME 18, N∘ 2 2024
Journal of Automation, Mobile Robotics and Intelligent Systems

SOC‐FPGA BASED CONCEPT OF HARDWARE AIDED QUANTUM SIMULATIONSOC‐FPGA BASED CONCEPT OF HARDWARE AIDED QUANTUM SIMULATIONSOC‐FPGA BASED CONCEPT OF HARDWARE AIDED QUANTUM SIMULATIONSOC‐FPGA BASED CONCEPT OF HARDWARE AIDED QUANTUM SIMULATION
Submitted: 24th February 2023; accepted: 13th July 2023

Jacek Długopolski, Jakub Czerski, Mateusz Knapik

DOI: 10.14313/JAMRIS/2‐2024/9

Abstract:
Contemporary industry and science expectations
towards technological solutions set the bar high.
Current approaches to increasing the computing
power of standard systems are reaching the limits of
physics known to humankind. Fast, programmable
systems with relatively low power consumption are a
different concept for performing complex calculations.
Highly parallel processing opens up a number of
possibilities in the context of accelerating calculations.
Application of SoC (System On Chip) with FPGA (Field‐
Programmable Gate Array) enables the delegating of
a part of computations to the gates matrix, thereby
expediting processing by using parallelization of
hardware operations. This paper presents the general
concept of using SoC FPGA systems to support the CPU
(Central Processing Unit) in many modern tasks. While
some tasks might be really hard to implement on an
FPGA in a reasonable time, the SoC FPGA platform
allows for easy low‐level interconnections, and with
such virtualized access to the hardware computing
resources, it is seen as making FPGAs, or hardware in
general, more accessible to engineers accustomed to
high‐level solutions. The concept presented in the article
takes into account the limited resources of cheaper
educational platforms, which, however, still provide
an interesting and alternative hybrid solution to the
problem of parallelization and acceleration of data
processing. This allows encountered limitations to be
overcome and the flexibility known from high‐level
solutions and high performance achieved with low‐level
programming to be maintained without the need for a
high financial background.

Keywords: FPGA, SoC, quantum circuit, parallel comput‐
ing, web service, accelerating calculations

1. Introduction
Nowadays, practically every sector of human activ‐

ity beneϐits from technological solutions. Accelerat‐
ing and optimizing existing processes and automat‐
ing new ones will improve quality and user comfort.
Growing demand for computing power has caused the
creation of new integrated circuits with computing
cores that are clocked at even higher frequencies. It
carries with it an increase in the energy required and,
consequently, a rise of emitted heat that has to be
dissipated.

For this reason, engineers has introduced systems
composed of many computational units, enabling par‐
allel operations. Another perspective option is the
FPGA chip – a matrix of independently conϐigurable
logic gates, which provides naturally massive paral‐
lelism that increases the computing power while con‐
suming much less energy.

Programmable gate arrays consist of a large num‐
ber of advanced logical units, very fast RAM (Random
Access Memory) blocks and specialized DSP (Digital
Signal Processing)modules, all effectively surrounded
by internal hardware connection buses. There are also
programmable input/output blocks at logical arrays
and boundaries for communication with other exter‐
nal computing units. Currently, FPGA systems are
commonly used not only for digital signal processing
but for regular computing tasks as well. They ϐind
applicationswhenhighly fast data computing andpro‐
cess parallelization are required, e.g. in satellite soft‐
ware, military radars, GPS and cellular phone systems,
and also in image processing, emulation of physical
phenomena and in solutions that require high‐speed
communication networks. Commercial organizations,
as well as research institutions, commonly turn to
FPGA in many applications.

Standard computing systems have usually sepa‐
rated CPUs, GPUs (Graphics Processing Units), periph‐
erals, devices controllers, etc. In the case of mobile
processors dedicated to the smartphone and tablet
market, all units described above tend to be integrated
and implemented on a single chip called SoC (System
on Chip). SoC systems have many beneϐits in the era
of the IoT (Internet of Things). SoC FPGAs chips, in
addition to the Programmable Logic Array available
inside, also contain a ready, built‐in CPUprocessor and
dedicated very fast communication channels between
the two mentioned parts. They provide the follow‐
ing advantages: miniaturization, integration, ϐlexibil‐
ity, computing acceleration, energy savings and low
TCO (Total Cost of Ownership). A hardware descrip‐
tion language is used to conϐigure the FPGA. Sys‐
temVerilog and VHDL are currently the most popu‐
lar solutions on the market. By the use of synthesis
tools, an internal communication links list is gener‐
ated. Finally, the created conϐiguration is mapped to
a given chip. When the conϐiguration is beingmapped,
a problem of lack of resources may occur; hence, it is
important to optimize logic functions during the FPGA
application development process.

17

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

The problem of limited resources may concern,
in particular, cheaper platforms, e.g. educational plat‐
forms such as the one described later in this article.
The main concept elaborated in this paper is a direct
answer to this resource limitation. Themain contribu‐
tions of the paper are as follows:
‐ General idea of hardware support for calculations
in web services, which takes into account the CPU
ofϐload, parallelization and asynchronous data pro‐
cessing with limited resources.

‐ A practical example of the implemented above con‐
cept is the use of hardware acceleration in the form
of an FPGA coprocessor on the example of an edu‐
cational web service designed to perform quantum
calculations, which includes:
‐ Programming FPGA logic for asynchronous oper‐
ation;

‐ Conϐiguration of communication between FPGA
and CPU processor, and a proposal on how to
constrain the representation of transferred data,
important in the case of cheap and resource‐
limited systems and

‐ Using created FPGA‐based coprocessor services
directly from the internal main processor.
The paper is organized as follows: Section 2 pro‐

vides an overview of related works; Section 3 deϐines
the general idea of hardware support for calculations
with an emphasis on SoC FPGA; Section 4 describes
communication standards and hardware details; Sec‐
tion 5 presents a practical example –web‐based quan‐
tum toolkit similar to IBM Quantum Composer [2]
with FPGA‐based quantumgates operations; Section 6
summarizes the paper.

2. Related Works
Heterogeneous programmable system‐on‐chip

(SOC) FPGA devices, which combine both general‐
purpose processors and reconϐigurable fabrics and
provide a compelling platform for many systems
applications using IoT technology [11]. The authors
pay attention here to the hardware abstraction.
According to them, FPGA should be better virtualized
in order to become available for engineers that are
accustomed to software API abstractions and fast
product delivery.

ASICs (Application Speciϐic Integrated Circuits)
are very expensive, and therefore, cheaper solutions
are usually implemented for prototyping purposes.
The time of development of an ASIC platform is also
long and requires expert knowledge. For example, the
authors of [7] argue that ”FPGAs are less dense and
slower than ASICs, but their ϐlexibility oftenmore than
makes up for these drawbacks”, in particular, as far
as price and availability is concerned. The SoC FPGA
can provide a proper abstraction layer. Thanks to this,
such systems are much cheaper to implement com‐
pared to ASICs but still give more beneϐits over purely
CPU‐based systems.

It is worth mentioning that in the times of cloud
solutions many leading companies introduce hard‐
ware in their portfolio as IaaS (Infrastructure as a Ser‐
vice) in order to reduce their costs. An example of such
a Cloud‐Scale Acceleration Architecture, using FPGA
technology as a main accelerator in the data centre,
is presented in [6]. Many data centres deploy FPGA
in their infrastructures with two main approaches:
FPGA tightly coupled to the Central Processing Unit
(CPU) or FPGA as a standalone component [13]. This
trend shows that FPGAs are willingly used by compa‐
nies providing computing solutions. In [8], the authors
propose a general framework for hardware‐based
web applications that take advantage of cloud‐based
FPGAs tomake this approachmore accessible to users.
Their aim is to make it easier to access the beneϐits
of FPGA without any extra effort. Very often, hard‐
ware acceleration is used in AI (Artiϐicial Intelligence)
systems, especially in data processing related to the
machine learning algorithms, as shown in [12].

Undoubtedly, it must be said and admitted that the
best simulation effects of quantum systems, similar
to real physical phenomena, can be obtained using
only programmable FPGA logic. Its massive paral‐
lelism and natural real‐time capability is irreplace‐
able. The author of [10], using a tensor network
formalism, shows one of the methods of such an
approach. However, with small‐capacity FPGAs, their
programmable logic depletes very quickly, greatly lim‐
iting the expandability of the simulator. Then the tech‐
niques of hybrid use of SoC FPGA chips described in
this article can come in very handy. Thanks to them,
the simulation system can be divided between the
FPGA logic and the built‐in processor, leaving only the
key fragments of parallel calculations for the simula‐
tion on the FPGA side.

3. General Idea of Hardware Support for
Calculations
Further increasing the computing power is still

possible by producing multi‐core microprocessors or
by building computers based on many independent
computing units. Certainly, this potentially enables
the use of parallel algorithms in applications requir‐
ing fast calculations. Creating useful systems for
such computational architectures is not easy, either
because of the need to provide fast external communi‐
cation channels between processors or because of the
limited ability to scale hardware designed for these
systems. An increasing number of cores or proces‐
sors in such systems is very difϐicult. FPGA technology
can help here. In a single programmable integrated
circuit, one can conϐigure a whole group of indepen‐
dent processors and then implement any algorithm
of massively parallel data processing for them. It is
much easier to create some parallel applications if
an add‐on HPS (Hard Processor System) is integrated
with the FPGA matrix in one chip, the so‐called SoC
FPGA chip. All fast and ϐlexible connections between
FPGA hardware blocks and HPS are then optimally
implemented inside the same integrated circuit.

18

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

Figure 1. CPU only
system

Figure 2. SoC FPGA system

Being on the same silicon, communication
between CPU and FPGA consumes less power in
comparison to separate chips. The integration
of internal connections (bridges) between the
processor and the FPGA leads to substantially higher
communication bandwidth and lower latency [7].
The general concept of CPU (HPS) support through
the use of parallel processing units in SoC FPGAs
systems compared to CPU‐only systems is presented
in Figure 1 and Figure 2.

Parallel execution compared to the sequential one
results in reduced runtime. Delegating some calcula‐
tions to separatemodule results in additionally releas‐
ing the processor’s resources, which, at the same time,
is able to perform other tasks when programmed
effectively. The FPGA matrix is a hardware compo‐
nent that perfectly ϐits this concept. A properly pro‐
grammedmatrix is capable of paralleling the commis‐
sioned calculations and thus returns the results faster.
A sufϐiciently large FPGA matrix can be broken down
into functional fragments, each capable of perform‐
ing different tasks. This approach enables the use of
hardware acceleration in a distributed system, where
computation support is essential for many problems.
An example of such a solution is a system consisting
of many web services using support in calculations.
Theseweb services delegate theirwork to appropriate
fragments of the FPGA matrix and then read results
from them. The representation of the data sent to
the matrix should be carefully considered, depend‐
ing on the selected FPGA programming method. This
is especially important when the system has limited
resources. Processors and FPGAs integrated together
can form an interesting basis for many embedded sys‐
tems. This integration of broad processor functional‐
ity and the FPGA ability to perform massively parallel
operations in real‐time, and all these in a single chip,
makes such an embedded system a much more versa‐
tile and efϐicient computing platform.

4. Communication Standards and Hardware
Details
There are many communication standards avail‐

able to transfer data between the CPU and FPGA. In
general, the CPU and FPGA can be connected via PCIe
(PCI Express), RIFT, CAPI or Xillybus. Also, MultiGiga‐
bit Transceivers or even Ethernet is possible [14].

Figure 3. HPS – FPGA bridges [1]

The abundance of communication standards intro‐
duces ϐlexibility, but at the same time, requires the
implementation of an appropriate physical layer for
the selected standard. In order to improve commu‐
nication, SoC FPGA supports industry‐standard AXI
(Advanced eXtensible Interface) bus [9]. Compared to
previously mentioned solutions, i.e. PCIe or Ethernet,
this standard requires fewer resources and provides
still better performance [14]. This can be viewed as
the virtualisation of hardware resources.

The idea of hybrid data processing system based
on FPGA and CPU combined in one chip, presented
above, can be implemented on the Intel Cyclone V SoC
FPGA chip used by the authors of this article to test the
concept. The ready Atlas‐SoC hardware development
platform [5] was used. The system has a built‐in pro‐
cessor called HPS (Hard Processor System) based on
ARM Cortex‐A9 architecture, operating at a frequency
of 925MHz, and a programmable FPGAmatrixwith 40
thousand logical elements. The hardware design plat‐
form has many built‐in components, making it ideal
for project prototyping.

The HPS has three bridges that use memory‐
mapped interfaces to FPGAs based on the Arm
Advanced Microcontroller Bus Architecture (AMBA)
and Advanced eXtensible Interface (AXI) [1]. In other
words, the module responsible for the control of
the FPGA system contains necessary information
about the mapping of physical ports to their virtual
addresses by which it has direct access to FPGA. The
HPS‐FPGA bridges schema is presented in Figure 3.

Lightweight AXI has a permanent 32‐bit connec‐
tion to FPGA and allows working in a main‐agent
mode, where the main is in HPS and allows access to
memory‐mapped FPGA ports working in agent mode.
Despite the fact that AXI supports 32, 64 and 128
bits, and also works faster, according to Intel’s docu‐
mentation, this bridge is used for burst information
transfer, therefore it is not recommended to use it to
access peripheral registers in the FPGA structure. The
LWH2F Bridge and the F2S Interface were used in the
described here practical example.

19

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

5. Practical Example of Using the Concept
In order to demonstrate the applicability of the

concept presented here, the very rapidly developing
ϐield of quantum computing has been selected. Quan‐
tum computing is characterized by a massively paral‐
lel way of processing information. Simulating this type
of computation on a classic computer is more difϐicult
the more qubits you want to simulate. Therefore, the
parallel data processing potential of FPGAs can greatly
facilitate this type of simulation.

Quantum computing is a ϐield that combines com‐
puter science and quantum mechanics. It deals with
using the properties of quantum systems to pro‐
cess information that is classically unattainable. The
basic information carrier in quantum computing is the
qubit, which is the quantum equivalent of the classical
bit used in computer science. A qubit is described by
an arbitrary linear combination of base states, in this
case: ’0’ and ’1’. Therefore, a qubit is a quantum super‐
position of ’0’ and ’1’. During the calculations, a qubit
value may cover the entire spectrum of such super‐
positions, according to the law of probability. Oper‐
ations on qubits are represented by quantum gates
that conceptually correspond to logic gates commonly
used in almost every classical hardware. This refers
to the most popular quantum model of how informa‐
tion is processed. Quantum gates are basic operations
performed on the available qubits to implement a
quantumalgorithm,which can be indirectly compared
to bit operations performed by classical logic gates.
Dirac notation, also called bra‐ket notation, is used
to simply denote quantum states and to distinguish
them more easily from classical states. The notation
uses angle brackets and a vertical bar to construct
appropriate symbols. This makes it easier to describe
the processes of quantum mechanics, in particular
operations performed by quantum gates.

A ket is of the form |Ψ⟩ and mathematically it
denotes a vector Ψ in a complex vector space. Physi‐
cally, it represents a state of some qubit. Using Dirac
notation, the quantum states corresponding to clas‐
sical ’0’ and classical ’1’ can be expressed as |0⟩ and
|1⟩. Mathematically they represent the following vec‐
tors (1):

|0⟩ = ቈ10቉ |1⟩ = ቈ01቉ (1)

Anyqubit,which is anarbitrary linear combination
of base states: |0⟩ and |1⟩, is described as a superposi‐
tion (2):

|Ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩ (2)
where 𝛼 and 𝛽 are complex numbers such that 𝛼2 +
𝛽2 = 1. Quantum gates, on the other hand, can be rep‐
resented bymatrices. An example of a simple quantum
gate is a Pauli‐X gate (X), which has the property of
changing the state |0⟩ to the state |1⟩ and vice versa. By
applying a quantum gate on a qubit, the appropriate
operation is performed. In the following cases, gate X
negates the quantum state (3):

𝑋|0⟩ = |1⟩ 𝑋|1⟩ = |0⟩ (3)

Figure 4. System architecture

Pauli‐X gate expressed in matrix representation is
shown below (4):

𝑋 = ቈ0 1
1 0቉ (4)

Quantum gates are used to build quantum systems
that process qubits in superposition states. The state
of a multi‐qubit system is expressed by a tensor prod‐
uct while applying a quantum gate to a qubit implies
a matrix multiplication by a vector. The ϐinal step in
the processing of a quantum algorithm is always the
measurement of speciϐic qubits, and each measure‐
ment of a qubit causes its wave function to collapse
and bring its state down to one of the base states.
Systems composed ofmultiple parallel quantumgates,
when simulated on a classical computer, are calcu‐
lated sequentially, gate by gate, operation by opera‐
tion. Conversely, a quantum machine calculates the
state of such a circuit in an instant. Contrary to a classic
processor, a properly conϐigured FPGA in many cases
can signiϐicantly facilitate the efϐicient emulation of
this quantumbehaviour. An exemplary system created
on the basis of the proposed concept is a simple web
service implemented on the SoC FPGA platform and
intended for learning the working principles of basic
quantum gates. A user can create a simple quantum
circuit through a web browser, and then observe the
states of all qubits at many points in the circuit in real
time. A dedicatedmode allows part of the calculations
to be performed on the FPGA.

The main components of the system are: client
application, server and quantum simulation module
on HPS and the coprocessor responsible for hardware
emulation of quantum operations on FPGA. This sys‐
tem architecture is presented in Figure 4. The client
sends requests to the server and waits for the results
in responses. The Server communicateswith the FPGA
through the Simulation Module to send part of the
most intensive computations to it. Then, the work
is parallelized and computed asynchronously inside
FPGA programmable logic circuits.

The Simulation Module manages this communica‐
tion using the Bridge between the HPS processor and
the FPGA logic matrix. Additionally, a user communi‐
cates with the System via the Internet using the REST
API standard.

20

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

Figure 5. Client application’s interface

1. Client
The client application is awebsite createdwith the

React framework [3] that connects to the server via
the REST protocol. Its task is to enable the graphical
creation of quantum circuits and communication with
the server. Figure 5 demonstrates the interface with a
custom quantum circuit elaborated.

The user can compose circuits by dragging quan‐
tum gates: ID, Pauli‐X, Pauli‐Y, Pauli‐Z, Hadamard, S,
S*, T, T* and CNOT. The interface additionally provides
descriptions and matrix representations of all avail‐
able gates.

The proposed system is capable of viewing the
results of the calculations performed after each opera‐
tion by a speciϐic quantumgate. These results are not a
measurement of the system, but a raw representation
of the results of gate operations on the state of the
qubits. This approach has been adopted to facilitate
the understanding and debugging of the created quan‐
tum circuits. In the presented example, which is only a
simple proof of the concept described in the article, a
typical quantummeasurement operation has not been
implemented but could be added if needed. The imple‐
mentation of the qubitsmeasurement operation could
use a random number generator as an approxima‐
tion of the quantum probability, from whose results
and also based on the current quantum state of the
measured qubits, the ϐinal classical state of the qubits
would be determined.

The quantum circuit wizard presented here is
exemplary, so the number of available quantum gates
has been limited to the most basic ones. However,
extending the system with further gates also would
not be a demanding task, as the implementation
method interprets the gate types in a generic way,
based on their matrix representations. Adding more
gates would only involve deϐining the appropriate
matrices and preparing them for handling by the
Client.

2. Server
The servermodule is a Javawith Spring framework

[4] application. It executes incoming requests from the
client. After receiving quantum gates circuit informa‐
tion in the request, the data is appropriately converted
and sent to the SimulationModule located in the same
HPS part of the chip. Then, after receiving the results,
the server sends them back to the client. The Server is
responsible for starting and controlling the operation

of the Simulation Module. From the Server level, pass‐
ing input data to the system is possible through theuse
of the Simulation Module program arguments, while
reading the output data is handled through standard
output.

3. Simulation Module
The simulation module organises calculations of

processes taking place in the simulated quantum cir‐
cuit. After the appropriate transformation of the quan‐
tum gate matrix, it orders calculations to the Copro‐
cessor, i.e. logical circuit located in the FPGA part of
the chip. The results are computed column by column
in the circuit. After receiving the results of these calcu‐
lations, the Simulation Module reconnects them with
the rest of the data and sends the simulation effects to
the Server.

4. Bridge
The Bridge enables the communication between

the Simulation Module and the FPGA coprocessor.
It uses a lightweight interface based on the AXI
(Advanced eXtensible Interface) standard. The data
is sent back (read) from FPGA using the F2S inter‐
face and memory mapping. The data is immediately
transferred to the FPGA via AXI and recorded in the
appropriate local registers.

5. Coprocessor
The simulation process of quantum computations

takes place partially on a programmable FPGAmatrix,
while the Simulation Module located on the HPS is
responsible for the control of the entire process. The
simulation inside the FPGA is based on performing
basic arithmetic operations over complex numbers,
in particular: addition, subtraction and multiplica‐
tion. This part of the simulator is developed in the
VHDL hardware description language. Note that the
approach to the problem and hardware implemen‐
tation of the logic on FPGA is very simple. The pri‐
mary purpose of this example is to show the idea of
hardware‐aided simulation using the SoC‐FPGA plat‐
form.

In quantum computing, all numbers are repre‐
sented in the ϐield of complex numbers. Our solution
is based on simple observation and minimizes the
number of required resources to represent complex
numbers and allows to keep ϐloating point precision.
Most of the basic quantum gates available in the sys‐
tem consist of 0s and 1s. Hadamard gate, for instance,
has an additional value: 1

√2 . However, it can be still
broken down into absolute values and a matrix that
consists of only 0s and 1s (5).

𝐻 = ൥
1
√2

1
√21

√2 − 1
√2
൩ = 1

√2
ቈ1 1
1 −1቉ (5)

21

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

All values such as 1
√2 , in that case, can be stored

directly on HPS; whereas, matrices can be sent to
FPGA. To represent values from the set ‐1, 0, 1we need
only 2 bits and we do not need to implement ϐloating‐
point representation on FPGA. In the ϐirst step, we
need to build an initial qubit state. Next, we calculate
the ϐinal state row‐wise and iterate column by column.
As a simple example, let’s consider the circuit from
Figure 5.

|𝜓1𝜓2⟩ = 𝐶𝑁𝑂𝑇((𝐻 ⊗ 𝐼𝐷)|00⟩) (6)

where ID and CNOT gates are deϐined as follows:

𝐼𝐷 = ቈ1 0
0 1቉ (7)

𝐶𝑁𝑂𝑇 = 𝑐𝑋 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎦

(8)

In the above equation from an example (6), all the
elements apart from the Hadamard gate consist of 0s
and 1s. To ensure that all matrices consist of only 0s
and 1s, temporaryHadamard gateH’ is introduced (7).

𝐻 = ൥
1
√2

1
√21

√2 − 1
√2
൩ = 1

√2
ቈ1 1
1 −1቉ =

1
√2

𝐻′ (9)

Next, the equation can be transformed to the ϐinal
form (10) that consists of vectors and matrices with
only 0s and 1s (11).

|𝜓1𝜓2⟩ =
1
√2

𝐶𝑁𝑂𝑇((𝐻′ ⊗ 𝐼𝐷)|00⟩) (10)

|𝜓1𝜓2⟩ =
1
√2

⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎦
((ቈ1 1

1 −1቉⊗ ቈ1 0
0 1቉)

⎡
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎦
) (11)

From equation (11) all matrices are sent to FPGA.
Required matrix multiplications and transformations
can be performed simultaneously thanks to the use
of FPGA. The ϐinal result is the FPGA output (vector)
multiplied by the absolute value 1

√2 stored on HPS
(12).

|𝜓1𝜓2⟩ =
1
√2

⎡
⎢
⎢
⎣

1
0
0
1

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎣

1
√2
0
0
1
√2

⎤
⎥
⎥
⎥
⎦

(12)

The concept of restoring appropriate values on the
HPS is the basis of the implementationof the hardware
coprocessor. The main disadvantage of the elaborated
solution is the additional load on the processor that
must recreate the result. Nevertheless, in order to
transfer ϐloating point numbers, the processor would
have to convert and then recreate the appropriate
form as well.

By connecting two different platforms: FPGA and
HPS, it was possible to combine a high‐level GUI

designed in the React framework, through a Java
Spring‐based application, with a low‐level FPGA‐
based parallel coprocessor. An important advantage of
the demonstrated system architecture and computing
concept is the ease of integration of high‐level tech‐
nologies and solutions commonly used commercially
with their own hardware accelerator, which has now
become possible thanks to the use of the SoC FPGA
platform.

6. Conclusion
The hardware‐aided parallel computing concept

based on the SoC‐FPGA could have many more appli‐
cations than just the quantum simulation shown here.
The demonstrated architecture of a hardware plat‐
form equipped with a programmable FPGA matrix is
a versatile technical solution that has a good chance of
even greater expansion in the future, especially in the
ϐield of processor development and cloud infrastruc‐
ture. The ϐlexibility of FPGA programming facilitates
the prototyping of a wide range of new technological
solutions. The implementation of an extensive sys‐
tem with many modules on a small platform is a big
technical challenge. A solution like the one shown in
this research, available to everyone, shows that with
creativity, many limitations can be omitted and the
entire system can beneϐit from increased computing
power while still keeping lower energy consumption.
This is a crucial aspect for R&D projects at the initial
step of advancement when the costs of prototyping
should be adjusted to the risk of the project. Deϐinitely,
more complex algorithms such as Wavelet or Fourier
transformations for fast signals analysis or others can
beneϐit from thehybrid implementationsonSoC‐FPGA
platforms.

AUTHORS
Jacek Długopolski∗ – Faculty of Computer Science,
AGH University of Krakow, al. A. Mickiewicza 30, 30‐
059 Kraków, Poland, e‐mail: dlugopol@agh.edu.pl.
Jakub Czerski – European Organization for Nuclear
Research CERN, Espl. des Particules 1, 1211 Meyrin,
Switzerland, e‐mail: jakub.marek.czerski@cern.ch.
Mateusz Knapik – CyberOwl Ltd, No 1 Colmore
Square, Birmingham, UnitedKingdom, B4 6AA, e‐mail:
mateusz.knapik@cyberowl.io.
∗Corresponding author

ACKNOWLEDGEMENTS
The research presented in this paper was partially
supported by the funds assigned to AGH University
of Science and Technology by the Polish Ministry of
Science and Higher Education.

References
[1] “An 796: Cyclone® v and arria® v soc device

design guidelines”.

22

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

[2] “Ibm quantum composer”. https://quantum‐
computing.ibm.com/composer/files/new.
Accessed: 27/6/2022.

[3] “React library”, https://reactjs.org.
[4] “Spring framework”, https://spring.io.
[5] “Atlas‐soc kit ‐ user manual”, 2015.
[6] A. M. Caulϐield, E. S. Chung, A. Putnam,

H. Angepat, J. Fowers, M. Haselman, S. Heil,
M. Humphrey, P. Kaur, J.‐Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael,
L. Woods, S. Lanka, D. Chiou, and D. Burger, “A
cloud‐scale acceleration architecture”. In: 2016
49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, 1–13. doi:
10.1109/MICRO.2016.7783710.

[7] M. C. Herbordt, Y. Gu, T. VanCourt, J. Model,
B. Sukhwani, and M. Chiu, “Computing models
for fpga‐based accelerators”, Computing in Sci-
ence Engineering, vol. 10, no. 6, 2008, 35–45. doi:
10.1109/MCSE.2008.143.

[8] S. Hoover, “Hardware accelerated web applica‐
tions using cloud fpgas”, 2018.

[9] Z. Jiang, N. Audsley, D. Shill, K. Yang, N. Fisher,
and Z. Dong, “Brief industry paper: Axi‐
interconnectrt: Towards a real‐time axi‐
interconnect for system‐on‐ chips”. In: 2021 IEEE
27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021, 437–440.
doi: 10.1109/RTAS52030.2021.00046.

[10] M. Levental, “Tensor networks for simulating
quantum circuits on fpgas”, 2021.

[11] X. Li, C. Fei, and D. Maskell, “Fpga overlays:
Hardware‐based computing for the masses”,
2018. doi: 10.15224/978‐1‐63248‐144‐3‐12.

[12] S. Mittal, “A survey of fpga‐based accelera‐
tors for convolutional neural networks”, Neural
Computing and Applications, vol. 32, 2020. doi:
10.1007/s00521‐018‐3761‐1.

[13] R. Skhiri, V. Fresse, J. Jamont, B. Suffran, and
J. Malek, “From fpga to support cloud to cloud
of fpga: State of the art”, International Journal
of Reconϔigurable Computing, vol. 2019, 2019, 1–
17. doi: 10.1155/2019/8085461.

[14] A. Wicaksana, “Portable infrastructure for het‐
erogeneous reconϐigurable devices in a cloud‐
fpga environment”, 2018.

23

https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new

	Introduction
	Related Works
	General Idea of Hardware Support for Calculations
	Communication Standards and Hardware Details
	Practical Example of Using the Concept
	Conclusion

