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Abstract:
Sentiment analysis is a useful tool in several social and
business contexts. Aspect sentiment classification is a
subtask in sentiment analysis that gives information
about features or aspects of people, entities, products,
or services present in reviews. Different deep learning
models that have been proposed to solve aspect sen‐
timent classification focus on a specific domain such
as restaurant, hotel, or laptop reviews. However, there
are few proposals for creating a single model with high
performance in multiple domains. The continual learn‐
ing approach with neural networks has been used to
solve aspect classification in multiple domains. However,
avoiding low, aspect classification performance in contin‐
ual learning is challenging. As a consequence, potential
neural network weight shifts in the learning process in
different domains or datasets.

In this paper, a novel aspect sentiment classification
approach is proposed. Our approach combines a trans‐
former deep learning technique with a continual learning
algorithm in different domains. The input layer used is the
pretrained model Bidirectional Encoder Representations
from Transformers. The experiments show the efficacy of
our proposal with 78 % F1‐macro. Our results improve
other approaches from the state‐of‐the‐art.

Keywords: Continual Learning, Deep Learning, Catas‐
trophic Forgetting, Sentiment Analysis.

1. Introduction
Sentiment analysis is a useful tool in several

social and business contexts, such as: social net‐
works, online shops (Amazon1, Alibaba2), blogs, etc.
It is an important task in natural language pro‐
cessing (NLP) and natural language understanding
(NLU) [15]. Aspect based sentiment analysis (ABSA)
is a fundamental subtask in sentiment analysis where
users and decision‐makers can obtain more informa‐
tion about sentiments in reviews [8]. An aspect term
is related to features about products, services, events,
and people [19].

ABSA has three essential subtasks: (i) opinion tar‐
get extraction (OTE), (ii) aspect category detection
(ACD), and (iii) sentiment polarity (SP) or aspect sen‐
timent classi ication (ASC). Thus, OTE is mainly con‐
cerned with the extraction of aspect terms (i.e., entity
or attribute), ACD is related to associate entities and

attributes to a global category (i.e., comfort or clean‐
ness in hotel domain), whereas ASC is focused on the
sentiment polarity classi ication of aspects [8].

The ASC subtask has been studied by several
researchers. They have been using deep learning
approaches with better results [2, 39]. The proposed
ASCmodels have been associated usually with a single
domain; however, when they have been applied to dif‐
ferent ones, their effectiveness decreases [2]. Suitable
F‐measure values were obtained with the samemodel
when it is applied to different single domains [10]:
laptops (83%), hotels (89%). Nevertheless, a retrieval
system can process objects or instances from more
than two domains.

For that reason, approaches such as CL (CL) that
is capable of learning in an incremental learning pro‐
cess from more than two domains have emerged [5].
It takes advantage of the local learning of sev‐
eral domains by identifying the main features or
patterns found in the previous learning process with‐
out losing effectiveness (i.e., the price aspect is com‐
mon for restaurants, hotels, and electronic devices
domains) [5,6].

The constraint in the CL setting is that a compu‐
tational model would not be able to access the data
from the previous tasks; it can only access a limited
amount of information [5]. This learning problem is
challenging. If the same model is retrained using the
current available dataset DM , it will forget how to
predict for datasets Dm;m < M . This is known as
the catastrophic forgetting problem. This occurswhen
networks are sequentially trained in many tasks; for
instance, in task A, network weights can be modi ied
by the learning process of a task B [22, 22]. Several
proposals have tried to improve it in image classi ica‐
tion [9]. Nevertheless, there are few proposals to solve
this challenge in the ABSA subtask [2].

In this paper, we propose a hybrid model that
combines the continual and deep learning approaches
for ASC. First, a text preprocess module extracts the
aspect word candidates (i.e., noun, adverbs) and the
proposed model classi ies each aspect into one of
three possible classes: positive, negative, or neutral.
Our model starts from a Bidirectional Encoder Repre‐
sentations from Transformers (BERT) [7] model and
improves the CL disadvantages based on:
‐ Combining a CL regularization approach in NLP (i.e.,
ABSA) with a gradient descent modi ication algo‐
rithm to preserve relevant weights in a CL scenario.
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‐ Using the output of a pretrained BERT model to
improve the results and tune the BERTmodel on the
CL process.
The rest of this paper is organized as follows.

The subsection “RelatedWork” describes themethods
based on deep and CL in ABSA. Section 2 presents the
proposed model based on deep and CL. Section 3 dis‐
cusses the evaluation of the model with respect to the
state‐of‐the‐art (SOTA). Toward the end, we provide
concluding remarks and future research directions.

1.1. Related Work

As mention in the previous section, CL represents
a long‐standing challenge for machine learning and
neural network systems [9]. This is due to the ten‐
dency of learning models to catastrophically forget
existing knowledge when learning from novel obser‐
vations [22,25]. The most common CL strategies [2,6,
16,21] are described below:
‐ Architectural strategy: Speci ic architectures, layers,
activation functions, and/or weight freezing strate‐
gies are used to decrease forgetting. This adds other
neural network architectures for each domain, as
proposed in [14,18].

‐ Regularization strategy: The DLmodel loss function
is extendedwith loss termspromoting selective con‐
solidation of the weights, which are important to
retain memories. This strategy includes basic reg‐
ularization techniques such as weight speci ication,
dropout, or early stopping, as described in [1].

‐ Rehearsal strategy: Past information is periodically
replayed to the model to strengthen connections
for memories it has already learned. A common
approach is part of the previous training data and
interleaving them with new tasks or domains for
future training, as described in [20].
The architectural and rehearsal strategies propose

the creation of new structures for newdomains [7,16].
In the case of rehearsal, it is necessary to preserve
instances of the previous domains, which is also com‐
putationally expensive. A lower cost will be achieved
by regularization [16], by not adding any architecture
or additional memory during a learning process. The
target of this research is the CL model with a regular‐
ization strategy.

The Elastic Weight Consolidation model (EwC) is
one of the more successful regularization approaches.
It tries to control forgetting by selectively constrain‐
ing (i.e., freezing to some extent) the model weights,
which are important for the previous tasks. The EwC
regularization used a Fisher Information Matrix in a
stochastic gradient descent (SGD) computation. The
Fisher Information Matrix in a neural network is
expensive, because of the need to preserve the all
neural network weight in external memory.

Other CL strategies, such as hard attention to the
task (HARD) [29] and incremental moment matching
(IMM) [14], are not better than in CL for sentiment
analysis [35].

The synaptic intelligence (SI) model [38] is an
optimization of EwC. In the SI approach, the neural

network weights are calculated online when the SGD
is applied. The SI reduces the EwC computational cost.
To the best of our knowledge, there are no works in
ABSA with SI. The architectural and regularization 1
(AR1) [16] is an SI optimization with batch instance
results and last layer weight average computation.
Although, AR1 was used in image classi ication tasks,
their architecture and themodel computational result
was studied in this research.

In sentiment analysis task, “lifelong learningmem‐
ory” (LLM), proposed in [35], is a CL regularization
approach. It incorporates the mined knowledge into
its learning process, where two types of knowledge
are involved named aspect sentiment attention and
context sentiment effect. Because only datasets of
household appliances (reviews on cameras, laptops,
smartphones, etc.) are applied, the CL model does not
learn from diverse domains. The model performance
of 82% F1‐macro suggests being taken as an element
of comparison in our research.

Another CL model is “knowledge accessibility net‐
work” (KAN) proposed in [12]. Its target is to classify
sentiment in sentences (i.e., not ABSA substask) in a
task incremental learning (TIL) scenario (e.g., in a CL
process, each new task has new instances). The KAN
model is closely related to the HARD model [35] (i.e.,
a CL architectural strategy and more expensive regu‐
larization strategy). Although, it is not similar to our
research objective, KAN is of themore recent works in
sentiment analysis with a CL approach.

In the ASC subtask, there are several works that
combine BERT and deep learning architecture, for
instance, “local context focus with BERT” (LC) [37]
receives the words that correspond to the sentence
where the aspect appears and a set of words in the
aspect neighborhood as input as an upper layer of the
BERTmodel. It reaches an 82%accuracywith a laptop
dataset. Another approach is the model Attentional
Encoder Networkwith BERT(AE) [31] applies amulti‐
head attention architecture to the BERTmodel output.
It has two inputs: thewords of the context (a sentence)
and the words that make up the aspect. It reaches an
83% Accuracy in a Restaurant dataset.

The attentional encoder networkwith “long short‐
term memory networks” (LSTM) and identi ied with
acronym AT [31] applies an attention mechanism and
concatenates the aspects and their context.

TheATenables aspects to participate in computing
attention weights. It uses GloVe as input and LSTM as
deep learningmodel. The above approacheshave good
classi ication measures; however, they are evaluated
in a single domain scenario and not a CL process. Their
deep learning architectures are interesting as base
models in a CL framework.

The sentiment analysis models improve services
such as tourism or e‐commerce (e.g., analyzing sold
product reviews). Building datasets for each domain
is expensive (time, specialists). A model (such as the
one proposed in this research) can be used in various
social services (tourism, e‐commerce, government)
and reduces model learning costs (time and memory)
and economic resources.
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2. Content
A new model for ASC in multidomains based on

deep and CLwith the regularization approach is intro‐
duced in this section.

First, a formal de inition of the problem is given.
Then, we introduce the different stages of the new
model and its main inputs, outputs, and activities.

In the ABSA subtask, given a sentence (sequence
of words) wc = wc

1, w
c
2,…, wc

n, an aspect is a sequence
of words, de ined as wt = wt

1, w
t
2,…, wt

m, where wt

e is a subsequence of wc. The goal of this task is to
predict the sentiment polarity “s” of aspect wt, where
s ∈ positivo, negativo, neutral.

The new model is evaluated in a particular
CL setting called domain incremental learning
(DIL) [34]. Each task is from a different domain
or dataset; however, the classes are the same
(i.e., positivo,negativo,neutral). The DIL setting is
particularly suited to ASC because in testing the
system, it need not know the task/domain to which
the test data belongs.

A CL model with the regularization approach has
three main components [6]:
‐ A base machine learning model (e.g., CNN, BLSTM,
or a pretrained model such as Resnet).

‐ The CL approach to preserve knowledge (e.g.,
weights in a neural network, based classi ier) during
the learning process from one domain to another.

‐ The knowledge base, which is usually the common
or a new part of the model (e.g., neural network
weights do not vary between learning domains, new
neurons inserted to the neural network) to be added
according to the CL approach.

2.1. Model Description and Main Stages

The model components are presented in 1. In this,
the CL model is represented at the top (i.e., labeled
with “CL model”). This model preserves the knowl‐
edge learned during model training in the previous
domains. The basemodel is represented by the square
named “Bert neural network” in the middle of the ig‐
ure, and the classi ication neural node gives the input
values to the next CL model. The bottom showns how
the domains were used by the CL process.

The model training process has four stages:
Stage 1. Textual representation: This stage

receives the original textual opinions and returns the
vector of tokens per each sentence (applying a sen‐
tence splitter) and the aspects in a sentence (nouns,
adjectives andnounphrases). The aspects are selected
by a part‐of‐speech (POS) tagger. Although in our
model word tags (i.e., noun, adjective) are used to
identify aspects, there are other approaches with a
Deep Learning model (or other Machine Learning
approach) that are used in aspect extraction process
as in [17]. If a sentencehasmore thananaspect, then is
associated a sentence vector of tokens for each aspect.
The spaCy3 NLP tool offers the implementation and
documentation for developing this stage.

Stage 2. Train the CL model: This stage learns
the knowledge to be included in the knowledge base,

Figure 1. Input and output information representation
in the CL model

depending on BERT and the CL training process for
each current domain. This stage is divided into the
following steps:
‐ Train the BERT neural network for each domain,
where the output is a classify neuron.

‐ Train the CL approach with the pretrained BERT
model output last layer.
The stage input is the tokens vector in a sentence

and the tokens vector associated with an aspect, from
Stage 1.

In this stage, the BERT embedding input layer is
built. To build the input vector to the BERT pre‐model,
a vector of weights is obtained from a vector model of
words (i.e., WordPiece) and the position of each token
in the sentence.

This vector is the irst layer of the deep learn‐
ing base model represented by BERT. Traditional
Word2Vec or GloVe embedding layers provide a single
context independent representation for each token.
On the contrary, in BERT, the representation of each
token is related to the data obtained from the sentence
used as input [7]. This allowshavingmore information
about the word context when training the models.
The stage’s output is a neuron associated with the
classi ication token in the BERT last layer.

Stage 3. Knowledge base upgrade: In this stage,
catastrophic forgetting is avoided through the anal‐
ysis of the training process results. The input is the
classi ication neuron value (Stage 2 output) to feed
a layer with three neurons (e.g., positive, negative,
neutral). The obtained loss/error is used in theweight
optimization process by the regularization strategy.
The output is the KB vector updated with the new
weights obtained from the CL approach and BERT
neural network.

Stage 4. Aspect classi ier creation: This stage
makes available the continual deep learning model
for solving the ABSA subtask in multidomains. The
inal con iguration of the model is obtained from the
parameters in the knowledge base.
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A CL regularization approach has amachine learn‐
ing base model for learning raw features in each task
or domain (datasets). BERT Special (BSp) [31] is the
base model in the new CL model proposed in this
article. It is selected by the attention mechanism (i.e.,
the transformers) in the BERT neural network archi‐
tecture. The BSp associates the words in a sentence
and the aspect (represented by “BERT Neural Net‐
work” in 1).

ThenewCLmodel is general enough to replace this
base model with others, as shown in Results section.
The BSp method constructs the input sequence as:

< CLS > tokens < SEP > asp < SEP > (1)
The first token of every input sequence is the

special classification embedding (< CLS >), and it
separates the context words associated to sentence
words and aspect words (i.e., asp) with a special token
(< SEP >). In the BERT neural network, the output
of the neuron associated with the token < CLS > in
the last layer is the classi ication value in the Stage 2
learningprocess. Thebasemodel architecturewasval‐
idated in the experiments against complex models as
AE, which reaches 73% F1‐macro for a single dataset
about restaurant reviews [31].
2.2. The Continual Learning Model

The new proposal, named Lifelong Learning of
Aspects (LLA), is inspired by AR1 [16] and the Synap‐
tic Intelligence (SI) [38] learning process, because
they achieve better classi ication results [24] (i.e., the
LLA is represented in the 1 with “ Lifelong Learning of
Aspects” label).

Although both models were applied to image clas‐
si ication task, we adapted them for NLP and clas‐
sifying aspects (e.g., words in a sentence) in three
classes (positive, negative, and neutral) for different
datasets during the learning process. AR1 improves
SI [16] in image classi ication challenges; however,
in our model, we combine the updated descendent
gradient andweights preservationmechanism fromSI
in the AR1 regularization model.

The new CL model LLA combined with BERT (as
base model) has the acronym (BSpLLA), and it is the
new computational model proposed.

In contrast to the original AR1proposal in [21], our
approach does not extend with new classes for each
new domain. For each domain, the same three classes
alreadymentionedareused. Themainobjective of LLA
is to obtain the set of weights in the output layer w⃗ as
shown in 1. One of the main settings of this algorithm
is that w⃗ is initialized to 0 (as input) and does not use
any random initialization as in other CL approaches,
inspired in the AR1 approach. The parameters of each
output layer from previous domains are stored in w⃗.

In the CL process, the base deep learning model is
represented byBSp, and their output layer is the LLA
CL model input (i.e., the AR1 modi ication for aspect
classi ication in the NLP context). The LLA model loss
function andoptimizationprocess tune theneural net‐
work weights in both models (BSp and LLA) during
the learning process.

Algorithm 1 LLA
Input:
c⃗w = 0▷ The consolidated weights used for inference.
M̄ = 0 ▷ The deep learning base algorithm weights.
M = 0 ▷ The optimal shared weights resulting from
training.
F̂ = 0 ▷ he weight importance matrix (SI algorithm).
Text ▷ Domains sentences dataset.
Output: c⃗w ▷ The trained weights used for
inferencing.

1: In the Text extracts, the sentence x and its candi‐
date word aspect y are group in batchesB.

2: loop ▷ For each batch inB, process all pair (x, y).
3: Train the base deep learning model with pair

(x, y).
4: Learn M̄ and c⃗w subject to SI algorithmwith F̂

andM .
5: Save weigths inM withM = M̄ and c⃗w.
6: Update F̂ according to trajectories computed

on the batchBi.
7: Test the model by using M̄ and c⃗w.
8: end loop

The BSp is trained by using each B batch of sen‐
tences in the datasets, as shown in line 3.

The CL approach is described in lines 4 and 5.
Line 6 updates the parameters of the neural network
using the regularization and gradient descent. The w⃗
vector is the knowledge base in the new classi ication
domain.

The combination between F̂ weight importance
and w⃗ vector is the regularization approach to
reduce catastrophic forgetting because it has the
balance of the learning process in each domain
and the output layer evaluation in the classi ication
algorithm.

The BERT and LLA combination adopted the SI
mechanism [38] to compute the weight importance
during SGD. This mechanism is important in LLA
to preserve the common neuronal weight (transfer
learning) in BERT tuning and the model learning.

The loss function in LLA is de ined as in [38]:

L̃µ = Lµ + c
∑

k
Ωµ

k

(
θ
′

k − θk

)2

(2)

Where k is the neural networks weights param‐
eters, c is a strength parameter that trades off old
versus new tasks,Ωµ

k is the parameters regularization
strenght, and (θ′

k − θk)
2 is the reference weight corre‐

sponding to the parameters at the end of the previous
task and the current task.

3. Experiments and Results
Experiments were designed to compare the ASC

performance of the new model LLA against the CL
SOTA [6, 24]. In our experimental design, each deep
learning model for ABSA was used as the base
approach in each CL model (combinations between
deep learning and CL models).

6



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N◦ 1 2023

To verify the effectiveness of our proposal against
the SOTA approaches, the following experiments were
conducted:
‐ Compare the LLA approach with themainmodels of
the SOTA.

‐ Analyze if the domain order affects the quality of the
results.

3.1. Datasets and Continual Learning Scenario

To evaluate the performance of BSpLLA, exper‐
iments are conducted using seven of the most used
ABSA datasets, as described in Table 1. They were
taken from four sources: laptops and restaurants, from
SemEval‐2014 Task 4 subtask 2 [26], datasets about
electronic devices used in [27], and hotels reviews
from TripAdvisor [32]. The considered training and
testing subsets are the same as those de ined by the
datasets’ authors.

Dataset instances are sentences and can contain
more than one word tagged as aspect. During model
training and testing, sentences that have more than
one aspect are split into a sentence (i.e., the same
sentence text) with only one aspect present.

The CL scenario is DIL, all tasks sharing the same
ixed classes (i.e., positive, negative, and neutral). A
factor that could in luence the results ofBSpLLA and
the SOTA is the possible semantic closeness of the
domains. For instance, restaurant and hotel reviews
could be semantically closed (reviews with words
related to cleanliness, comfort, price).

The used datasets (domains), in the BSpLLA

learning process, were grouped by humans. These can
be considered clusters. We estimate the domain cen‐
troid (the mean of the BERT output vectors for all
sentences in each domain) and the cosine similarity
of the centroids [30], with the objective to estimate
semantic closeness. The results are showed in 2.

In the igure, the similarity indicates restaurant
and hotel review domains are close. However, others
as routers, laptops are not close to restaurants.

Other important measures to evaluate the qual‐
ity of the clusters is the silhouette coef icient. It
has performance measure in the interval [−1, 1], and
values near zero, indicate overlapping clusters [33].
The dataset using the silhouette coef icient (with
cosine similarity) was ‐0.017. In 2, the similarity indi‐
cates restaurant and hotel review domains are close.
However, others as routers, laptop are not close to
restaurant.

Table 1. Labeled dataset description (Sent = Sentences,
Aspect = Aspects).

Domain Sentences Aspects Train Test
Digital Cameras 597 237 477 120
Smart Phones 546 302 436 110
Routers 701 307 877 176
Speakers 687 440 549 138
Restaurants 3841 4722 3041 800
Laptops 3845 2951 3045 800
Hotels 4856 3810 3371 1485

Figure 2. Cosine similarity between domain centroids

The value near zero indicates that there are some
sentences close semantically among domains, and the
negative value of a sample has been assigned to the
wrong cluster (the datasets were created by humans
and not by the same authors). This value indicates
that there is common information between domains
and con irms the performance of the BSpLLA model.
Because, it learns common aspects in ASC between
different domains and reduces forgetting the past
knowledge.

3.2. Compared Baselines

The new proposal BSpLLA was evaluated against
three SOTA strategies of CL with the regularization
approach (see model descriptions in Table 3):
‐ “Lifelong Learning Memory” (LLM)
‐ “Elastic Weight Consolidation” (EwC).
‐ “Architectural and Regularization 1” (AR1)

The CL regularization approach employs a base
model (e.g., deep learning model) for learning the raw
features of datasets. During the evaluation, each of the
CL models mentioned was combined with the deep
learning approach used in ABSA:
‐ “Local Context Focus with BERT” (LC) [37].
‐ “Attentional EncoderNetworkwithBERT” (AE) [31].
‐ “Attentional EncoderNetworkwith LSTM” (AT) [11].

These methods were selected because they have
relevant accuracy performance in ABSA, and they have
as input a BERT pretrained model or GloVe input
as in AT.

3.3. Hyperparameters

The pretrained uncased BERT base model was
applied in the learning process.4 The neural network
architecture was 12‐layer, 768‐hidden, 12‐heads,
110M parameters, trained on lower‐cased English
text. GloVe pretrained with 300 vectors was used in
theWordEmbedding. Theweights of theLLM ,EWC ,
LLA, and AR1 models are initialized with the Glorot
initialization,5 whereas the coe icient of L2 regular‐
ization is 10−5 and the dropout rate is 0.1. The BERT
model was implemented by pythorch library trans‐
formers 2.1.0.6
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Table 2. Example of imbalance between classes in used
datasets.

Domain Positive Negative Neutral
Restaurants 2892 1001 829
Laptops 1328 994 629
Hotels 2343 656 811

All combinations of deep learning and CL models
have been trained with a batch size equal to 64 and
10 epochs, for all datasets (i.e., Each dataset (domain)
trains the model for 10 epochs and uses a batch of
64 instances). The optimization functionwas anAdam
with a 2e‐5 learning rate. The training and evaluation
processes were made using a 2 x Intel Xeon L5520
with 64 GB RAM on the high performance computing
cluster at Central University of Las Villas, Cuba. The
source code is public.7

3.4. Evaluation Measures

Taking into account that the selected datasets are
imbalanced (see an example in Table 2), we will use
F1‐macro (averaged F1‐score over all classes) in addi‐
tion to accuracy (Accr) in the experimentation.

The performance of the proposed model was
also evaluated with the Cohen‐Kappa (Kappa) mea‐
sure [40]. This selection ismotivated because it allows
considering the effectiveness of amodel in imbalanced
datasets [40]. Kappa is computed as shown Equa‐
tion 3, where ρo is the model probability of the label
assigned to any sample, and ρe is the expected label
assign by annotators:

K = (ρo − ρe)/(1− ρe) (3)

Kappa gives values in the interval [−1, 1], where 0
or lower valuesmeannot relevantmodel training [40].
3.5. Catastrophic Forgetting Evaluation Measure

Several authors have proposed different catas‐
trophic forgetting measures. The de inition of a stan‐
dard measure is a research challenge [2,6,23].

Themeasure selected to evaluate catastrophic for‐
getting in this research was proposed in [12], because
this is a CL work oriented to sentiment analysis in
sentences, very close to the target in this research. The
catastrophic forgetting measure in [12] average the
result of the inal classi ier in the test sets of the
tasks before the last one. This measure is named
OvrcForgtt in this research.
3.6. Evaluation Settings

Two con igurations were taken into account dur‐
ing the experiments. Initially, a testwas analyzedwith‐
out adjusting the BERT architecture weights. This is
because the BERT is supported by a neural network
architecture, and it is a pretrained model. But this
did yield low classi ication results (accuracy), and it
was rejected. As a inal con iguration, the weights of
BERT architecture and the deep learning model were
adjusted during the backpropagation steps. Other
authors as in [28] exploit this possibility of training

Table 3. Acronyms and names of the models considered
in the evaluation of the new proposal.

Acronyms Compared Baselines
LLM Lifelong Learning Memory.
AEEWC Attentional Encoder Network with BERT

and EwC.
AELLA Attentional Encoder Network with BERT

and the newmodel LLA.
AEAR1 Attentional Encoder Network with BERT

and AR1.
BSpEWC BERT Special with EwC.
BSpLLA BERT Special with the newmodel LLA.
ATEWC Attentional Encoder Network with LSTM

and EwC.
ATLLA Attentional Encoder Network with LSTM

and the newmodel LLA.
LCLLA Local Context Focus with BERT and the

newmodel LLA.

Table 4. Average results using different deep learning
base models and the LLA (CL approach).

Model AELLA ATLLA LCLLA BSpLLA

Accr 0.69 0.64 0.79 0.80
F1 0.49 0.38 0.66 0.73
Kappa 0.40 0.12 0.59 0.62
OvrcForgtt 0.497 0.38 0.66 0.73

Table 5. Average results betweenBSpLLA and other in
SOTA.

Model LLM AEEWC AEAR1 BSpEWC BSpLLA

Accr 0.39 0.68 0.57 0.61 0.80
F1 0.23 0.50 0.33 0.62 0.73
Kappa 0.03 0.42 0.16 0.53 0.62
OvrcForgtt 0.23 0.49 0.66 0.62 0.73

BERT to obtain ef icient classi ication results in ABSA
for speci ic domains.

The evaluation results are the performance mea‐
sure average of all possible domain permutations in
the CL process.

The BSpLLA model obtains the best results
against other base models with the same CL approach
(i.e., LLA), as shown in Table 4. Besides, it is possible
tomodify or improve our basemodel in the future and
use the LLA proposal as part of a general framework.

The results obtained by BSpLLA outperform the
rest of the models and demonstrate that our LLA
approach can improve results in ASC during a CL of
multiple domain scenario (as shown in Table 5).

In all tests (Tables 4‐5), BERT‐based models per‐
form better than Word Embeddings (i.e., ATLLA and
ATEWC have word embedding vectors as input),
because BERT takes better account of the context
where an aspect occurs.

In an ablation study, the BSp (Base deep learn‐
ing model), without the LLA algorithm (CL approach)
in the same evaluation scenario asBSpLLA, as shown
in Table 6. The BSpLLA results were better, as an
in luence of the CL approach. This experimentation
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Table 6. Ablation averaged experimental results
betweenBSpLLA andBSp.

Model LLA BSpLLA

Accr 0.64 0.80
F1 0.52 0.73
Kappa 0.39 0.62
OvrcForgtt 0.52 0.73

Figure 3. Ranking models with Holm’s test with a
significance level of 0.05 for F‐measure

Figure 4. Ranking models with Holm’s test with a
significance level of 0.05 for Kappa measure

shows that the LLA algorithm cannot be eliminated
without loss of effectiveness.

The Friedman test and Holm’s method, for the
post‐hoc analysis [36], were used to verifying signif‐
icant differences between the models by measuring
Accuracy, Kappa, and F1 (see Figures 3 and 4 ). The
experiments show that BSpLLA has no signi icant
differences from other SOTA approaches.

The execution time of the methods was estimated
during each test. The training time of BERT‐based
methods (24 hours’ average) was longer than Word
Embedding‐ based methods (three hours’ average).
This time is associated with the complex transformer
architecture and the attention mechanism learning
process.

The experimentations show that a less complex
architecture such as BSpLLA obtains better results
than others (i.e., AELLA, AEAR1). The difference is
that in BSpLLA the input to the BERT model is the
context (words in a sentence) and the aspect. The
successful results are due to three main character‐
istics: the BERT is the base model inBSpLLA and
has an attention mechanism with weights obtained in
huge datasets and the LLA´s regularization approach
to avoid changing the values of the weights in a CL
process.

3.7. The BSpLLA Evaluation with a State‐of‐the‐art
Recent Proposal

The proposal presented in [13] constitutes one of
the most recent state‐of‐the‐art proposals. In these, a

Table 7. Results in [13] againstBSpLLA.

Modelo CLASSIC [13] BSpLLA

Accr 0.90 0.80
F1 0.85 0.73

model is proposed that follows the Learning by Con‐
trast strategy [4] and is named CLASSIC, modifying
the BERT architecture at two points (i.e., adding two
fully connected network layers) and only adjusting the
weights of these new components during training.

According to the authors of CLASSIC, this model
performs better than LLA (see Table 7). But when the
model proposal and their evaluationmethodwas ana‐
lyzed, notable differences were observed concerning
those used in LLA model:
‐ Experimentation with 19 datasets (13 more than
those used inBSpLLA).

‐ In the CLASSIC model training, the process took
ive datasets randomly to estimate the experimental
results. But these ive datasets are not named in [13]
and cannot be compared with those of LLA model
training.

‐ In [13] the number of datasets to train the model
(i.e., in a CL framework)was not declared. This value
will determine if the sample size is signi icant.

‐ There are different adjustments to the CLASSIC neu‐
ral network hyperparameters in the learning pro‐
cess, for instance, the number of 30 epochs for
the electrical device datasets and 10 for the laptop
and restaurant review dataset, as a consequence of
instances number.

‐ For the all datasets, a similar hyperparameters (e.g.,
epoch, batch, etc.) was used by the LLAmodel in the
training process.

‐ A different form of input to the BERT architecture
was found by code analysis of the CLASSIC model. It
is the opposite of that used in LLA input.

‐ To estimate catastrophic forgetting, CLASSIC was
used in the measure proposed in [3], which differs
from that used in LLA model experimentation.

‐ In CLASSIC, there is no semantic closeness analysis
of the datasets. It does not determine if the learning
and the inal results are on close datasets or not.
The generalization (i.e., same neural network

hyperparameters for all datasets) is relevant in a
CL model training framework (e.g., a homogeneous
trainingprocess in incremental learning). Anotherdis‐
advantage of con iguration changes is the need to dis‐
tinguish the type of datasets to adjust the settings (e.g.,
epochs number) because it is necessary to use another
model or external tool for this purpose (i.e., increased
computational cost in training time and memory).

Based on these differences, a comparative exper‐
iment was realized for both models. The evaluated
criteria were:
1) A comparison of both models (i.e., CLASSIC and

BSpLLA) on the same training and test datasets
for Continuous Learning (The datasets used by
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Table 8. The experiment results to estimate the best
performance between [13] andBSpLLA.

Experiment name CLASSIC BSpLLA

Same-phd 0.311 0.316
Same-parameters 0.182 0.316

Invert-input 0.311 0.316

the BSpLLA model training process, because they
have a semantic closeness study).

2) Use of the same measure to estimate catastrophic
forgetting and proposed in CLASSIC.

3) Use of the same hyperparameters for all datasets
as inBSpLLA.

4) The model classi ication effectivity was estimated
based on the averaged values of the F1‐macro.
In the experimentwith the samedataset (as shown

Table 8 for “Same‐PhD” results), the value of the
BSpLLA model did not obtain a signi icant differ‐
ence (i.e., BSpLLA has a 0.005). However, during this
experiment, the CLASSIC model maintained different
hyperparameter values for datasets (e.g., the dataset
of the electronic device has a higher epoch and batch
than the laptop or restaurant dataset).

The hyperparameter values in luence the results
because the model can learn better by performing a
more extensive search for better solutions (depending
on the type of dataset or domain). It is a disadvan‐
tage of the CLASSICmodel concerning theBSpLLA, as
explained above.

The CLASSIC disadvantages to reducing catas‐
trophic forgetting are shownby the result of the exper‐
iment where the same hyperparameters were kept
for all datasets (See Table 8 for “Same‐parameters”
results). The difference between the results of these
modelswas0.134, and theCLASSICmodel is not better
than LLA because it does not generalize the hyperpa‐
rameters for all sets of variables and does not selec‐
tively preserve neural network weights during CL (as
BSpLLA).

The experiment value “Invert‐input” obtains a sim‐
ilar outcome to the experiment named “Same‐PhD”.
Because in “Invert‐input” the neural network hyper‐
parameters as in CLASSIC have been maintained. The
main difference in “Invert‐input” is that the form
of representation of the input data to the CLASSIC
model was similar to the LLA training. This exper‐
iment shows that this modi ication did not have a
results impact.

Finally, the results of the experiments (Table 8)
shown that the BSpLLA model has a positive in lu‐
ence on avoiding catastrophic forgetting and the
inal results because it avoids changes in the neural
network weights value during the calculation of the
gradient descent. This conclusion was established by
analyzing Equation 2. In this equation, terms such as
Ωµ

k allow to compensate or avoid weight changes on
Gradient Descent.

Although omission or forgetting occurs when dif‐
ferent instances appear in new domains, weight

compensation is fundamental in a CLprocess. It allows
previous knowledge not to be complete or partially
modi ied.

The adjustment of theweights of a part of theBERT
neural network (as was proposed by CLASSIC) is not
better than a CL model based on regularization (i.e.,
BSpLLA),which preserves theweight values in the last
layer associatedwith the aspect classi ication process.

In CLASSIC, two new components were added to
the BERT network architecture, only in a speci ic part.
Therefore, the neural network weight updating only
in these components decreases computational cost
in terms of execution time in training. However, this
model has no compensation or regularization during
neural network weight updating.

Models with BERT’s output as their input or
base model perform better than those that use Word
Embeddings. This result is similar to those reported in
SOTA [7,8] and is associatedwith the architecture that
follows the BERT model and its learning process.

Results obtained by applying the Friedman and
Holm’s tests do not show signi icant differences from
other SOTA approaches. However, the results validate
the selection of the SI approach as a catastrophic for‐
getting reducingmechanismand it has a lower compu‐
tational cost than EwC [25]. The SI weight importance
update method during SGD is part ofBSpLLA.

Although the experimentation did not evaluate
models that follow the few‐shot learning approach,
the BSpLLA outperformed other SOTA models with
high classi ication measure values as a result of their
architecture and main components.

4. Conclusion
In state‐of‐art, several sentiment analysis models

are trained on a single domain (i.e., restaurant or hotel
reviews) or dataset. The effectiveness decreaseswhen
these models learn patterns in a new domain in a CL
framework. This paper presents a novel model that
combines an attentional deep learning approach with
aCLmodel to classify aspects in the sentiment analysis
context. This model allows improvement of products
and services (as part of information retrieval systems)
in areas such as tourism, government, and health.

The model learning process uses data from
multiple domains, and retains common information
patterns for a new domain with relevant results
(F1‐macro = 73%). The input layer was the pretrained
model BERT. The CL approach was named Lifelong
Learning of Aspects (LLA) with a regularization
approach. The evaluation results are better than those
obtained by the existing regularization approaches
such as EWC, AR1, and CLASSIC.

The LLA reduces catastrophic forgetting in the
multi‐domain context, and it is a novel approach in the
ABSA context. Although the dataset’s order in luence
on the learning process has been evaluated, it is nec‐
essary to deepen these experiments.

There are few studies on the linguistic rule’s effec‐
tiveness in classifying aspects of the Sentiment Analy‐
sis task. However, the use of the linguistic rules, in the
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deep and Continual Learning models combinations, is
an interesting methodology that could be evaluated
given the small number of labeled datasets inmultiple
domains. The future work areas will be extending our
approach to other language models such as Spanish
and combining it with linguistic rules and few‐shot
learning strategies.

Notes
1https://amazon.com/
2https://alibaba.com/
3https://spacy.io
4https://huggingface.co/models
5Follow a uniform distributionU(−1, 1) at the time of assigning

the values to the initial weights of the network
6https://pypi.org/project/transformers/2.1.0/
7https://github.com/dionis/ABSA‐DeepMultidomain/
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