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Abstract:
The widespread adoption of Electronic Healthcare
Records has resulted in an abundance of healthcare
data. This data holds significant potential for improving
healthcare services by providing valuable clinical
insights and enhancing clinical decision‐making. This
paper presents a patient classification methodology
that utilizes a multiclass and multilabel diagnostic
approach to predict the patient’s clinical class. The
proposed model effectively handles comorbidities while
maintaining a high level of accuracy. The implementation
leverages the MIMIC III database as a data source to
create a phenotyping dataset and train the models.
Various machine learning models are employed in this
study. Notably, the natural language processing‐based
One‐Vs‐Rest classifier achieves the best classification
results, maintaining accuracy and F1 scores even with
a large number of classes. The patient diagnostic
class prediction model, based on the International
Classification of Diseases 9, showcased in this paper,
has broad applications in diagnostic support, treatment
prediction, clinical assistance, recommender systems,
clinical decision support systems, and clinical knowledge
discovery engines.

Keywords: multiclass patient classification, multi‐label
patient classification, electronic healthcare records,
MIMIC III, natural language processing, deep learning

1. Introduction
Electronic Health Records (EHR) contain a wealth

of data about patients, including personal details,
medical history, lab reports, diagnostics, and clini‐
cal notes from hospital stays [1]. Extracting accurate
contextual information and knowledge from EHRs is
crucial due to the grouping and linkage of data with
previous healthcare events [35]. EHR data comprises
both structured and unstructured types. Structured
data typically includes personal details and diagnos‐
tic/clinical codes, while unstructured data encom‐
passes treatment courses, clinician notes, and lab
reports.

Clinical codes in EHRs represent procedures and
diagnoses associated with a patient’s stay and are
used for reporting,management, and billing purposes.
They serve as practical sources of information inmon‐
itoring and research applications, following standards
such as ICPC [5] and ICD [2–4].

The transition from ICD‐9 to ICD‐10 has signif‐
icantly increased the complexity of coding systems,
making it challenging for caregivers or clinical coders
to assign codes. Existing applications have focused
mainly on code system browsability but offer lim‐
ited assistance in coding [6]. Computer‐assisted cod‐
ing systems support caregivers by suggesting codes,
providing relevant information, and, in some cases,
automatically assigning codes without human inter‐
vention [6].

Many clinical coding systems operate in controlled
settings, receiving information from limited sources
andpredicting a restricted set of codes [7].While some
of these approaches perform well, they are difϐicult
to adapt to different environments or scale for larger
datasets. Recent research has explored the use of real‐
world databases, such asMIMIC III, to overcome these
limitations [8].

Retrieving information from structured data is rel‐
atively easier compared to unstructured data. How‐
ever, extracting knowledge from structured data alone
may yield limited insights and result in inaccuracies
and false predictions. Unstructured data, such as clini‐
cal notes and lab reports in EHRs, have the potential to
provide more accurate knowledge if effectively lever‐
aged. Manually labeling a vast volume of unstructured
data from various sources is time‐consuming and
impractical. Automated information retrieval using
Natural Language Processing (NLP) offers a more efϐi‐
cient and scalable alternative tomanualmethods [36].

Identifying groups of individualswith shared char‐
acteristics can greatly beneϐit the healthcare industry.
These ϐindings can be utilized in various secondary
analyses, including computational phenotyping for
patient cohort identiϐication, clinical decision support,
evidence‐based treatment, and research. This paper
presents the implementation of multiclass patient
classiϐication using different machine and deep learn‐
ing models on structured data. The models utilize
libraries such as sklearn, Keras, and TensorFlow APIs,
with MIMIC III serving as the data source. The system
automatically assigns codes to patients based on clini‐
cal diagnoses. The paper also addresses unstructured
data by performing multi‐label classiϐication using
NLPmodels, speciϐically employing a one‐vs‐rest clas‐
siϐier.
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The paper is organized into six sections. Sec‐
tions 1 and 2 provide an introduction and literature
review, respectively. Section 3 describes the design
methodology employed, while Section 4 focuses on
implementation details. Results and conclusions are
presented in Sections 5 and 6, respectively.

2. Literature Review

Machine learning and deep learning have gained
signiϐicant attention in recent years, leading to exten‐
sive research in this ϐield. However, most of the work
in automated clinical code generation has been con‐
ducted on limited dummy data [9, 10, 39, 62]. To
address this, recent techniques have been developed
for layered prediction and classiϐication of real‐world
datasets, leveraging the sparsity of output codes [9,
10, 39]. The MIMIC database is commonly used as
a benchmark by researchers to evaluate new tech‐
nologies [8]. For instance, Perotte et al utilized the
MIMIC II database to predict higher‐level diagnostic
codes, which was further extended to predict com‐
plete codes [9]. Other researchers have focused on
predicting ICD 10 PCS codes from clinical discharge
summaries [10].

While these methodologies depend on accessi‐
ble and comprehensive clinical discharge reports,
many clinical summaries still lack important infor‐
mation, and different service providers and hospitals
may have varying styles of maintaining details. To
compensate for missing information, techniques have
been proposed for predicting and identifying patient
cohorts based on high‐throughput phenotyping [3,11,
12,40].

A uniϐied data view has been achieved by map‐
ping structured and unstructured data to standard‐
ized UMLS [12, 13, 37, 38]. Although this approach
is powerful for data conversion, it introduces depen‐
dencies on the used ontologies, requiring substantial
efforts to map local ontologies in clinical notes or
terms [14, 41]. Unstructured data sources can also be
converted or mapped using a bag‐of‐words represen‐
tation, either through early or late data integration
from the source itself [15]. The density of information
features from different sources can create stronger or
weaker structured representations. Directly feeding
data from the source to themeta‐classiϐier often yields
better results, but this may result in data loss due to a
single data point [60].

A recent study introduced a deep neural network
with stacked auto‐encoders, known as “deep patient,”
to create vector representations of patients [16]. The
structured and unstructured data sources were pre‐
processed using subject modeling for data general‐
ization [17]. This data representation method can be
applied to diverse medical applications, focusing only
on the most interesting features [42,61].

For limited data, algorithmic performance can
be improved using feature selection algorithms [18,
19, 43]. In classiϐication tasks, various approaches
are available to improve ϐitness by ranking features

towards a class. One such method aims to ϐind a nom‐
inal set of features by reducing redundancies among
them [20]. This approach selects features strongly
correlated with optimizing the classiϐication task.
However, relying solely on strongly correlated fea‐
tures may not contribute to accurate predictions [21].

While feature‐based redundancy calculation
methods can address these issues, they may not yield
signiϐicant results when applied to a large number
of classes or features [22]. Another feature selection
technique, the Markov blanket model, offers good
results for feature selection. This method utilizes a
Bayesian network and provides efϐicient solutions.

Noteworthy patient classiϐication techniques
found during the survey include disease phenotypes
in EHRs using machine learning [28], an algorithm
to recognize patients with Autism Spectrum
Disorder [29], and learning from heterogeneous
temporal data [30].

Additionally, “Interpretable patient classiϐication
using integratedpatient similarity networks” presents
a novel approach to classiϐication using clinical pre‐
dictors based on genomic data [31]. Pierre Courtio
et al. demonstrated the use of patient classiϐication for
predicting outcomes in “Deep learning‐based classiϐi‐
cation ofmesothelioma improves prediction of patient
outcome” [32].

3. Methodology
In this study, the MIMIC‐III database was uti‐

lized as the primary source of data. The MIMIC‐
III, short for Medical Information Mart for Intensive
Care III, is a publicly available clinical database [25].
It contains comprehensive information about cancer
patientswhowere hospitalized in the critical care unit
at the Beth Israel Deaconess Medical Center between
2001 and 2012. The MIMIC‐III database encompasses
healthcare records of approximately 40,000 patients,
including their basic demographic information, diag‐
nostics, vital signs, clinical procedures, laboratory test
results, caregiver notes, medications, and mortality
data. This extensive dataset inMIMIC‐III supports var‐
ious types of studies, ranging from the development of
decision support systems to electronic tool advance‐
ments in healthcare.

For this particular study, we utilized the MIMIC‐III
database as an electronic healthcare record to classify
cancer patients based on the provided diagnostics.
This classiϐication can be further employed to assist
doctors in predicting the most appropriate course of
action for each patient.

The MIMIC‐III database comprises 40 tables with
534 columns and nearly 720 million records. These
tables and records are interconnected using identi‐
ϐiers such as subject ID and admission ID. It is worth
noting that all datawithin the database have been fully
de‐identiϐied to ensure the preservation of patient pri‐
vacy and conϐidentiality.
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Figure 1.MIMIC III schema details

Due to the enormous size of the data in theMIMIC‐
III database, interpreting and understanding the data
posed a signiϐicant challenge. The database contained
data distributed across various tables, as illustrated
in Figure 1. To facilitate data analysis, the MIMIC‐III
database was initially imported into PostgreSQL. An
interface to the databasewas developed to gain a com‐
prehensive understanding of the MIMIC‐III schema.
Figures 2 and 3 depict the interface designed to inter‐
act with the MIMIC‐III database.

For a visual demonstration of the graphical user
interface (GUI), a video showcasing its functionality is
available on YouTube via the following link: https://
www.youtube.com/watch?v=9eNtfb3oR‐E&lc=UgyH
ko8pYeyGp9H‐DHp4AaABAg. Additionally, the front‐
end design code for the interface can be downloaded
from GitHub using the following link: https://github.c
om/gvpaliwal/Mimic‐III.

For analysis and prediction, the data primarily
selected from theMIMIC III datasetwas obtained from
ϐive main tables: admissions, drgcodes, diagnoses_icd,
d_icd_diagnoses, and noteevents. These tables pro‐
vided essential information for the study, including
patient admissions details, disease diagnostics in ICD9
codes, and clinical notes.

To address the issue of data imbalance, various
data preprocessing and selection techniques were
employed. The ϐirst four tables, namely admissions,
drgcodes, diagnoses_icd, and d_icd_diagnoses, pro‐
vided structured data that could be preprocessed and
utilized. These tables contained patient details, dis‐
ease diagnostics in the form of ICD9 codes, and the
diagnosis code associated with the disease for which
the patient was admitted or billed. By considering the
diagnosis code as the class label for the patient, the
dataset enabled the application of both supervised
and unsupervised machine learning techniques.

On the other hand, the noteevents table contained
unstructured text data in the form of clinical notes.
This text data was suitable for applying natural lan‐
guage processing (NLP)models. Themain focus of the
study was to assign single or multiple class labels to a
patient based on the diagnostics and clinical notes.

The study aimed to develop a comprehensive
approach to patient classiϐication and prediction by
combining the structured and unstructured data from
these tables.

4. Implementation Details
Machine Learning in healthcare has demonstrated

its power in sorting and classifying health data, as
well as accelerating doctors’ clinical decision‐making
process by providing predictions that can save lives
and simplify tasks. For the task of Patient Classiϐica‐
tion/Cohort Identiϐication, our primary focus was on
utilizing ML/DL models that have shown promising
accuracy when applied to healthcare data for similar
tasks.

In this section, we will present implementa‐
tions of multiclass patient classiϐication using vari‐
ous machine and deep learning models speciϐically
designed for structured data. These models aim to
assign codes to patients based on their clinical diagno‐
sis automatically. Furthermore, we will delve into the
realm of unstructured data and employ Natural Lan‐
guageProcessing (NLP)models to performmulti‐label
classiϐication. This approach enables us to extract
meaningful information from clinical notes and make
predictions based on the unstructured data.

By combining the strengths of both structured and
unstructured data analysis, we aim to develop a com‐
prehensive framework for patient classiϐication and
prediction in healthcare settings.
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Figure 2.MIMIC III database front end

Figure 3.MIMIC III database front end

4.1. Data Preprocessing

In the initial dataset extracted from the MIMIC III
database, there were 651,047 records corresponding
to 58,976 admissions and 46,520 unique patient stays.
The dataset included a total of 6,985 unique ICD‐9
diagnostic codes. To simplify the analysis, these diag‐
nostic codes were aggregated into 891 ICD‐9 diagnos‐
tic block chapter codes based on the descriptions pro‐
vided in the database. These diagnostic block chapter
codes were then used to predict the class or assign
labels to the patients.

As a preprocessing step, we removed the
diagnostic block chapter codes related to
external injuries, poisoning, or any supplementary
classiϐications, as these causes are event‐driven and
not suitable for analytics. After this removal, we were
left with a total of 625 ICD‐9 diagnostic block chapter
codes.

Due to the large number of classes, accurately
determining the class using any predictive model
became challenging. Additionally, the data remained
skewed and unbalanced due to the varying frequen‐
cies of different diseases. To address this issue, we
selected speciϐic datasets fromhospital stays based on
the occurrence frequencies of the ICD‐9 block chapter
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codes. This approach allowed us to create balanced
datasets for training and evaluation purposes.

Table 1 summarizes the occurrence frequencies of
different ICD‐9 diagnostic codes, which inϐluenced the
selection of datasets for analysis.

After applying the designated thresholds to select
hospital stays with different frequent chapter codes,
we obtained groups of hospital stays with varying
frequencies. The most frequent chapter code had an
occurrence frequency of 21,329. We then linked the
HCFA drug codes from the drgcodes table to the
selected hospital stays, which represented the drugs
for which the patients were treated and billed.

The noteevents table in the MIMIC III database
contained a wealth of unstructured text information,
including various clinical notes such as demographic
details, services provided, allergies, chief complaint,
medical history, social history, physical exam ϐind‐
ings, pathology and scan reports, medication details,
discharge information, and follow‐up instructions. To
clean the data, we removed stop words and spe‐
cial characters and converted the text to lowercase,
preparing it for further analysis.

After the data preprocessing steps, we ended up
with fourdataset groups, each containing recordswith
speciϐic ICD‐9 chapter frequencies. These groupswere
suitable for various predictive analytics tasks. The
next step was to split the data into train and test sets
and apply different learning models for analysis and
prediction purposes.
4.2. Model Implementation on Structured Data

4.2.1. K‐nearest Neighbor

The k‐nearest neighbors (KNN) algorithm is a
supervised classiϐication method that utilises proxim‐
ity to make predictions about a given data point. It
can be applied for both classiϐication and regression
tasks. In our study, we employed the KNN algorithm as
a classiϐication model to predict and identify patients
with similar characteristics based on their diagnostic
information [44–46].

To implement the KNN algorithm, we utilized
the KNeighborsClassiϐier and RadiusNeighborsClassi‐
ϐier with a speciϐied number of neighbors set to 25
for KNeighborsClassiϐier and the default radius for
RadiusNeighborsClassiϐier. The distance weight func‐
tionwas used in the prediction process. The algorithm
parameter was set to “auto”, allowing the model to
automatically select the most suitable algorithm for
computing the nearest neighbors based on the pro‐
vided values.We experimentedwith different distance
metrics for computation but ultimately found that the
default metric, Minkowski, yielded the best results, so
we utilised it in our implementation.
4.2.2. Naive Bayes Classifier

The Naive Bayes (NB) algorithm is a classiϐication
method that assumes independence between features
and utilizes probability theory to make predictions. It
has been widely used in various medical applications
and has shown good performance [59]. Although the
independence assumptions may not always hold true

in reality, NaiveBayes can still provide effective results
in many medical scenarios [47,50].

In our study, we trained the Naive Bayes algorithm
in a supervised learning setting. We implemented
three different variants of the NB classiϐier: Gaus‐
sianNB, CategoricalNB, and MultinomialNB. The prior
probabilities in the model were set to none, and the
variance smoothing was set to the default value. Prior
to feeding the data into the Naive Bayes classiϐier,
we applied min‐max scaling to normalize the data.
The additive smoothing parameter, also known as the
alpha value, was set to 1 in our implementation.
4.2.3. Decision Tree Classifier

The decision tree algorithm is a supervised learn‐
ing approach that can be used for both regression
and classiϐication tasks. It employs a greedy search
strategy to ϐind the best split points in a tree‐like struc‐
ture. The decision tree algorithm follows a divide and
conquer methodology, recursively splitting the data
until most or all records are classiϐied under different
labels [49].

In our study, we utilised the decision tree algo‐
rithm along with cross‐validation to evaluate how
well the model ϐits the data. Additionally, we explored
the random forest method, which improves accuracy
by combining multiple decision trees. Random forest
classiϐiers are particularly effective when the individ‐
ual trees are uncorrelated [48]. Decision trees are
highly interpretable, making them popular in health‐
care analytics (ch8dt). They can handle complex data
patterns and serve as the foundation for ensemble
models [51,52].

We implemented several decision tree models
using scikit‐learn, including Decision Tree Classiϐier,
AdaBoost Classiϐier, Random Forest Classiϐier, Bag‐
ging Classiϐier, and Gradient Boosting Classiϐier. The
number of trees or estimators in the random forest
was set to 100. Due to computational limitations, we
set the maximum depth of the trees to 15. The quality
of a split was measured using the Gini criterion, and
the remaining parameters were kept as default or set
to “auto”.
4.2.4. Support Vector Machines

Support Vector Machines (SVMs) are a reliable
classiϐication method that can increase a model’s pre‐
dictive accuracy without overϐitting the training set.
They are particularly effective when dealing with
datasets that have many predictors. In the context of
electronic health record (EHR) data, SVM‐basedmeth‐
ods have been utilised in the literature to address
classiϐication tasks and have been shown to provide
quick, accurate, and reliable results, especially when
dealing with imbalanced classes [53,54].

In our study, we implemented the support vec‐
tor classiϐier using different kernels, including linear,
polynomial, and radial basis function (rbf) kernels.
The regularization parameter (C) was set to 1, which
controls the trade‐off between achieving a low train‐
ing error and allowing for a larger margin.
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Table 1. ICD‐9 Diagnostic codes occurrence frequency

Sr. No. Item Occurrence frequency Number of Items
1

ICD‐9 diagnostic codes
>1000 98

2 1000 to 100 557
3 <100 3970

ICD‐9 block Chapter code
>15000 6

4 >1000 109
5 1000 to 100 201
6 <100 315

For the polynomial kernel, the degree of the ker‐
nel function was limited to 5. Other parameters such
as the kernel coefϐicient, kernel function independent
term, shrinking heuristic, probability estimates, and
tolerance valueswere set to their default or “auto” val‐
ues. These settings were chosen to provide a balanced
and effective classiϐication model.
4.2.5. Deep Neural Network

Artiϐicial Neural Networks (ANNs) are a subset
of machine learning techniques that can be powerful
tools in healthcare diagnosis and analytics, leading
to improved healthcare delivery and reduced costs
[55,56]. In our study, we employed amulticlass neural
network classiϐier to categorise and group data effec‐
tively.

Implementing multiclass neural networks can be
challenging due to the nonlinear nature of class labels.
To address this, we represented the labels as binary
vectors of length K, where a 1 at the kth position
corresponds to a label of k. An activation function
was applied at the output to learn the output vector.
This approach allowedus to generate valid probability
distributions by summing over all the values of k to
normalize the likelihood [26].

We used a traditional training methodology to
train the model but with an objective gradient speciϐi‐
cally designed for multinomial logistic regression [33,
34]. We experimented with various combinations of
parameters to ϐine‐tune the model for better results.

The tuned deep learning neural network architec‐
ture utilised a baseline sequential model with dense
layers. The model employed the Rectiϐied Linear Unit
(relu) activation function for hidden layers and the
softmax activation function for the output layer. Cate‐
gorical cross‐entropy was used as the loss function to
mitigate training losses, with the Adam optimiser for
model optimisation. The evaluation metric used was
accuracy. The model was trained using 10‐fold cross‐
validation with 200 epochs.

To assess the performance of the classiϐier model,
we calculated the baseline accuracy, which serves as a
benchmark for comparison.
4.2.6. NLP‐based Models

Natural Language Processing (NLP) is a ϐield of
study that enables computers tounderstandand inter‐
pret human language, both spoken and written.

By combining machine learning, statistics, deep
learning models, and rule‐based computational lin‐
guistics modelling, NLP allows computers to process
and analyse large volumes of narrative information,
such as clinical notes in healthcare systems. This is
particularly important because clinical notes are often
stored in non‐standardized and unstructured formats,
making it challenging to extract meaningful insights
from them.

In our implementation,weutilisedNLP techniques
to capture and analyse unstructured information from
clinical notes. We employed the MultiLabelBinarizer
from the sklearn library to transform the clinical notes
into target variables. These target variables were then
used to calculate the term frequency‐inverse docu‐
ment frequency (tf‐idf) vector values,which represent
the importance of words in the clinical notes. We set a
maximum of 10,000 features for the tf‐idf representa‐
tion.

For classiϐication, we used the OneVsRestClassi‐
ϐier, which allows us to handle multi‐label classiϐica‐
tion tasks. This classiϐier trains multiple binary classi‐
ϐiers, each treating one label as the positive class and
the rest as thenegative class.Weevaluated themodel’s
performance using the F1 score, which is ameasure of
the model’s accuracy in classifying multiple labels.

By employing NLP techniques, we aimed to trans‐
form the unstructured information in clinical notes
into a format that can be understood and utilised by
a decision support system, enabling more effective
healthcare analytics and decision‐making.

5. Results and Discussion
The machine learning and NLP implementations

are done on 4 frequency‐based selected datasets.
The Naive Bayes classiϐiers’ performancewasweakest
among the implemented models on the given data
set. The deep learning and decision trees models per‐
formed reasonably well with fewer classes but failed
to maintain accuracy when the number of classes was
increased. Table 2 shows the detailed performance
measure results for different models.

The NLP‐based model provided the best scores in
diagnostic label prediction. The information losswhile
training the model was calculated as 0.005. The true
positive rate for themodelwas calculated to be around
99%. Figures 4 and 5 can be referred to for the com‐
parative analysis of accuracies and F1 scores of differ‐
ent models, respectively. Figure 6 shows a prediction
screenshot of an NLP‐based multi‐label classiϐier.
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Table 2.Model performance measure results

Sr. N. Learning
Model

Implemented
Variant

Frequency of
chapter codes

No. of Chapter
codes

No. of records Performance
Measure

1 K‐Nearest
neighbor

K Neighbors
Classiϐier

>15000 6 42165 Accuracy:
96.44 , F1
score: 0.93

>1000 109 54903 Accuracy:
73.21 , F1
score: 0.62

1000 to 100 310 56059 Accuracy:
23.66 , F1
score: 0.42

<100 625 56202 Accuracy:
10.01 , F1
score: 0.21

Radius
Neighbors
Classiϐier

>15000 6 42165 Accuracy:
97.31, F1
score: 0.94

>1000 109 54903 Accuracy:
78.56, F1
score: 0.68

1000 to 100 310 56059 Accuracy:
26.41, F1
score: 0.41

<100 625 56202 Accuracy:
18.66 , F1
score: 0.22

2 Naive Bayes
classiϐier

Gaussian NB

>15000 6 42165 Accuracy:
76.66 , F1
score: 0.65

>1000 109 54903 Accuracy:
26.48 , F1
score: 0.51

1000 to 100 310 56059 Accuracy:
11.25 , F1
score: 0.23

<100 625 56202 Accuracy: 9.07,
F1 score: 0.18

Categorical NB

>15000 6 42165 Accuracy:
78.22, F1
score: 0.69

>1000 109 54903 Accuracy:
43.55, F1
score: 0.44

1000 to 100 310 56059 Accuracy:
18.64, F1
score: 0.26

<100 625 56202 Accuracy:
16.11, F1
score: 0.22

Multinomial
NB

>15000 6 42165 Accuracy:
79.21, F1
score: 0.72

>1000 109 54903 Accuracy:
44.00, F1
score: 0.43

1000 to 100 310 56059 Accuracy:
17.88, F1
score: 0.25

<100 625 56202 Accuracy:
16.01 , F1
score: 0.22
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Table 2. Continued

Sr. N. Learning
Model

Implemented
Variant

Frequency of
chapter codes

No. of Chapter
codes

No. of records Performance
Measure

3 Decision Tree
classiϐier

Decision Tree
Classiϐier

>15000 6 42165 Accuracy:
78.42, F1
score: 0.80

>1000 109 54903 Accuracy:
25.48, F1
score: 0.51

1000 to 100 310 56059 Accuracy:
13.45, F1
score: 0.13

<100 625 56202 Accuracy:
9.60%, F1
score: 0.12

Ada Boost
Classiϐier

>15000 6 42165 Accuracy:
78.22, F1
score: 0.80

>1000 109 54903 Accuracy:
23.44, F1
score: 0.48

1000 to 100 310 56059 Accuracy:
12.56, F1
score: 0.21

<100 625 56202 Accuracy:
10.23, F1
score: 0.20

Random Forest
Classiϐier

>15000 6 42165 Accuracy:
98.64, F1
score: 0.96

>1000 109 54903 Accuracy:
86.55, F1
score: 0.91

1000 to 100 310 56059 Accuracy:
73.23, F1
score: 0.86

<100 625 56202 Accuracy:
25.60, F1
score: 0.59

Bagging
Classiϐier

>15000 6 42165 Accuracy:
96.75, F1
score: 0.97

>1000 109 54903 Accuracy:
86.49, F1
score: 0.89

1000 to 100 310 56059 Accuracy:
72.59, F1
score: 0.72

<100 625 56202 Accuracy:
24.23, F1
score: 0.62

Gradient
Boosting
Classiϐier

>15000 6 42165 Accuracy:
96.87, F1
score: 0.97

>1000 109 54903 Accuracy:
87.54, F1
score: 0.90

1000 to 100 310 56059 Accuracy:
70.27, F1
score: 0.73

<100 625 56202 Accuracy:
22.45, F1
score: 0.64
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Table 2. Continued

4 Support Vector
Machines

linear kernel

>15000 6 42165 Accuracy:
64.23, F1
score: 0.51

>1000 109 54903 Accuracy:
16.21, F1
score: 0.23

1000 to 100 310 56059 Accuracy:
11.12, F1
score: 0.21

<100 625 56202 Accuracy: 9.54,
F1 score: 0.19

polynomial
kernel

>15000 6 42165 Accuracy:
45.21, F1
score: 0.41

>1000 109 54903 Accuracy:
12.87, F1
score: 0.15

1000 to 100 310 56059 Accuracy: 6.23,
F1 score: 0.12

<100 625 56202 Accuracy: 3.06,
F1 score: 0.11

radial basis
function kernel

>15000 6 42165 Accuracy:
63.68, F1
score: 0.50

>1000 109 54903 Accuracy:
17.11, F1
score: 0.24

1000 to 100 310 56059 Accuracy:
11.21, F1
score: 0.21

<100 625 56202 Accuracy: 9.64,
F1 score: 0.19

5 Deep Neural
Network

Artiϐicial
neural network

>15000 6 42165 Accuracy:
98.86, F1
score: 0.96

>1000 109 54903 Accuracy:
83.45, F1
score: 0.92

1000 to 100 310 56059 Accuracy:
74.03 , F1
score: 0.84

<100 625 56202 Accuracy:
63.54, F1
score: 0.76

6
NLP based
Logistic

Regression
One Vs Rest
Classiϐier

>15000 6 42165 Accuracy:
98.68, F1 score:
0.98, TP: 100

>1000 109 54903 Accuracy:
87.23, F1 score:
0.96, TP: 99.6

1000 to 100 310 56059 Accuracy:
86.42, F1 score:
0.92, TP: 99.4

<100 625 56202 Accuracy:
82.86, F1 score:
0.89, TP: 98.8

To analyze the relation between accuracy and
records, a less formal approach was used to measure
the strength of the relationship between them. Spear‐
man’s rank correlation coefϐicient testing is applied to

test the hypothesis of association. The pairs of obser‐
vations have been randomly selected and ranks are
assigned within the sample.
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Figure 4. Different machine learning model accuracies

Figure 5. Different machine learning model F1 scores

Figure 6. NLP based multi‐label classification
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Table 3. t statistics analysis details for spearman’s rank
correlation hypothesis testing

Parameter Value
Correlation Coefϐicient (rs) 0.983884884
Sample size (n) 10
degree of freedom (df) = (n−2) 8
t statistic 15.56375323
level of Signiϐicance (𝛼) 0.05
t critical value 2.306004135
p value 2.89393E‐07

This test makes no assumptions about the proba‐
bility relation between two variables. 𝐻𝑜: there is no
relationship between accuracy and records. 𝐻1: there
is a relationship between accuracy and records. The
details of the analysis are shown in Table 3.

As per the results obtained from spearman’s rank
correlation hypothesis testing the p value is less than
the alpha value. Hence, H0 is rejected i.e. there is a rela‐
tionship found between accuracy and records. Using
the test result, we can conclude that there exists a
relationship between accuracy and records prediction
on the given data considering the number of classes to
be constant.

6. Conclusion and Future Direction
The presented patient classiϐication model holds

great potential for the healthcare system. The superior
performance of the NLP‐based multi‐label prediction
models suggests their effectiveness in accurately pre‐
dicting a patient’s class based on the provided diag‐
nostics. With a larger number of records available for
training the model, it is expected that the prediction
accuracies of these models will improve even further.

This model’s applications are wide‐ranging and
can greatly beneϐit various aspects of the healthcare
system. Some potential applications include diag‐
nostic support, line of treatment prediction, clini‐
cal assistance, recommender systems, clinical deci‐
sion support systems, and clinical knowledge discov‐
ery engines. These predictions can provide valuable
insights and assist healthcare professionals in making
informeddecisions, thereby improving the quality and
efϐiciency of patient care.

More advanced NLP‐based methods can
be explored and implemented to enhance the
predictions’ performance. These advancements may
include incorporating techniques such as transfer
learning, contextual embeddings, or attention
mechanisms, which have shown promising results in
natural language processing tasks.

The statistical test applied to assess the model
accuracy clearly indicates that as the number of
records increases, the accuracy of the model is
expected to improve. This suggests that collecting and
incorporating more patient data into the training pro‐
cess will likely yield more accurate predictions.

It is worth noting that the data used for training
the model, particularly when dealing with a larger
number of diagnostic chapter codes, may be skewed
due to uneven frequency of disease occurrences. How‐
ever, the NLP‐based models demonstrated the ability
to maintain accuracy and F1 scores, indicating their
robustness in handling such imbalances.

In the future, incorporating additional details
available in the MIMIC III database can further
enhance the prediction accuracies. These additional
details may include patient demographics, medical
history, laboratory results, medications, and other rel‐
evant factors that can provide a more comprehensive
understanding of the patients’ conditions and facili‐
tate more accurate predictions.

Overall, the presented patient classiϐicationmodel,
particularly the NLP‐based approaches, shows great
potential for improving decision support and point‐
of‐care service delivery in healthcare systems. Fur‐
ther advancements and incorporationof richerpatient
data can lead to even more accurate and valuable pre‐
dictions.
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