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Abstract:
Research results on human activity classification in video
are described, based on initial human skeleton estimation
in selected video frames. Simple, homogeneous activ‐
ities, limited to single person actions and two‐person
interactions, are considered. The initial skeleton data is
estimated in selected video frames by software tools,
like “OpenPose” or “HRNet”. Main contributions of pre‐
sented work are the steps of “skeleton tracking and cor‐
recting” and “relational feature extraction”. It is shown
that this feature engineering step significantly increases
the classification accuracy compared to the case of raw
skeleton data processing. Regarding the final neural net‐
work encoder‐classifier, two different architectures are
designed and evaluated. The first solution is a lightweight
multilayer perceptron (MLP) network, implementing the
idea of a “mixture of pose experts”. Several pose clas‐
sifiers (experts) are trained on different time periods
(snapshots) of visual actions/interactions, while the final
classification is a time‐related pooling of weighted expert
classifications. All pose experts share a common deep
encoding network. The second (middle weight) solution
is based on a “long short‐termmemory” (LSTM) network.
Both solutions are trained and tested on the well‐known
NTU RGB+D dataset, although only 2D data are used.
Our results show comparable performance with some of
the best reported LSTM‐, Graph Convolutional Network‐
(GCN), and Convolutional Neural Network‐based classi‐
fiers for this dataset. We conclude that, by reducing the
noise of skeleton data, highly successful lightweight‐ and
midweight‐models for the recognition of brief activities in
image sequences can be achieved.

Keywords: Action classification, Skeleton features,
2‐person interactions, Mixture of experts, Video analysis

1. Introduction
Humanactivity recognitionhas recently caught the

attention of the computer vision community since it
drives real‐world applications that make our life bet‐
ter and safer, such as human‐computer interaction in
robotics and gaming, video surveillance, and social
activity recognition [1]. For example, new robotic
applications try to predict human activity patterns in
order to let the robot early inferwhen a speciϐic collab‐
orative operation will be requested by the human [2,
3]. In video surveillance, human activity classiϐication

can be integrated with probabilistic prediction mod‐
els, in order to infer the ongoing activity [4]. Ambient
assited living technologies allow the recognition of a
human’s daily living activity in order to take care of
dependent people [5].

The computer vision approach to human activity
recognition in video clips or video streams is typi‐
cally understood as the detection and classiϐication
of brief, homogeneous single‐person actions and two‐
person interactions. A longer video may contain vari‐
ous actions that eventually are parts of more complex
human activities. An action or interaction is decom‐
posed in time into human poses, being recognized in
single frames.

In early solutions, hand‐designed features like
edges, contours, Scale‐Invariant Feature Transform
(SIFT), and Histogram of Oriented Gradients (HOG)
have usually been used for detection and localization
of human body parts or key points in the image [6].
More recently, neural network‐based solutions were
successfully proposed, e.g., based on Deep Neural Net‐
works (DNN) [7], especially Convolutional Neural Net‐
works (CNN), LSTMs, andGraphCNNs [8], as theyhave
the capability automatically to learn rich semantic and
discriminative features. Furthermore, DNNs have an
ability to learn both spatial and temporal information
from signals and can effectively model scale‐invariant
features as well.

The approaches to vision‐based human activity
recognition can be divided into two main categories:
activity recognition directly in video data [9] or
skeleton‐based methods [10], where the 2D or 3D
humanskeletons aredetected ϐirst, sometimes already
by specialized devices, like the Microsoft Kinect. The
skeleton‐based methods compensate some of the
drawbacks of vision‐based methods, such as assuring
the privacy of participants and reducing the scene’s
light sensitivity. Some popular solutions to human
pose estimation (i.e., the detection and localization
of humans in images) can be mentioned: OpenPose
[11], DeepPose [12], and DeeperCut [13]. It must be
noticed, that the term “pose estimation” is commonly
used in image and video analysis literature to refer to
a result of semantic image segmentationmodels. Such
models are trained to detect and classify objects, and
to estimate by regressionmethods the image locations
of object parts.

Although the human activity classiϐication domain
has gained noticeable improvements in recent years,
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it has still been facing many challenges in practice,
e.g. occlusions, low resolutions, different view‐points,
non‐rigid deformations, and intra‐class variability in
shape [7]. In this work, we deal with analysis of
brief video clips or streams, that contain single‐
person actions and two‐person interactions, assum‐
ing the existence of human skeleton data for selected
video frames. After analysing the recent alternatives
[14–16], we identiϐied their main trends: (1) a smart
processing of skeleton data for extracting meaning‐
ful information and cancelation of noisy data (e.g.,
relational networks); (2) designing light‐weight and
middle‐weight solutions instead of heavy‐weight net‐
works by employing background knowledge, e.g.,
using graphCNNs insteadof CNNsandLSTMs, orCNNs
with 2‐D kernels instead of 3‐D CNNs.

The aim of our work was to create an efϐicient and
practical tool for brief human action and interaction
recognition in video data. Thus,we decided to propose
light‐weight deep network models, which operate on
strong relational features (extracted in an application‐
aware skeleton processing step). For a solid veriϐica‐
tion of our contribution, a fair comparison with other
known solutions, we decided to train and test the
proposed solutions on a well known annonated video
dataset (the NTU RGB+D).

For the two considered problems (action‐ and
interaction classiϐication), we propose two solutions –
one lightweight model, based on feedforward MLPs,
and one middle‐weight model, based on LSTM net‐
work. In ϐirst case, we took the idea of extending pose
classiϐication in still images to activity classiϐication in
video by applying a new version of the well‐known
pattern classiϐication approach, called “mixture of
experts” [17]. But instead of identifying subdomains
or learning different weights for expert classiϐiers in
subdomains, the experts are distributed along the
time axis. Every expert is responsible for classiϐica‐
tion of frames belonging to different time periods of
an activity process, e.g., start, initial, midterm, ϐinal
or end period. The ϐinal classiϐication is obtained by
a weighted evaluation of class likelihoods of all the
expert pose classiϐiers. With the second proposed
solution, an LSTM model, and with the application‐
aware feature engineering step [18], we try to com‐
pete with the best performing methods in this ϐield,
which use Graph CNNs or 3D CNNs.

There are four remaining sections of this work.
Section 2 describes recent approaches in human
action and ‐interaction recognition. Our solutions, the
feature engineering step and the two deep network
models – one based on ANN pose experts and one
on an LSTM network – are introduced in Section 3.
Next, in Section4, results of experiments aredescribed
and conclusions are drawn. Finally, in Section 5, we
summarize our contribution to the subject.

2. Related Work
Typically, human activity recognition in images

and video requires ϐirst a detection of human
body parts or key‐points of a human skeleton. The

skeleton‐based methods compensate some of the
drawbacks of vision‐based methods, such as assuring
the privacy of persons and reducing the scene’s light
sensitivity. They also limit the sensitivity to clothes,
hair, and other person‐speciϐic features.
2.1. Human Pose Estimation

Typically, a human’s pose is represented by the
localisation of image features, key points or body
parts, expressed in camera coordinates. In the past,
mainly hand‐crafted features have been used, such
as edges, contours, Scale‐Invariant Feature Transform
(SIFT) or Histogram of Oriented Gradients (HOG).
However, these approaches have produced modest
performance when it comes to accurately localizing
human body parts [19]. With the development of
Convolutional Neural Networks (CNNs), the perfor‐
mance in solving human pose estimation problems
has improved constantly and been signiϐicantly higher
than the traditional methods [14].

There are three fundamental architectures,
AlexNet [20], VGG [21], and ResNet [22], which have
been employed as the backbone architecture for
many human pose estimation studies [23]. Released
in 2012, AlexNet has been considered one of the
backbone architectures for many computer vision
models. The DeepPose software employed AlexNet
for estimating human poses [12]. Popular works in
pose estimation, OpenPose [11], and human parts
detection, Faster RCNN [24], have used VGG and
achieved state‐of‐the‐art performance in visual
human estimation. After the release of ResNet, many
works on human pose estimation have applied it as a
backbone (e.g., [13,25]).
2.2. Human Action and Interaction Recognition

In the machine learning literature it is often said
that the skeleton data consists of “joints” and “limbs”
(or “bones”). We must admit, that the terms “joints“
and “bones” have no direct correspondence to human
body joints and bones. In order to clarify the termi‐
nology, we should rather call them “key points of the
skeleton” and “skeletal segments”, accordingly.

The vast majority of research on human action
and interaction recognition is based on the use of
artiϐicial neural networks. However, initially, classical
approaches have also been tried, such as the SVM
(e.g. [26, 27]). Yan et al. [28] used multiple features,
like a “bag of interest points” and a “histogram of
interest point locations”, to represent human actions.
They proposed a combination of classiϐiers in which
AdaBoost and sparse representation (SR) are used as
basic algorithms. In thework of Vemulapalli et al. [29],
human actions are modeled as curves in a Lie group
of Euclidean distances. The classiϐication process is a
combination of dynamic timewarping, Fourier tempo‐
ral pyramid representation, and linear SVM.

Thanks to higher quality results, artiϐicial neural
networks are replacing othermethods. Thus, themost
recently conducted research in the area of human
activity classiϐication differs only by the proposed
network architecture. Networks based on the LSTM

2



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 3 2023

architecture or a modiϐication of this architecture (a
ST‐LSTM network with trust gates) were proposed by
Liu et al. [30] and Shahroudy et al. [31]. They intro‐
duced so called “Trust Gates” for controlling the con‐
tent of an LSTM cell and designed an LSTM network
capable of capturing spatial and temporal dependen‐
cies at the same time (denoted as ST‐LSTM). The task
performed by the gates is to assess the reliability of
the obtained joint positions basedon the temporal and
spatial context. This context is based on the position of
the examined junction in the previous moment (tem‐
poral context) and the position of the previously stud‐
ied junction in the present moment (spatial context).
This behavior is intended to help network memory
cells assess which locations should not be remem‐
bered and which ones should be kept in memory.
The authors also drew attention to the importance of
capturing default spatial dependencies already in the
skeleton data. They have experimented with different
mappings of the a joint’s set to a sequence. Among the,
they mapped the skeleton data into a tree representa‐
tion, duplicating joints when necessary to keep spatial
neighborhood relation, and performed a tree traversal
to get a sequence of joints. Such an enhancement of
the input data allowed an increase of the classiϐication
accuracy by several percent.

The work [32] introduced the idea of applying
convolutional ϐilters to pseudo‐images in the context
of action classiϐication. A pseudo‐image is a map (a
2D matrix) of feature vectors from successive time
points, aligned along the time axis. Thanks to these
two dimensions, the convolutional ϐilters ϐind local
relationships of a combined time‐space nature. Liang
et al. [33] extended this idea to a multi‐stream net‐
work with three stages. They use 3 types of features,
extracted from the skeleton data: positions of joints,
motions of joints and orientations of line segments
between joints. Every feature type is processed inde‐
pendently in its own stream but after every stage the
results are exchanged between streams.

Graph convolutional networks are currently
considered a natural approach to the action (and
interaction) recognition problem. They are able
to achieve high quality results with only modest
requirements of computational resources. “Spatial
Temporal Graph Convolutional Networks” [34]
and “Actional‐Structural Graph Convolutional
Networks” [35] are examples of such solutions.

Another recent development is the pre‐processing
of the skeleton data in order to extract different
type of information (e.g., information on joints and
bones, and their relations in space and time). Such
data streams are ϐirst separately processed by so
called multi‐stream neural networks and later fused
to a ϐinal result. Examples of such solutions are the
“Two‐StreamAdaptive Graph Convolutional Network”
(2S‐AGCN) and the “Multistream Adaptive Graph Con‐
volutional Network” (MAGCN), proposed by Shi et al.
[36,37].

One of the best performances on the NTU RGB+D
interaction dataset is reported in the work of Perez

et al. [15]. Its main contribution is a powerful two‐
stream network with three‐stages, called “Interaction
Relational Network” (IRN). The network inputs are
basic relations between joints of two interacting per‐
sons tracked over the length of image sequence. An
important step is the initial extraction of relations
between pairs of joints – both distances between
joints and their motion are obtained. The neural net‐
work makes further encoding and decoding of these
relations and a ϐinal classiϐication. The ϐirst stream
means the processing of within‐a‐person relations,
while the second one – between‐person relations.
The use of a ϐinal LSTM with 256 units is a high‐
quality version of the IRN network, called IRN‐LSTM.
It allows to reason over the interactions during the
whole video sequence – even all frames of the video
clip are expected to be processed. In the basic IRN,
a simple densely‐connected classiϐier is used instead
of the LSTM and a sparse sequence of frames is
processed.

The currently best results for small networks are
reported by Zhu et al. [16], where two new modules
are proposed for a baseline 2S‐AGCN network. The
ϐirst module extends the idea of modelling relational
links between two skeletons by a spatio‐temporal
graph to a “Relational Adjacency Matrix (RAM)”. The
second novelty is a processing module, called “Dyadic
Relational Graph Convolution Block”, which combines
the RAM with spatial graph convolution and tem‐
poral convolution to generate new spatial‐temporal
features.

Very recently, exceptionally high performance was
reported when using networks with 3D convolutional
layers, applied to data sensors that constitute skeleton
“heatmaps” (i.e., preprocessed image data) [38]. The
approach, called PoseConv3D, can even be topped,
when fused with the processing of ordinary RGB‐
data stream [39]. Obviously, this requires to create
a heavy network and produces high computational
load.

2.3. Conclusion

From the analysis of the recent most successful
solutions, we can draw three main conclusions:
1) using an analytic preprocessing of skeleton‐data to

extract meaningful information and cancel noisy
data, either by employing classic functions or
learnable function approximations (e.g., relational
networks);

2) preferring light‐weight solutions by employing
background (problem‐speciϐic) knowledge, i.e.,
using graph CNNs instead of CNNor CNNswith 2‐D
kernels instead of 3‐D CNN;

3) a video clip containing a speciϐic human action
or interaction can be processed alternatively as
a sparse or dense frame sequence, where sparse
sequence is chosen to achieve real‐time process‐
ing under limited computational resources, while
the processing of a dense sequence leads to better
performance.
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3. The Approach
3.1. Structure

The input data has the form of video clips, contain‐
ing a single‐person action or a two‐person interaction.
The two proposed solutions have a common ϐirst part
and differ by the feature extraction step and neural
network‐based classiϐier, as shown in Figure 1. The
common processing steps are: key frame selection,
skeleton estimation, skeleton tracking and ‐correcting.
The ϐinal steps, customized for action and interaction
recognition, are: feature extraction and deep neural
network model.

Key frame selection The start‐ and end frames of
an activity in a video clip are detected ϐirst. The
idea of this detection follows a typical approach to
voice activity detection in speech signal, but a hys‐
teresis of thresholds for motion “energy” instead of
signal energy is applied. The detected activity window
will be represented by a ϐixed number 𝑁 of video
frames (e.g. 𝑁 = 32) from 𝑀 subintervals (groups).
Thus, 𝑁 = 𝑀 ⋅ 𝑚, where 𝑀 is the number of consecu‐
tive subintervals (groups), while 𝑚 is the number of
frames in one group. In particular, let us ϐix𝑀 = 4 and
denote the groups as follows: start, 1‐st intermediate,
2‐nd intermediate and ϐinal. For every group a sepa‐
rate expert (a weak action classiϐier) will be created.

Skeleton estimation In our implementation, we use
the core block of OpenPose [44], the “body_25” model,
to extract 25 human skeletal keypoints from an
image. The result of OpenPose, as applied to a sin‐
gle key frame, will be a set of skeletons, where a
25‐elementary array represents a single skeleton, pro‐
viding 2D (or 3D, if needed) image coordinates and
a conϐidence score for every keypoint (called “joint”).
OpenPose provides the ability to obtain 2D or 3D
information about detected joints. If one selects the
3D option, views must be speciϐied for the library to
perform triangulation. The library returns for every
joint the following data:
‐ (𝑥, 𝑦, 𝑝)—for 2D joints;
‐ (𝑥, 𝑦, 𝑧, 𝑝)—for 3D joints.
where (𝑥, 𝑦) are the image coordinates of a pixel, 𝑧
is the depth associated with the given pixel, 𝑝 is the
certainty of detection and is a number in the range
<0:1>. We have used the pretrained “OpenPose”
model with default parameter settings and no person
number limit. The received skeleton data was initially
reϐined by deleting keypoints with certainty 𝑝 below
the certainty threshold of 0.1. Later, during skeleton
reϐinement, such missing joints and remaining weak
joints (with 𝑝 < 0.3) will be approximated from the
data of their well‐detected neighbors (with 𝑝 ≥ 0.3).

The OpenPose library offers the possibility to
choose a model of a human ϐigure. There are three
models: “15 body”, “18 body”, and “25 body”. The num‐
ber in the name refers to the number of detectable
joints. Table 1 lists the typically selected model of the
“25 body”.

Table 1. List of keypoints (joints) in the “25 body” model

Number Description
0 The main point of the head
1 Neck base
2, 5 Shoulders
3, 6 Elbows
4, 7 Wrists
8 The base of the spine

9, 12 Hips
10, 13 Knee
11, 14 Cube

15, 16, 17, 18 Extra head points
19, 20, 21, 22, 23, 24 Extra foot points

Skeleton tracking and correcting In case, more than
two skeletons in an image are returned by OpenPose,
the two largest skeletons, 𝑆𝑎 , 𝑆𝑏 , are selected ϐirst and
then tracked in the remaining frames. We focus on the
ϐirst 15 joints of every skeleton, as the information
about the remaining joints is very noisy (Fig. 2).

In the case of many‐person scenes, the sets of
skeletons generated by OpenPose, are not uniquely
indexed over the frame sequence. There may also
be falsely detected skeletons for objects in the back‐
ground, or a largemirror can lead to a second skeleton
of the same person.

The algorithm for tracking skeletons in many‐
skeleton frames can be seen as a multiple path search
and can be solved in many ways. For example, beam
search or some type of dynamic programming search
could be used. Our algorithm initializes paths for up
to two “foreground” skeletons, detected in the ϐirst
frame, and then runs a loop over the remaining frames
trying to extend every path by the nearest skeleton
detected in the next frame that is sufϐiciently close to
the path’s last skeleton. New paths can also start in
later frames when apparently new persons appear on
the scene.

The invariance of features with respect to the size
of the skeleton in the image is obtained by normalizing
the coordinates of the junction points with the section
length between the neck 𝑗𝑜𝑖𝑛𝑡1 and the center of the
hips 𝑗𝑜𝑖𝑛𝑡8.

The selected sequence of skeletons, representing
one person, is sometimes deteriorated by missing
joints of some skeleton or by missing an entire skele‐
ton in a frame. These misses of joints or virtual repli‐
cations of skeletons introduce noise and may also
destabilize the feature normalization step when the
locations of required joints are missing.

Let 𝒗𝑖 be a series of 𝑁 positions of the „𝑖‐th” joint
in time: 𝑣𝑖 = [𝑜11 , 𝑜2𝑖 , ..., 𝑜𝑁𝑖 ]. The procedure for the
reϐinement of joints can be summarized as follows:
1) IF some position 𝑜𝑡𝑖 is missing THEN take the aver‐

age of neighbors 𝑜𝑡−1𝑖 , 𝑜𝑡+1𝑖 in time;
2) in themiddle of the frame sequence, amissing joint

is set to a linear interpolation of the two closest‐
time known positions of this joint: IF 𝑜(.)𝑖 is missing
𝑘 consecutive times, i.e., from 𝑡 to 𝑡 + 𝑘 − 1; THEN
take interpolations of values 𝑜(𝑡−1)𝑖 , 𝑜(𝑡+𝑘)𝑖 ;
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Figure 1. General structure of our approach

Figure 2. The 15 reliable keypoints (joints) (indexed
from 0 to 14) out of 25 of the OpenPose’s “body_25”
skeleton model

3) for the initial frame, the position of a missing joint
is set to its ϐirst detection in the frame sequence: IF
𝑜(.)𝑖 is missing ϐirst 𝑘 times; THEN set ϐirst 𝑘 values
to 𝑜𝑡𝑖 = 𝑜(𝑘+1)𝑖 , (𝑡 = 1, ..., 𝑘);

4) joints that are lost at the end of the frame sequence
receive the positions last seen: IF 𝑜(.)𝑖 ismissing last
𝑘 times; THEN set last 𝑘 values to 𝑜𝑡𝑖 = 𝑜(𝑁−𝑘)𝑖 , (𝑡 =
𝑁 − 𝑘 + 1, ..., 𝑁);

5) IF 𝑜(.)𝑖 is completelymissing in the entire sequence;
THEN set the joint data according to its sister joint,
i.e., obtain a symmetric mapping (w.r.t. the spin
axis) of “visible” sister joint.

3.2. Feature Extraction

The result of tracking (up to) two sets of skeleton
joints in 𝑁 frames can be represented as a 2D map of
𝑁×15×2 vector entries, where 2means image coor‐
dinates (𝑥, 𝑦). We call this structure as RAW features.

A representation of junction positions (the RAW
features) has the disadvantage of being not invari‐
ant to basic transformations of the image space. It
does not explicitly represent relationships within a
skeleton and between two skeletons, like motion of
joints and relative orientation of branches. There‐
fore, a relational representation of both skeletons was
developed, which reduces the aforementioned disad‐
vantages of the raw representation of joints. The new
features consist of:
1) int‐PS (”polar sparse” for interaction) features:

with a local center S and normalization vector u,

Figure 3. Illustration of the PS features: the vectors
between reference point 𝑆 and every skeleton joint,
normalized by vector 𝒖

deϐined for a pair of skeletons, vectors are drawn
between point S and every joint of the two skele‐
tons – all these vectors are length‐ and orientation‐
normalized w.r.t. 𝒖;

2) int‐PSM (”polar sparse with motion” for interac‐
tion) features: the int‐PS features with additional
motion vectors of all the joints.

For memory‐less networks, like the MLP, in order
to make them competitive to LSTM models, we add
motion vectors for every joint of every skeleton. The
int‐PS features will be fed into the LSTM‐based clas‐
siϐier, while the int‐PSM features – into the ensem‐
ble of pose‐based classiϐiers (the “mixture of experts”
model).

int‐PS Let us deϐine the center point 𝑆 of vector 𝒖,
which connects the central spin points of both skele‐
tons (Fig. 3). Now 15 vectors are deϐined for every
skeleton. Every vector connects the point 𝑆with a joint
of skeleton 1 or 2. Every vector is represented in polar
formby two features –normalizedmagnitudeℎ𝑎,𝑗 ,ℎ𝑏,𝑗
and relative orientation 𝑟𝑎,𝑗 , 𝑟𝑏,𝑗 (both magnitude and
orientation are normalized with respect to magnitude
and orientation of 𝒖). Thus, for every frame there are
60 features deϐined (= (15 + 15) ⋅ 2). The 𝑁 ⋅ 60
features are split into two maps, 𝐻𝑁

𝑎 and 𝐻𝑁
𝑏 , one for

each skeleton:

𝐻𝑁
𝑎 =

⎡
⎢
⎢
⎣

𝒉1𝑎 ⌣ 𝒓1𝑎
𝒉2𝑎 ⌣ 𝒓2𝑎
... ⌣ ...
𝒉𝑁𝑎 ⌣ 𝒓𝑁𝑎

⎤
⎥
⎥
⎦

(1)

𝐻𝑁
𝑏 =

⎡
⎢
⎢
⎣

𝒉1𝑏 ⌣ 𝒓1𝑏
𝒉2𝑏 ⌣ 𝒓2𝑏
... ⌣ ...
𝒉𝑁𝑏 ⌣ 𝒓𝑁𝑏

⎤
⎥
⎥
⎦

(2)
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Figure 4. Structure of the “mixture‐of‐pose‐experts” model

act‐PS For single‐person action classiϐication, one
feature map 𝐻𝑁

𝑎 , with 30 features, is created only. In
this case, the reference point S is the center point of
spin segment 𝑜1 ⌢ 𝑜8 and the vector u is the spin
segment 𝑜1 ⌢ 𝑜8.

int‐PSM In addition to the int‐PS features, motion
vectors (𝛿𝑥𝑖𝑎,𝑗 , 𝛿𝑦𝑖𝑎,𝑗) are deϐined for every joint of the
two skeletons. Thus, ((15+15)×2) = 60 features are
added and the int‐PSM vector consists of 120 features.

act‐PSM For single‐person action classiϐication, the
act‐PS feature vector is extended by motion vectors of
the single skeleton joints only. Thus, 30 features are
added, and the act‐PSM vector has 60 features in total.
3.3. Mixture of Pose Experts (MPE)

The ϐirst neural network model is called “mix‐
ture of pose experts” (shortly: MPE) (Fig. 4). We can
distinguish three parts of this network: one pose
encoder/classiϐier, four pose‐based activity classiϐiers
(”pose experts”), and a ϐinal activity classiϐier (fusing
the results of pose experts).

There is a common pose encoding network, which
is trained with 4 × 𝐾 pose classes, i.e., every pose
class represents one of the 𝐾 actions (or interactions)
in one of the four time periods. After the training
is accomplished, the classiϐication layers are omitted,
and the encoding embedding vector is passed to the
four weak pose classiϐiers (called “experts”). Thus, the
output layer of the pose classiϐier is replaced by every
expert network – a fully connected hidden layer with

𝐾 outputs each. Four alternative classiϐiers are trained
on the PSM features obtained for samples from the
time period corresponding to the given pose classiϐier.

The mixture of experts network (MPE) is imple‐
mented using Keras [45]. During training, the models
are evaluated, and a search for optimal model param‐
eters is performed – a RandomSearch algorithm from
Keras is applied in this stage. The following options of
theMLP parameters are evaluated: the number of hid‐
den layers of the network can vary from 1 to 3, differ‐
ent activation functions (ReLU and/or sigmoid) may
be chosen, as well as the number of neurons in hidden
layers and the learning rate can vary. The ensemble
classiϐier consists of a fusion of expert results and an
aggregation of class likelihoods over the entire frame
sequence. The fusion layer is again a fully connected
layer that is weighting the results of all weak classi‐
ϐiers. It takes the frame index t as it is an additional
input.

Activity (i.e., action or interaction) classiϐication
then consists of specifying likelihoods of all activity
classes by aggregating their corresponding pose likeli‐
hoods over the entire time sequence. The aggregation
operation is mathematically a weighted sum of pose
likelihoods for frames indexed from 𝑡 = 1 to 𝑡 = 𝑁.
The ensemble classiϐier provides gain coefϐicients for
the four experts depending on the frame index:

𝑺 = ∑𝑁
𝑡=1[𝑷𝒓𝑒𝑥𝑝𝑒𝑟𝑡_1(𝑡) ⋅ 𝑤1(𝑡) + 𝑷𝒓𝑒𝑥𝑝𝑒𝑟𝑡_2(𝑡) ⋅

𝑤2(𝑡) + 𝑷𝒓𝑒𝑥𝑝𝑒𝑟𝑡_3(𝑡) ⋅ 𝑤3(𝑡) + 𝑷𝒓𝑒𝑥𝑝𝑒𝑟𝑡_4(𝑡) ⋅
𝑤4(𝑡)

(3)
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Figure 5. Architecture of the SC‐LSTM‐PS network for
𝑁 = 28 key frames. The versions of SC‐LSTM differ only
by the input layer size

3.4. LSTMModel

A “single channel” LSTMnetwork (denoted further
as SC‐LSTM) is proposed. It consists of two LSTM lay‐
ers, interleaved by two Dropout layers, and two dense
layers (Fig. 5). Depending on the role of given net‐
work model, we can distinguish between the action‐
and interaction‐classiϐication models (SC‐LSTM‐act,
SC‐LSTM‐int). In turn, based on the type of input fea‐
tures (RAW or PS/PSM) every such model will appear
in two versions (e.g., SC‐LSTM‐act‐RAW, SC‐LSTM‐
int‐PS). Recall that the two baseline feature versions
SC‐LSTM‐act‐RAW and SC‐LSTM‐int‐RAW process the
raw skeleton joints, as initially obtained by OpenPose
and established by the skeleton tracking and reϐine‐
ment step.

These versions differ by the input layer only, as
there are different numbers of features considered.
For example, in the SC‐LSTM‐act‐PS version, there are
3,350 k trainable parameters.

4. Results
4.1. Datasets

Action set Thedataset “NTURGB+D” [31] is the basic
set used in this work. It was made by ROSE (Rapid‐
Rich Object Search Lab), which is the result of a col‐
laboration betweenNanyang Technological University
in Singapore and Peking University in China. Many

Figure 6. Image samples of actions from the NTU RGB+D
action dataset (from left to right and top to bottom):
drink, eat, hand waving, jump up, put palms together,
take off a hat

Table 2. The “everyday activities” subset (40 classes) of
the NTU‐RGB+D dataset

A1: drink water A2: eat meal
A3: brush teeth A4: brush hair

A5: drop A6: pick up
A7: throw A8: sit down

A9: stand up A10: clapping
A11: reading A12: writing

A13: tear up paper A14: put on jacket
A15: take off jacket A16: put on a shoe
A17: take off a shoe A18: put on glasses
A19: take off glasses A20: put on a hat/cap
A21: take off a hat/cap A22: cheer up
A23: hand waving A24: kicking something

A25: reach into pocket A26: hopping
A27: jump up A28: phone call

A29: play with phone/tablet A30: type on a keyboard
A31: point to something A32: taking a selϐie

A33: check time (from watch) A34: rub two hands
A35: nod head/bow A36: shake head

A37: wipe face A38: salute
A39: put palms together A40: cross hands in front

works on human action recognition have already been
validated on this dataset, and a website collects the
achieved performance scores [14]. The set can be
characterized as follows (Fig. 6):
‐ Contains RGB videos with a resolution of 1920 ×
1080 (pixels).

‐ Includes depth and infrared maps with a resolution
of 512 × 424 (pixels).

‐ Each behavior of the set is captured by three cam‐
eras.

‐ Behaviorswere performed by people in two settings
(showing activities from different viewpoints).

‐ It consists of 56,880 videos showing 60 classes of
behavior.
Among the classes of behavior, the most popular

are the “everyday activities”. They constitute a subset
of 40 classes, as listed in Table 2. The collection con‐
tains 37,920 video clips, and associated depth maps
and infrared frames.
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Table 3. The 10 activity classes of the
UTKinect‐Action3D dataset

A1: walk A2: sit down
A3: stand up A4: pick up
A5: carry A6: throw
A7: push A8: pull

A9: wave hands A10: clap hands

Figure 7. Image samples from the NTU RGB+D
interaction dataset – interaction classes “Punch/slap,
kicking, shaking hands, touch pocket”

TheNTURGB+Ddataset allows to performa cross‐
subject (person) (short: CS) or a cross‐view (CV) eval‐
uation. In the cross‐subject setting, samples used for
training show actions performed by half of the actors,
while test samples show actions of remaining actors.
In the cross‐view setting, samples recorded by two
cameras are used for training, while samples recorded
by the remaining camera – for testing. A major advan‐
tage of this dataset is an exact speciϐication which
video clips should be used for training and which for
testing.

The UTKinect‐Action3D dataset [46] is the second
set of people’s activities used in thiswork. This setwill
be a secondary set, which means that only a testing
of the developed model will be performed on it. The
UTKinect dataset can be described by the following:
‐ Includes RGB videos with 640 × 480 resolution
(pixels).

‐ Includes depth maps with a resolution of 320× 240
(pixels).

‐ Activities were performed by 10 people. Each per‐
son repeated the performed activity 2 times. There
are 10 activity classes.
In Table 3, there are listed the 10 activity classes in

UTKinect‐Action3D.
The clips in this collection are organised as photo

series in catalogs. To view a speciϐic video, images
within each catalog must be collected. A single video
contains a person performing a series of 10 actions.
A video is labeledwith the action class, start photo and
end photo of every action.

Interaction set The best conϐiguration of the pose
experts and the ϐinal, time‐accumulating network will

Figure 8. Image samples from the SBU Kinect interaction
dataset – interaction classes (from left to right) “moving
toward, moving apart, kicking, slapping”

be trained and tested on the interaction subset of the
NTURGB+Ddataset (Fig. 7). It includes 11 two‐person
interactions of 40 actors: A50: punch/slap, A51: kick‐
ing, A52: pushing, A53: pat on back, A54: point ϐin‐
ger, A55: hugging, A56: giving object, A57: touch
pocket, A58: shaking hands, A59: walking towards,
and A60: walking apart. In our experiments, the skele‐
ton data of the NTU‐RGB+D dataset is already consid‐
ered. There are 10,347 video clips in total, in which
7,334 videos are in the training set and the remaining
3,013 videos are in the test set. No distinct validation
subset is distinguished, as the idea is to run sufϐicient
numbers of training/testing iterations and to select
the best test iteration.

Skeleton data may consist of 25 joints of 3D skele‐
tons that apparently represent a single person. As our
research objective is to analyse video data and focus
on only reliably detected joints, we use only the 2D
information of only the ϐirst 15 joints. From a video
sample, a set of frames is chosen as follows: the video
clip is uniformly split into 𝑀 = 4 time intervals
(”periods”), fromevery period somenumber of frames
𝑚 is selected. We tested 𝑚 = 2, 4, 6, 8 and found that
𝑚 = 8, giving𝑁 = 32 is the best setting.

A second interaction dataset, used here mainly for
initial parameter search, is the SBU Kinect Interac‐
tion dataset [47]. There are two person interactions
of 8 types recorded by Microsoft Kinect v1: moving
toward, moving apart, pushing, kicking, slapping, giv‐
ing objects, hugging, and hand shaking (Fig. 8). There
are 21 subsets of image sequences recordedwith pairs
of actors (7 actors in total), performing all 8 interac‐
tions – all in the same single environment. In total,
there are around 300 video samples – images of res‐
olution 640×480 – recorded with time rate of 15𝑓𝑝𝑠.

4.2. Interaction Classification

Pose model search For running the RandomSearch
algorithm, an NNHyperModel is created, which imple‐
ments the HyperModel class from the Keras tuner. The
hyper‐parameters of the search space are declared in
NNHyperModel as class parameters. We trained and
tested various conϐigurations of the Pose model and
the mixture model on the SBU Interaction and UT‐
Action datasets. For a given number of hidden layers
(1, 2 or 3), we searched for the best number of neu‐
rons, the best type of activation function and the best
value of the learning rate. Using the RandomSearch
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Table 4. The mean accuracy on the SBU Interaction
dataset of three pose expert models (PE) with 1, 2 and 3
hidden layers

mAP 1 2 3
PE – training mAP 95% 96% 99%
PE – test mAP 82% 84% 82%

Table 5. The accuracy of pose experts (PE), and the
accuracy of the mixtures of experts MPE, verified on the
NTU RGB+D interaction dataset in the CS (cross subject)
mode

Classiϐier Training Test
Pose expert 88.4% 76.8%

MPE 94.6% 84.0%

function during training, we identiϐied three ANN con‐
ϐigurations, each one best performing for given num‐
ber of hidden layers (1, 2 or 3).

The performances of the three selected models
after 100 epochs of training on the SBU Interaction
dataset are shown in Table 4. The best mean test accu-
racy (i.e., the recall averaged over all classes) of 84%
was achieved by the second model, whereas the other
twohave shownan accuracy of 82%. Consequently,we
have chosen an ANN conϐiguration of 2 hidden layers
with 700 and500neurons in the ϐirst and second layer,
respectively. The activation functions are ReLU and
sigmoid, respectively.

Mixture of ANN experts The ϐinally chosen ANN pose
experts follow the second version, with two hidden
layers, as reported above. The ϐinal score of every
interaction class is obtained by the fusion network
with ϐinal accumulation over time. The class with the
highest score is selected as the winner. A notable
improvement is observed, when fusing the results of
experts by the ensemble classiϐier. The mean accu‐
racy of a pose expert (PE) was 88.4% (training) and
76.8%(testing),while the ensemble classiϐierMPEhas
reached 94.6% and 84.0%, respectively (Table 5).

Processing times Experiments were conducted on
a personal computer with processor Intel® Core™
i7‐7700HQ CPU @ 2.80GHz, GPU Nvidia GeForce
GTX 1060Mobile with Nvidia CUDA driver, 16 GB
RAM DDR4 2400MHz and a PM961 NVMe SAMSUNG
256GB + HDDWestern Digital Blue 1TB. The average
processing times are shown in Table 6.

Comparison with related methods Manymethods for
two‐person interaction classiϐication have been tested
on the NTU RGB+D interaction dataset. We list some
of the leading works in Table 7. The results can be
characterized as follows:
‐ (a) the mixture of pose experts MPE‐int needs a
low number of weights (456 𝐾) to be trained but
achieves good quality (84%);

‐ (b) the single‐channel LSTM‐int needs a reason‐
able (midweight) number of weights (3.35 𝑀) but

Figure 9. Example of confusion matrix for NTU RGB+D
interaction classes, obtained by the SC‐LSTM model

achieves high quality (91.2%), slightly lower than
current best approaches, based on graph CNNs [16]
and 3D CNNs [39];

‐ (c) Solutions, that process all or nearly all frames
of the video clip demonstrate superior performance
over solutions operating on sparse frame sequences.

Confusion matrix Confusion matrices allow for accu‐
rate analysis of incorrect predictions of individual
classes. Figure 9 shows an example of a confu‐
sion matrix obtained for the NTU RGB+D interaction
classes. The number of test samples has been virtu‐
ally made equal for all the classes, thus the number
of 276 positive results means a 100% accuracy for
given class. We show results of an average performing
model, so thatmistakes are better visible than in cases
of better performing models. It can be seen that the
vast majority of class predictions are correctly done.
As the dataset provides balanced sets for all classes,
the simple accuracymeasure is used:𝐴𝑐𝑐 = (𝑇𝑃/𝐴𝑙𝑙)⋅
100%, where 𝑇𝑃 means “true positive results” and
𝐴𝑙𝑙 – all test samples.

”Punch” (A50) is misclassiϐied with A51‐A54,
which all use hands to express an action. In turn,
the “ϐinger pointing” class (A54) is mainly confused
with the “punch” class (A50). In both cases, a similar
hand movement is made towards the other person.
The class of “pat on back” (A53) is confused with
the class of “touch pocket” (A57). Both movements
involve touching another person on their back. The
“giving object” class (A56) and the “shaking hands”
class (A58) represent very similar interactions – both
involve the contact of the hand. The “walking towards”
and “walking apart” classes are detected highly accu‐
rate.
4.3. Action Classification

Comparison with related methods Our two models,
designed for single‐person action classiϐication (MPE‐
act‐PSM, SC‐LSTM‐act‐PS) are compared with other
top‐performing solutions, when trained and tested on
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Table 6. Processing times measured for a video clip of 3 s

Step Per frame 32 frames Remarks
Activity detection 0.5 – 5 ms 16 – 160 ms in 2 – 20 frames
Skeleton detection 67 ms 2134 ms OpenPose
Feature engineering 8 ms 256 ms

Pose classiϐier 1 ms 32 ms
Mixture classiϐier 1 ms 32 ms

Total time 78 – 87 ms 2470 – 2614 ms

Table 7. Interaction classification accuracy of leading works evaluated on the NTU‐RGB+D interaction set in the CS (cross
subject) mode. Note: † – result according to [15], ‡ – result according to [16]

Model Year Accuracy (CS) Parameters Sequence
ST‐LSTM [30] 2016 83.0% † ∼ 2.1𝑀 32
ST‐GCN [34] 2018 83.3% † 3.08𝑀 32
AS‐GCN [35] 2019 89.3% † ∼ 9.5𝑀 32

IRN𝑖𝑛𝑡𝑒𝑟+𝑖𝑛𝑡𝑟𝑎 [15] 2019 85.4% † ∼ 9.0𝑀 32
MPE-int-RAW 2022 76.1% 0.456𝑀 32

SC-LSTM-int-RAW 2022 80.2% 3.35𝑀 32
MPE-int-PSM 2022 84.0% 0.456𝑀 32
SC-LSTM-int-PS 2022 91.2% 3.35𝑀 32
LSTM‐IRN [15] 2019 90.5% † ∼ 9.08𝑀 max(𝑎𝑙𝑙, 300)
2S‐AGCN [36] 2019 93.4% ‡ 3.0𝑀 max(𝑎𝑙𝑙, 300)
DR‐GCN [16] 2021 93.6% ‡ 3.18𝑀 max(𝑎𝑙𝑙, 300)

2S DR‐AGCN [16] 2021 94.6% ‡ 3.57𝑀 max(𝑎𝑙𝑙, 300)
PoseConv3D(J+L) [39] 2022 97.0% ‡ 6.9𝑀 max(𝑎𝑙𝑙, 300)

the NTU RGB+D dataset (i.e., the everyday activity
subset). The results in the CV (cross‐view veriϐication)
mode are shown in Table 8. Typically, the accuracy
obtained in CVmodeused to be by a signiϐicantmargin
higher than in CS mode. But the number of action
classes (40) is much higher than the number of inter‐
action classes (11), previously considered.

There is a visible tradeoff between the complexity
of a solution and classiϐication accuracy – our
lightweight MPE‐act‐PSM vs. complex solutions of
three‐streamCNNs (3S‐CNN) or solutions using Graph
CNNs and 3D convolutions of skeleton heatmaps
(PoseC3D). Exceptionally high performance was
recently reported, when fusing RGB data and skeleton
data processing results [39]. However, the relatively
early methods have performed worse than ours.
Even the best among them, mentioned above as
ST‐LSTM, has reached a performance level barely
comparable with our raw skeleton data (RAW)
processing methods.

Confusion matrix Figure 10 shows the main con‐
fusions detected for 40 classes of the NTU RGB+D
dataset. The confused classes can be divided into three
groups. Actions numbered 11 (read), 12 (write), 29
(play phone/tablet) and 30 (type on keyboard) form
the ϐirst group. People performing these activities are
usually inclined over one of several objects, i.e., a
phone, a book, a notebook or a tablet. The skeletal
system of these persons is quite similar. The second
group of activities consists of numbers 10 (clapping)
and 34 (rub hands). For them, the people’s stature
is quite similar. The last group consists of activities

Figure 10. The main confusions between 40 classes of
the NTU RGB+D action dataset: four main confusion
cases (given by red numbers 1, 2, 3 and 4, where
confusion no. 2 is a symmetric relation) in the 40 × 40
confusion matrix

numbered 31 and 32, i.e., pointing with a ϐinger and
taking a selϐie. These actions may seem to be much
different. However, it should be known that the sim‐
pliϐied skeleton model does not have a representation
of ϐingers. Thus, these two behaviors are observed
as putting a hand in front of a person. The accuracy
of the network with 40 classes was, in this particu‐
lar case, equal to 89.6%. Let us combine the three
subsets of “similar” classes into separate meta‐classes
(𝑀1,𝑀2,𝑀3): {11, 12, 29, 30} → 𝑀1, {10, 34} → 𝑀2,
{31, 32} → 𝑀3. Thus, we get a 35‐class problem (32
“normal” classes and 3 meta‐classes). The mean accu‐
racy of such a classiϐication problem would increase
to 93.5%.
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Table 8. Comparison of our best solutions with related work for the NTU‐RGB+D dataset (40 action classes, CV mode).

Method (Ref. No., Year) Test Accuracy (%) Parameters Sequence
ST‐LSTM ( [30], 2016) 77.7 >2 M 8
3S‐CNN ( [33], 2019) 93.7 unknown 32
PoseC3D ( [38], 2021) 97.1 6.9 M all

RGBPose‐Conv3D ( [39], 2022) 99.6 >10 M all
MPE-act-PSM 83.2 412 k 32
SC-LSTM-act-PS 90.8 3.32 M 32
MPE-act-RAW 75.4 412 k 32

SC-LSTM-act-RAW 79.8 3.32 M 32

Experiment with the UTKinect Dataset Finally, we
also ran a cross‐dataset experiment using an NTU
RGB+D pre‐trained SC‐LSTM‐act for testing on the
UTKinect set. A problematic issue when using both
collections is that the second set contains only 5 image
sequences and 10 action types. For this reason, a
modiϐied model was pre‐trained on the NTU RGB+D
set, where the last layer has been changed from 40
classes of actions to 10 classes. The UTKinect set was
divided into a training and test set in a ratio of 9:1.
No validation subsetwas created. The training process
has been limited to 50 epochs. The number of network
weights to be trained was 397 k. The averaged results
of ϐive tries with different training/test splits are as
follows: training accuracy 98%, test accuracy 90%.

4.4. Discussion

The proposed solutions to human activity classi‐
ϐication were experimentally validated on two video
datasets. This use of popular datasets allowed a per‐
formance comparison of our approach with other
methods described in the literature. The performance
of our light‐weight solutions (MPE), based on a mix‐
ture of pose classiϐiers, is slightly lower than the
best reported results (by up to 10% for compara‐
ble 2D skeleton data), but our model is more than
10 times lighter. It still performs similar to or bet‐
ter than relatively old heavy solutions. The perfor‐
mance of our mid‐weight solutions (SC‐LSTM) is
comparable with the current best reported results
of similar complexity. Only the top‐most solutions,
based on Graph CNNs and when exploring dense
sequences (all video frames) overpower our results by
up to 6%.

5. Summary
Two light‐weight and mid‐weight models were

proposed for human activity classiϐication in sparse
image sequences (key frames of video clips). They use
as a preliminary step a human skeleton estimation
in single frames. Our main focus was to improve the
quality of skeleton data and to deϐine relational infor‐
mation for skeletons, which allows us to use simple
encoding/classiϐication networks and reach reason‐
able accuracy. It was experimentally shown, that using
our relational features an accuracy improvement of
8‐10% has been achieved, compared to the use of
RAW skeleton data. Another beneϐit of our approach

is its lightness, which makes it easily applicable on
mobile devices and on robotic platforms. A practical
advantage is the assumed sparsity of video frames.
By adjustment of the key frame number, it makes
real‐time processing possible even with moderate
computational resources. The approach can easily be
adopted to process true image sequences, like image
galleries.

The limitations of this study are: a focus on the
actions of main body parts and the use of a single
performance measure:
‐ As the feature vector is based on the subset of the
15 most reliably detected skeleton joints, human
actions performedmainly by feet, hands and ϐingers,
which are not included in this subset, cannot be
properly distinguished from each other.

‐ The evaluation process of the proposed approach
could include other popular measures, such as the
precision‐recall curve and AUC.
Our future work should focus on more extensive

training and testing of various network architectures
(e.g., on the NTU RGB+120 dataset) and on the exten‐
sion of feature engineering to deal with partial skele‐
ton information.
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