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Abstract:
The Parallel and Distributed Computing group belonging
to the Integrated Technological Research Complex (CITI).
has been engaged in the creation of general‐purpose
components that support the processing of large volumes
of information that characterize the problems involved in
parallel computing.

Using the oblivious cache model, which works inde‐
pendently of the computer architecture, and the divide
and conquer principle, an algorithm for matrix trans‐
position is implemented to reduce the execution time
of this algebraic operation. The algorithm ensures that
most of the data content is loaded to the cache for fast
processing, and makes the most of its stay in the cache
to minimize missed reads and achieve greater speed.

The work includes conclusions and statistical tests
carried out fromexperiments on computerswith different
architectures, reflecting the superiority of the algorithm
that uses oblivious cache from an order of matrix deter‐
mined according to the characteristics of each PC.

Keywords: Cache oblivious, Matrix transposition, Missed
readings

1. Introduction
The Integrated Technological Research Complex

(CITI) was created as a coordination project between
the Technological University of Havana (CUJAE) and
the Ministry of Interior (MININT). This entity is
designed to host the most advanced technologies
being worked with worldwide [1].

CITI’s mission is to develop technologies to
enhance the security and internal order of the
country. Its vision is to be a creative, innovative
and benchmark organization in human capital
management. In addition, to be a reference in
the applicability of the results obtained in the
development of systems, technologies and innovative
integrated applications, with impact on security and
internal order, for which it will base its work on the
integration of highly qualiϐied professionals with
talented students [1].

At CITI there are projects in whichmatrix transpo‐
sition is intensively used, so this task was assigned to
the Parallel and Distributed Computing group, which
is dedicated to reduce the execution time of vari‐
ous algorithms by employing parallelism and recur‐
rence techniques. This time, the technique selected by
the group was the cache oblivious, a recurrent tech‐
nique about which there is some literature and imple‐
mentation tested and documented by other authors
[2–4]. This method was used by the authors in a
research work on matrix multiplication obtaining
good results [5].

2. Caching Algorithms
2.1. Cache‐aware Algorithms

Cache‐aware algorithms take into account the
hardware architecture on which they are running,
mainly the cache architecture, i.e. the number of cache
levels and the size of each level. They are speciϐically
developed to perform as well as possible in the envi‐
ronment for which they were created.

This poses a problem when changing the environ‐
ment, since if a cache‐aware algorithm is executed
outside the architecture for which it was designed,
it will not perform well. To counteract this problem,
cache oblivious algorithms were created, able work
efϐiciently on any architecture [6].
2.2. Cache Oblivious Algorithms

Cache oblivious algorithms have a design that will
always be “cache‐optimal”, regardless of the cache
hierarchy. In 1996, the idea of realizing algorithms
that do not take into account the architecture of the
computer where they are executed was conceived by
Charles E. Leiserson and called cache oblivious algo‐
rithms. This topic was ϐirst published in 1999 by Har‐
ald Prokop in his master’s thesis at the Massachusetts
Institute of Technology [4]. The use of the cache
oblivious model has a wide variety of applications
such as: matrix multiplication, matrix transposition,
Bioinformatics (RNA secondary structure prediction),
Shortest Path Algorithm with order O(n), dynamic
programming of the Gaussian solution (Numerical
Mathematics).

The use of the cache oblivious model aims to
decrease missed reads or cache misses since these
algorithms use the divide‐and‐conquer principle to
divide the problem into small subproblems until a
cache‐ϐitting size is reached, regardless of the size of
the cache.
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By reducing the number of missed reads or cache
misses, execution times are signiϐicantly reduced,
resulting in greater efϐiciency.

One of the features by which it outperforms the
traditional cache is self‐tuning. In typical cache algo‐
rithms, the algorithms require tuning to various cache
parameters that are not always available from the
manufacturer and are often difϐicult to extract auto‐
matically which hinders code portability whereas in
cache oblivious algorithms no such tuning is required,
a single algorithm should work well on all machines
without any modiϐication [3,4,7–9].

2.3. Matrix Transposition

Matrix transposition is a fundamental operation
of linear algebra and other computational primitives
such as the multidimensional Fast Fourier Transform;
it is also applied in numerical analysis in economics,
image and graphics processing, as well as being used
in cryptographic methods [10].

This seemingly innocuous permutation problem
lacks both temporal and spatial locality and is there‐
fore difϐicult to implement efϐiciently formatriceswith
a large volume of data. In fact, there is no temporal
locality to exploit, since each element of the matrix is
accessed at most once [10].

As far as spatial locality is concerned, the matrix
element swaps (i, j) and (j, i) implicit in the transpose
semantics, when translated into memory addresses
using canonical row‐major or column‐major ordering,
equals the memory localities ni+j and nj+i. Depending
on the values of i and j, these may be close or far
apart in terms of cache sets or memory pages. Care‐
ful scheduling of these swap operations is required
to gain any advantage from these multiword cache
lines [10].

Explicit transposition of an array into memory can
often be avoided by accessing the same data in a dif‐
ferent order. For example, software libraries for linear
algebra, such as BLAS, generally provide options to
specify that certain matrices should be interpreted in
transposed order to avoid the need for data move‐
ment [10].

Describing the algebraic operation as such, a trans‐
posed matrix is the result of rearranging the origi‐
nal matrix by exchanging rows for columns in a new
matrix (see Figures 1 and 2).

In other words, the transposedmatrix is the action
of selecting rows from the original matrix and rewrit‐
ing them as columns in the newmatrix.

Examples:

Figure 1. Example of transposition of a square matrix
and another of order 2x3 (taken from [11])

Figure 2. Example of transposition of a matrix of order
3x7 (taken from [11])

2.4. Transposition of Block Matrices

The manipulation of matrices with a large num‐
ber of rows and columns involves big problems, even
when they are handled with a computer. Therefore,
it is often interesting to know how to decompose a
problem using large matrices into smaller problems,
i.e., using smaller matrices [11].

The possibility of decomposing a matrix into
smaller matrices has many applications in communi‐
cations, electronics, solving systems of equations, tak‐
ing advantage of the vector structure of some comput‐
ers, and so on. And, especially, it gives the possibility
of writing a matrix in a more compact way [11].

The blocks are obtainedbydrawing imaginary ver‐
tical and horizontal lines between the elements of the
matrix. Their dimension depends on the size of the
cache blocks and aims to store as much information
as possible.

3. Algorithm Implementation
3.1. Description of Operation

The fundamental idea is to reduce the transpose of
a matrix to the transpose of small submatrices. This is
achieved by dividing the matrices in a half along their
largest dimension until only onematrix transpose that
ϐits in the cache needs to be carried out (in theory,
one could further divide the matrices down to a base
case of size 1 × 1, but in practice a larger base case is
used, e.g., 16 × 16, in order to amortize the overhead
of calling recursive subroutines) [12].
3.2. Description of the Implementation

In section 2, all the theoretical foundations that
support the implementation of a matrix transposition
algorithm using the cache oblivious model were pre‐
sented. Algorithm 1, adapted from the one found in
https://es.stackoverflow.com, was used.

This algorithm has four integers and a pointer as
parameters, of which the ϐirst and third are funda‐
mental to divide the original matrix into small sub‐
matrices. The second and fourth refer to the number
of rows and columns respectively, while the pointer
refers to the result matrix.
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Table 1. Computer characteristics

Characteristics PC1 PC2 PC3 PC4 PC5 PC6 PC7
Processor Intel(R) Core

(TM)
i3‐5020U CPU
@ 2.2GHz
2.2GHz

Intel(R)
Celeron (R)
CPU G3900 @
2.8GHz
2.8GHz

Intel(R)
Celeron (R)
CPU G1840 @
2.8GHz
2.8GHz

Intel(R) Core
(TM)
i3‐7130U CPU
@ 2.7GHz
2.7GHz

Intel(R) Core
(TM) i3‐4130
CPU@
3.4GHz

Intel (R) Core
(TM)
i7‐1165G7 @
2.8GHz
2.8GHz

Intel (R)
Pentium (R)
CPU G4560 @
3.50GHz
3.50GHz

RAM 4,00GB
Single‐
Channel
DDR3
@798MHz

4.00GB
(2.95GB
utilizable)
DDR4‐2133

2,00GB
Single‐
Channel
DDR3
@665MHz

8.00GB
(7.95GB
utilizable)
DDR4‐2400

8.00 GB DDR3 16.2GB
(15.8GB
utilizable)
DDR4‐3200

8.00GB
(7.95GB
utilizable)
DDR4‐2400

Type of
system

Windows 64
bits

Windows 64
bits

Windows 64
bits

Windows 64
bits

Linux 64 bits Windows 64
bits

Windows 64
bits

Motherboard ASUSTek
COMPUTER
INC.X540LA

Gigabyte
Technology
Co., Ltd.
B85M‐DS3H

Gigabyte
Technology
Co., Ltd.
B85M‐DS3H

Dell Inc.
02DG7R
(U3E1)
Versión A00

Gigabyte
B85M‐DS3H

HP Spectre
14‐EA

Gigabyte Ga‐
H110m‐S2h

Cache L1
(instructions)

64KB. 64KB 64KB 64KB. 64KB. 128KB 64KB

Cache L1
(data)

64KB. 64K 64K 64KB. 64KB. 192KB 64KB

Cache L2 512KB 512KB 512KB 512KB 512KB 5MB 512KB
Cache L3 3MB 2MB 2MB 3MB 3MB 12MB 3MB

void cachetranspose(int rb, int re, int
cb, int ce, Matrix* T)
{int r = re - rb, c = ce - cb;
if (r <= 16 && c <= 16) {
for (int i = rb; i < re; i++) {
for (int j = cb; j < ce; j++) {
T->data[j*rows+i]=data[i*columns+j];}}}
else if (r >= c) {

cachetranspose(rb,rb+(r/2),cb,ce,T);
cachetranspose(rb+(r/2),re,cb,ce,T);}

else {
cachetranspose(rb,re,cb,cb+(c/2),T);
cachetranspose(rb,re,cb+(c/2),ce,T);}}

Algorithm 1. Recursive matrix transposition algorithm
using cache oblivious

4. Experiments
For the development of the experiments it was

necessary a previous study of several algorithms (tra‐
ditional, blocks and blocks_for_squared_matrices) to
establish a comparison with those using the cache
oblivious model (for square and non‐square orders).
These experiments consist of running each algorithm
5 times on orders with different characteristics (see
Table 1). From the results obtained, a statistical analy‐
sis is performed to determine whether the algorithms
using the cache obliviousmodel are superior (in terms
of execution time and missed reads) to those that do
not use this model.

4.1. Results

In this section we present diagrams showing the
average execution time and the missed readings (the
latter only in PC5), for each of the algorithms analyzed.

In those cases, where non‐squared matrices were
tested, these were ϐilled with zeros in order to use the
blocks_for_squared_matrices algorithm for the corre‐
sponding comparisons.

Figure 3. Behavior of the algorithms in PC1 for square
orders

Figure 4. Behavior of the algorithms in PC1 for
non‐square orders

As can be seen in Figure 3, for the computer iden‐
tiϐied as PC1, the blocks_for_squared_matrices algo‐
rithm is faster than the rest of those analyzed for
orders lower than 14000, from which the algorithm
using cache oblivious starts to be superior.

Figure 4 shows that for the computer identiϐied as
PC1, the algorithm using cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.
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Figure 5. Behavior of the algorithms in PC2 for square
orders

Figure 6. Behavior of the algorithms in PC2 for
non‐square orders

Figure 7. Behavior of the algorithms in PC3 for square
orders

It is evident from Figure 5 that, for the computer
described as PC2, the algorithm using cache oblivious
is superior in terms of execution time to the tradi‐
tional and block algorithms for all orders, while the
blocks_for_squared_matrices algorithm has lower or
similar times to the one using cache oblivious up to
order 10000, from which the cache oblivious algo‐
rithm presents lower values.

Figure 6 shows that, for the computer identiϐied as
PC2, the algorithm using cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.

Figure 7 shows that, for the computer identi‐
ϐied as PC3, the algorithm using cache oblivious is
superior in terms of execution time to the tradi‐
tional and block algorithms for all orders, while the
blocks_for_squared_matrices algorithmhas lower exe‐
cution times than the one using cache oblivious up
to order 6000. Between 8000 and 12000 the results
are similar and from the latter, the cache oblivious
algorithm starts to have lower values.

Figure 8 shows that, for the computer identiϐied as
PC3, the algorithm using cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.

Figure 8. Behavior of the algorithms in PC3 for
non‐square orders

Figure 9. Behavior of the algorithms in PC4 for square
orders

Figure 10. Behavior of the algorithms in PC4 for
non‐square orders

Figure 9 shows that, for the computer identi‐
ϐied as PC4, the algorithm using cache oblivious is
superior in terms of execution time to the tradi‐
tional and block algorithms for all orders, while the
blocks_for_squared_matrices algorithmhas lower exe‐
cution times than the one using cache oblivious until
order 12000, when they start to have similar values.

Figure 10 shows that, for the computer identiϐied
as PC4, the algorithmusing cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_square_matrices algorithms for all the
orders analyzed.

Figure 11 shows that, for the computer identiϐied
as PC5, the algorithmusing cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.

Figure 12 shows that, for the computer identiϐied
as PC5, the algorithmusing cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.

It is evident in Figure 13 that, for the computer
identiϐied as PC6, the algorithm using cache
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Figure 11. Behavior of the algorithms in PC5 for square
orders

Figure 12. Behavior of the algorithms in PC5 for
non‐square orders

Figure 13. Behavior of the algorithms in PC6 for square
orders

Figure 14. Behavior of the algorithms in PC6 for
non‐square orders

oblivious is superior in terms of execution time
to the traditional algorithms, by blocks and
blocks_for_squared_matrices, starting from the
order 10000x 10000.

Figure 14 shows that, for the computer identiϐied
as PC6, the algorithmusing cache oblivious is superior
in terms of execution time to the traditional, block

Figure 15. Behavior of the algorithms in PC7 for square
orders

Figure 16. Behavior of the algorithms in PC7 for
non‐square orders

Figure 17. Performance of the algorithms in terms of
missed readings on PC5 for square orders

Figure 18. Performance of the algorithms in terms of
missed readings on PC5 for non‐square orders

and block_for_squared_matrices algorithms for all the
orders analyzed.

Figure 15 shows that, for the computer identiϐied
as PC7, the blocks_for_squared_matrices algorithm is
superior to the others analyzed and it can be observed
that the algorithm using cache oblivious obtains a
certain parity from the order 14000x14000.
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Table 2. Results obtained in PC1 for square orders

Algorithms traditional blocks blocks_for_squared_matrices
p-value Analysis p-value Analysis p-value Analysis

10000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 1> 𝛼 Does not reject H0
12000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 1> 𝛼 Does not reject H0
14000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0

Table 3. Results obtained in PC1 for non‐squared orders

Algorithms traditional blocks blocks_for_squared_matrices
p-value Analysis p-value Analysis p-value Analysis

8000x 10000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
10000x 12000 0.02895< 𝛼 Rejects H0 0.02895< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
12000x 14000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0

Table 4. Results obtained in PC5 for missed readings in square orders

Algorithms traditional blocks blocks_for_squared_matrices
p-value Analysis p-value Analysis p-value Analysis

10000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
12000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
14000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0

Table 5. Results obtained in PC5 for missing readings in non‐square orders

Algorithms traditional blocks blocks_for_squared_matrices
p-value Analysis p-value Analysis p-value Analysis

10000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
12000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0
14000 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0 0.03125< 𝛼 Rejects H0

Figure 16 shows that, for the computer identiϐied
as PC7, the algorithmusing cache oblivious is superior
in terms of execution time to the traditional, block
and block_for_squared_matrices algorithms for all the
orders analyzed.
4.1.1. Missed readings

The PAPI (Performance Application Programming
Interface) library, developed at the University of Ten‐
nessee, was used to account formissed reads. Its main
purpose is to provide access to the PMCs (Perfor‐
mance Monitoring Counter) of a diverse collection of
modern processors [13]. PAPI provides an abstraction
layer that allows developers to access PMCs. Instead,
the developer uses calls to the PAPI API (Application
Programing Interface), making the code portable, i.e.
it can be used on any architecture supported by the
library without modifying access to PMCs [14].

The missing readings were counted on the PC5
computer, which has a Linux operating system
because the library used (PAPI) has not provided new
updates since the XP version of Windows.

Figure 17 shows that, for the computer identiϐied
as PC5, the algorithm that uses cache oblivious has the
lowest number of missed readings.

Figure 18 shows that, for the computer identiϐied
as PC5, the algorithm using cache oblivious has fewer
missed readings.

5. Statistical Analysis
TheWilcoxon nonparametric testwas used for sta‐

tistical analysis. It was selected since it was proven
that the data do not follow a normal distribution and
due to the small sample size. It is expected that, when
the test is run, it will return a p<∝ value, if this occurs
H0 is rejected and it is concluded that the execution
time of the cache oblivious algorithm is less than that
of the traditional algorithm.

Several signed rank tests were applied when the
samples were paired, one for each of the last three
orders of the algorithms on each computer described.

The following are the results obtained on PC1 in
terms of execution time and on PC5 in terms ofmissed
readings:

It is evident in the results of Table 2 that the
blocks_for_squared_matrices algorithm is faster than
the rest of the analyzed algorithms for orders lower
than 14000, from which the algorithm using cache
oblivious starts to be superior.

The results in Table 3 show the superiority in
terms of execution time of the algorithm using the
cache oblivious model for all the orders analyzed.

Table 4 shows the superiority in terms of missed
readings of the algorithm using the cache oblivious
model for all orders analyzed.

Table 5 shows the superiority in terms of missed
readings of the algorithm using the cache oblivious
model for all orders analyzed.
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The test was performed with the statistical soft‐
ware R. After the test it was demonstrated that the
matrix transposition algorithm using the cache obliv‐
ious, depending on the architecture of the computer
where it was used and from a certain order, will be
better than the other algorithms analyzed.

6. Conclusion
Under the computational conditions used for the

experiments:
1) On a computer with a Windows operating system,

in the matrix transposition operation, for square
ordermatrices it is not feasible to employ the algo‐
rithm using the cache oblivious model for an order
less than 14000 x 14000.

2) Regardless of the computer architecture, it was
shown that fromorder 6000 x 8000 for non‐square
ordermatrices, thematrix transposition algorithm
using cache oblivious is faster than the rest of the
algorithms studied.

3) The blocks_for_squared_matrices algorithm has a
lower performance when used for non‐square
matrices since thesemust be completedwith zeros
until their order is square and therefore the algo‐
rithm increases its execution time.

4) For large volumes of information, the execution
time is in direct correspondence to the missed
readings.

5) Algorithms that use the cache oblivious model for
large volumes of information have fewer missed
readings than the rest.
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