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Abstract:
This paper is a practical guideline on how to analyze
and evaluate the literature algorithms of singularity‐
robust inverse kinematics or to construct new ones. Addi‐
tive, multiplicative, and based on the Singularity Value
Decomposition (SVD) methods are examined to retrieve
well‐conditioning of amatrix to be inverted in theNewton
algorithm of inverse kinematics. It is shown that singu‐
larity avoidance can be performed in two different, but
equivalent, ways: either via properly modified manipula‐
bility matrix or not allowing the decrease of the minimal
singular value below a given threshold. It is discussed
which method can always be used and which can only
be used when some pre‐conditions are met. Selected
methods are compared to with respect to the efficiency
of coping with singularities based on a theoretical ana‐
lysis as well as simulation results. Also, some questions
important for mathematically and/or practically oriented
roboticians are stated and answered.

Keywords: Serial manipulator, Forward kinematics,
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1. Introduction

Robustness in robotics has got different meanings.
Singularity‐robust algorithms (methods) of inverse
kinematics are aimed at coping with singular con‐
ϐigurations without switching a model that works in
a regular case into a much more complicated singu‐
lar one. As problems with singularities appear only
locally, so a slightly modiϐied regular algorithm is able
to generate a trajectory passing through a singular
conϐiguration. However, an inevitable decrease of a
desired end‐effector path tracking quality occurs.

Inverse kinematics is probably themost frequently
solved task in robotics. The task arises when forward
kinematics is deϐined for serial manipulators [13] or
instantaneous kinematics for nonholonomic robots
[12] and a conϐiguration or a trajectory is to be found
which corresponds to a given point/trajectory in a
task‐space.

Only for a very few simple robots, the task can
be solved analytically. Usually, it is solved using
the numerical Newton algorithm [11] which guaran‐
tees to obtain a solution when no singular conϐig‐
urations are encountered while generating consec‐
utive conϐigurations. At a singular conϐiguration the

algorithm becomes badly conditioned and, temporar‐
ily, special measures need to be taken to retrieve
its well‐conditioning. The simplest, and therefore the
most frequently used, method to cope with this prob‐
lem is to apply a robust version of the Newton algo‐
rithm. Around a current singular conϐiguration, the
method temporarily modiϐies a badly conditioned
matrix as long as a neighborhood of the singularity is
left.

In the robotic literature there are many methods
of motion planning through singularities. In [16] Var‐
gas et al. described a singularity approaching as a
dynamic estimation of the inverse of the Jacobimatrix,
arguing that their method requires less numbers of
parameters to ϐix than other methods and avoids an
explicit matrix inversion. Various methods of approx‐
imating inverse matrices without their explicit inver‐
sion are provided in [3]. Sun et al. [14] used a SVD‐
based method to optimize a cost function composed
of tracking accuracy and velocity dumping terms with
the goal to eliminate a terminal error after pass‐
ing a singularity. The channel algorithm proposed by
Duleba in [4] tries to jump through a singular conϐig‐
uration extrapolating behavior of a trajectory when
the singular conϐiguration was approached. All the
discussed methods are based on the Jacobi, matrix
which is just a linear term in the Taylor expansion
of kinematics around a current conϐiguration. Thus,
the methods can be classiϐied as ϐirst‐order. Recently,
Lloyd et al. [9] argued that second‐order methods
based also on the Hessian matrix of kinematics also
have some advantages from a numerical point of view
as an increase of the computational complexity in a
single iteration can be compensated by the smaller
number of iterations to complete solving the inverse
kinematic task. There are also more mathematically
advanced methods of motion planning through sin‐
gularities. The normal form method [15] transforms
original kinematics around a singular conϐiguration
into its particularly simple, normal form, solves the
planning task in the new coordinates and moves back
the solution into original coordinates. Unfortunately,
this method is computationally demanding. Neverthe‐
less, it allows one to trace a desired path with a high
accuracy [15].

Depending on a manipulator redundancy, robust
inverse kinematics methods modify either a Jacobi
matrix (non‐redundant case) or a manipulability
matrix (the redundant case). In some practical situa‐
tions any (sometimes random)modiϐication of a badly
conditioned matrix retrieves its well‐conditioning.
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However, only provably good solutions have got
a theoretical value as they work also in the most
demanding circumstances which can appear in
practice.

Retrieving the well‐conditioning of an inverted
matrix can be realized in two ways: either an additive
one via adding to the matrix a designed matrix, or
a multiplicative one via multiplying the Jacobi matrix
by a properly designed matrix.

The paper, being a substantially extended version
of the conference paper [2], is organized as follows.
In Section 2, preliminaries concerning the inverse
kinematic task are recalled together with the Newton
algorithm used to solve the task. In Section 3, amathe‐
matical framework for designing robust additive or
multiplicative matrix inversions was presented. In
this section, the approach based on the Singular Value
Decomposition (SVD) algorithm was examined. In
this section, the geometrical interpretation is given
based on how locally singularity‐robust methods can
impact possible directions of motion in a task‐space
and why new numeric problems can arise. Section 4
is devoted to the multi‐criteria evaluation of the
proposed techniques. In the simulation Section 5,
based on the evaluation methodology developed, a
standard (the literature based) method of singularity‐
robust inverse kinematics is compared to a method
that increases minimal singular values of a Jacobi
matrix. In Section 6, auxiliary issues are discussed
related to the singularity‐robust inverse kinematics
yet outside the main scope of the paper. Answers for
two questions important for mathematically oriented
roboticians are given and two tips for practically
oriented designers of algorithms are provided.
Section 7 concludes the paper.

2. Inverse Kinematic Task and its Solution
Forward kinematics assigns to a conϐiguration𝑞𝑞𝑞 =

(𝑞1, … , 𝑞𝑛)𝑇 from a conϐiguration spaceℚ a point𝑘𝑘𝑘(𝑞𝑞𝑞)
in a task space 𝕏
𝑘𝑘𝑘 ∶ ℚ ∋ 𝑞𝑞𝑞 → 𝑘𝑘𝑘(𝑞𝑞𝑞) ∈ 𝕏, dim 𝑄 = 𝑛, dim 𝑋 = 𝑚.

(1)
A redundancy is described by the number 𝑟 = 𝑛 −
𝑚 and for redundant/non‐redundant manipulators it
takes the value of 𝑟 > 0, 𝑟 = 0, respectively. A basic
(point) inverse kinematic task is deϐined as follows:
for a given point 𝑥𝑥𝑥𝑓 in a task‐space ϐind such a con‐
ϐiguration 𝑞𝑞𝑞⋆, that 𝑘𝑘𝑘(𝑞𝑞𝑞⋆) = 𝑥𝑥𝑥𝑓 . An analytic solution
of the inverse kinematic task is possible only for a
very few, simple manipulators. Therefore instead of
solving the task in positional spaces (𝑞𝑞𝑞,𝑥𝑥𝑥) the search
is moved into velocity spaces (�̇�𝑞𝑞, �̇�𝑥𝑥) related with the
Jacobi matrix

�̇�𝑥𝑥 = 𝜕𝑘𝑘𝑘(𝑞𝑞𝑞)
𝜕𝑞𝑞𝑞 �̇�𝑞𝑞 = 𝐽𝐽𝐽(𝑞𝑞𝑞)�̇�𝑞𝑞 =

𝑛

෍
𝑧=1

𝐽𝐽𝐽⋆,𝑧(𝑞𝑞𝑞)�̇�𝑧 , (2)

where 𝐽𝐽𝐽⋆,𝑧(𝑞𝑞𝑞) is the 𝑧‐th column of the Jacobi matrix
and �̇�𝑧 ∶= 𝑑𝑞𝑧/𝑑𝑡. Then, the Newton algorithm is
applied given by the iterative scheme [11]

𝑞𝑞𝑞𝑖+1 = 𝑞𝑞𝑞𝑖 + 𝜉𝑖 ⋅ 𝐽𝐽𝐽(𝑞𝑞𝑞𝑖)$(𝑥𝑥𝑥𝑓 −𝑘𝑘𝑘(𝑞𝑞𝑞𝑖)), (3)

where 𝑞𝑞𝑞𝑖 is a conϐiguration in the 𝑖‐th iteration and
𝜉𝑖 is a positive coefϐicient that impacts the speed of
convergence of the algorithm. An initial conϐiguration
𝑞𝑞𝑞0 is known and selected by a user. Depending on the
redundancy, the matrix 𝐽𝐽𝐽$ is expressed as

𝐽𝐽𝐽$ ∶= ൝𝐽𝐽𝐽
−1 for non‐redundant,
𝐽𝐽𝐽# = 𝐽𝐽𝐽𝑇(𝑀𝑀𝑀)−1 for redundant (4)

manipulators, where the Moore‐Penrose pseudo‐
inverse matrix 𝐽𝐽𝐽# is deϐined using a symmetric, posi‐
tive semi‐deϐinite manipulability matrix [13]

𝑀𝑀𝑀(𝑞𝑞𝑞) ∶= 𝐽𝐽𝐽(𝑞𝑞𝑞) 𝐽𝐽𝐽(𝑞𝑞𝑞)𝑇 . (5)

The algorithm (3) stops its run successfully when
matrices (4) are of the full‐rank in all iterations until
a goal point 𝑥𝑥𝑥𝑓 is reached with a prescribed accuracy
𝛿, i.e.,

‖𝑥𝑥𝑥𝑓 −𝑘𝑘𝑘(𝑞𝑞𝑞𝑖)‖ < 𝛿.
The main point of interest in this paper is to analyze
the Newton algorithm at and around singular conϐig‐
urations where the Jacobi matrix 𝐽𝐽𝐽 drops its maxi‐
mal possible rank and 𝐽𝐽𝐽$ becomes ill‐conditioned. The
rank decrease is described by a corank deϐined as
follows:

corank(𝐽𝐽𝐽(𝑞𝑞𝑞)) ∶= 𝑐(𝑞𝑞𝑞) = 𝑚 − rank(𝐽𝐽𝐽(𝑞𝑞𝑞)). (6)

3. Robust Matrix Inversions
3.1. Additive Robust Inverse

Let 𝐴𝐴𝐴,𝑀𝑀𝑀 denote symmetric, square matrices. 𝐴𝐴𝐴 is
a designed positively‐deϐinite matrix, 𝐴𝐴𝐴 > 0, while𝑀𝑀𝑀
is a positive semi‐deϐinite, manipulability matrix (5)
𝑀𝑀𝑀 ≥ 0, which at singular conϐigurations is degener‐
ated, i.e. rank(𝐽𝐽𝐽) < 𝑚, or, alternatively, det(𝑀𝑀𝑀) = 0.

The key inequality used in designing robust
inverse matrices is the following:

det(𝐴𝐴𝐴 +𝑀𝑀𝑀) > det(𝐴𝐴𝐴) + det(𝑀𝑀𝑀), (7)

and it holds if only𝑀𝑀𝑀 ≠ 000.
Proof (based on the Grossmann’s idea [6]): to sim‐

plify notations𝐵𝐵𝐵 ∶= 𝐴𝐴𝐴−1/2 is deϐined. Using properties
of determinants and symmetric matrices one gets

det(𝐴𝐴𝐴 +𝑀𝑀𝑀) = det(𝐴𝐴𝐴(𝐼𝐼𝐼 +𝐴𝐴𝐴−1𝑀𝑀𝑀)) =
det(𝐴𝐴𝐴) det(𝐵𝐵𝐵𝐼𝐼𝐼𝐵𝐵𝐵−1 +𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵−1) =
det(𝐴𝐴𝐴) det(𝐵𝐵𝐵(𝐼𝐼𝐼 +𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵)𝐵𝐵𝐵−1) =
det(𝐴𝐴𝐴) det(𝐵𝐵𝐵) det(𝐼𝐼𝐼 +𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵) det(𝐵𝐵𝐵−1) =
det(𝐴𝐴𝐴) det(𝐼𝐼𝐼 +𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵) > (8)
det(𝐴𝐴𝐴)(det(𝐼𝐼𝐼) + det(𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵)) =
= det(𝐴𝐴𝐴) + det(𝑀𝑀𝑀) > 0.

In the chain of transformations (8), the only non‐
obvious transformation is the ϐirst strong inequality
occurrence. The matrix 𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵 ≠ 000 is symmetric, pos‐
itive semi‐deϐinite with real and non‐negative eigen‐
values (singular values) collected in the vector 𝑆𝑆𝑆 =
(𝜎1, … , 𝜎𝑚)𝑇 , 𝜎𝑖 ≥ 0, 𝑖 = 1,… ,𝑚, not all equal to zero

39



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 3 2023

(at least 𝜎1 > 0). This matrix can be expressed in the
form

𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵 = 𝑈𝑈𝑈 diag(𝑆𝑆𝑆) 𝑈𝑈𝑈𝑇 , (9)
with a non‐singular rotation matrix 𝑈𝑈𝑈 ∈ 𝕊𝕆(𝑚).
The identity matrix can be expressed as 𝐼𝐼𝐼 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇 ,
and eigen‐(singular)values of positive semi‐deϐinite
matrix 𝐼𝐼𝐼 + 𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵 are equal to diag(111) + 𝑆𝑆𝑆. Finally,
using properties of determinants of similar matrices
and eigenvalues of matrices one gets

det(𝐼𝐼𝐼 +𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵) =
𝑚

ෑ
𝑖=1

(𝜎𝑖 + 1) = 1 +
𝑚

෍
𝑖=1

𝜎𝑖+

+
𝑚

෍
𝑖,𝑗=1,𝑖>𝑗

𝜎𝑖𝜎𝑗 +
𝑚

෍
𝑖,𝑗,𝑘=1,𝑖>𝑗>𝑘

𝜎𝑖𝜎𝑗𝜎𝑘 +…+
𝑚

ෑ
𝑖=1

𝜎𝑖 =

1+
𝑚

ෑ
𝑖=1

𝜎𝑖 +𝑅(𝜎𝜎𝜎)>1+
𝑚

ෑ
𝑖=1

𝜎𝑖 =det(𝐼𝐼𝐼) + det(𝐵𝐵𝐵𝑀𝑀𝑀𝐵𝐵𝐵).

(10)

The inequality (7) guarantees positive‐deϐiniteness
of the sum of matrices when only a positive‐deϐinite
matrix is added to themanipulabilitymatrix. This way
generalized inverse matrix (4) can be applied. Appar‐
ently, the additive disturbance should be small not to
cause inaccuracies in tracking a desired path towards
the goal point. A very general method to generate the
disturbing matrix with desired properties is to take
any (𝑚 × 𝑛) full‐rank matrix 𝐵𝐵𝐵 and obtain always
positive‐deϐinite matrix 𝐵𝐵𝐵𝐵𝐵𝐵𝑇 . The simplest possible
choice, and frequently encountered in the robotic lit‐
erature [11], takes the form

𝐴𝐴𝐴 ∶= 𝜆 𝐼𝐼𝐼𝑚 , (11)

with a small positive design parameter 𝜆 and the (𝑚×
𝑚) identity matrix 𝐼𝐼𝐼𝑚 [13]. However, the drawback
of (11) is the identical handling of all coordinates and
a weak relationship with kinematics for which the
disturbance is applied. Another natural disturbance
deϐinition proposed below does not suffer from the
aforementioned drawback (11)

𝐴𝐴𝐴 ∶= 𝜆 ⋅ diag(⟨𝐽𝐽𝐽1,⋆, 𝐽𝐽𝐽1,⋆⟩, … , ⟨𝐽𝐽𝐽𝑚,⋆, 𝐽𝐽𝐽𝑚,⋆⟩) (12)

where ⟨⋅, ⋅⟩ denotes a dot product and 𝐽𝐽𝐽𝑖,⋆ is the 𝑖‐th
row of the Jacobimatrix. The expression (12) depends
on kinematics and potentially increases items on the
main diagonal of the manipulability matrix. Unfor‐
tunately, for any model of kinematics there is no
guarantee that all rows of the the Jacobi matrix have
got a non‐zero length. To avoid this extremely rare
but still possible case, the always positive kinematic‐
dependent disturbance function can be deϐined as

𝐴𝐴𝐴 ∶= 𝜆 ⋅ diag(𝑓𝜖(𝐽𝐽𝐽1,⋆), … , 𝑓𝜖(𝐽𝐽𝐽𝑚,⋆)), (13)

where
𝑓𝜖(𝐽𝐽𝐽𝑖,⋆) ∶= max{⟨𝐽𝐽𝐽𝑖,⋆, 𝐽𝐽𝐽𝑖,⋆⟩, 𝜖} (14)

with a small, positive design parameter 𝜖. The robust
inversion (13) shares advantages of (11), (12) while
avoiding their drawbacks.

It is worth mentioning that Equation (7) offers
more than what is necessary to retrieve the well‐
conditioning of the inverted matrix

det(𝐴𝐴𝐴 +𝑀𝑀𝑀) > det(𝐴𝐴𝐴) + det(𝑀𝑀𝑀) ≥ det(𝐴𝐴𝐴) > 0. (15)

It appears that at singular conϐigurations the badly
conditioned matrix𝑀𝑀𝑀 actively supports avoiding sin‐
gularities because from Equations (8), (10), and (15)
it follows that

det(𝐴𝐴𝐴 +𝑀𝑀𝑀) − det(𝐴𝐴𝐴) = det(𝐴𝐴𝐴)𝑅(𝜎𝜎𝜎) > 0. (16)

3.2. Multiplicative Robust Inverse

In the multiplicative case, the robust inversion of
the manipulability matrix is searched for by disturb‐
ing factors of the matrix rather than by modifying
the matrix itself. The ϐirst possibility is to modify the
matrix 𝐽𝐽𝐽, by adding the (𝑚 × 𝑛) matrix ΨΨΨ to get the
well‐conditioned manipulability matrix

(𝐽𝐽𝐽 +ΨΨΨ)(𝐽𝐽𝐽 +ΨΨΨ)𝑇 = 𝐽𝐽𝐽𝐽𝐽𝐽𝑇 +𝐽𝐽𝐽ΨΨΨ𝑇 + (𝐽𝐽𝐽ΨΨΨ𝑇)𝑇 +ΨΨΨΨΨΨ𝑇 . (17)

The general inequality (7) does not work directly
for (17) as there are four items instead of two. The ϐirst
term is badly conditioned at singular conϐigurations
while the last term seems to be a good candidate for
a positive‐deϐinite matrix if onlyΨΨΨ is non‐singular, i.e.,
rank(ΨΨΨ) = 𝑚). So, two mid‐terms should be elimi‐
nated either by zeroing their sum or one of them. The
second condition seems to be easier to satisfy but it is
stronger than the ϐirst one. The condition

𝐽𝐽𝐽ΨΨΨ𝑇 = 000𝑚 (18)

means that rows of ΨΨΨ are perpendicular to the rows
of 𝐽𝐽𝐽, so they belong to the null‐space of the Jacobi
matrix. The dimension of the null space at regular
(non‐singular) conϐigurations is equal to 𝑟 = 𝑛 − 𝑚
and in typical singular conϐigurations it is increased by
𝑐 ∈ {1, 2}, cf. Equation (6). Thus, the rank of thematrix
ΨΨΨ is upper‐bounded by 𝑐+𝑟. On the other hand, it was
assumed that rank(ΨΨΨ) = 𝑚. In the vast majority of
practical cases, the condition

𝑟 + 𝑐 − 𝑚 ≥ 0. (19)

cannot be satisϐied (example: 𝑛 = 4,𝑚 = 3, 𝑐 = 1).
Consequently, this multiplicative method of making
the manipulability matrix robust seems to lack gener‐
ality.
3.3. Robust Inverse Using SVD

Another version of multiplicative modiϐication of
the manipulability matrix extensively uses the Sin‐
gular Value Decomposition algorithm [5] introduced
in robotics by Maciejewski and Klein [10]. The SVD
decomposes the Jacobi matrix into a product of three
matrices

𝐽𝐽𝐽 = 𝑈𝑈𝑈 ⋅ [𝐷𝐷𝐷,000𝑚,𝑟] ⋅ 𝑉𝑉𝑉𝑇 , (20)
where 000𝑚,𝑟 denotes a (𝑚 × 𝑟) matrix composed of
zeroes only, 𝑈𝑈𝑈 ∈ 𝕊𝕆(𝑚) and 𝑉 ∈ 𝕊𝕆(𝑛) are rotation
matrices in𝑚 and 𝑛 dimensional spaces, respectively,
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and a (𝑚 × 𝑚) diagonal matrix 𝐷𝐷𝐷 = diag(𝑑𝑖), 𝑖 =
1,… ,𝑚, collects non‐negative singular values ordered
in non‐ascending order 𝑑𝑖 ≥ 𝑑𝑗 when 𝑖 < 𝑗. A
clear advantage of the decomposition (20) is that the
pseudo‐inverse matrix at regular (i.e., non‐singular)
conϐigurations can be obtained immediately as fol‐
lows:

𝐽𝐽𝐽# = 𝑉𝑉𝑉 ⋅ ቈ𝐷𝐷𝐷
−1

000𝑟,𝑚቉ ⋅ 𝑈
𝑈𝑈𝑇 , (21)

where𝐷𝐷𝐷−1 = diag(1/𝑑𝑖), 𝑖 = 1,… ,𝑚.
From a numerical perspective, the detection of sin‐

gularities requires dropping any of the singular values
below a given design parameter 𝑑min, describing a
safety margin from singularities. Therefore, a method
to avoid singularities should modify those singular
values that do not exceed the threshold value. In this
method𝐷𝐷𝐷−1 in Equation (21) is replaced with

�̃�𝐷𝐷−1 ∶= diag(1/�̃�𝑖), 𝑖 = 1,… ,𝑚,
where �̃�𝑖 ∶= max(𝑑𝑖 , 𝑑min).

(22)

It is worth noticing that the method (21), (22) of
a robust matrix inversion is valid for non‐redundant
as well as for redundant manipulators. Moreover, it
is not computationally demanding, as at regular con‐
ϐigurations it is computed using (20), (21), while at
singular conϐigurations themodiϐication (22) isminor.
In the next section, it will be explained why all very
small singular values should be replaced with the
same value 𝑑min.
3.4. Singularity‐Robust Inverse Kinematics — A

Geometrical Interpretation

Themain idea behind almost all singularity‐robust
inverse kinematics algorithms is the same: to modify
either a Jacobi matrix 𝐽𝐽𝐽 or a manipulability matrix𝑀𝑀𝑀
to retrieve invertability of the manipulability matrix.
However, the modiϐication may disturb a motion
towards a current sub‐goal 𝑥𝑥𝑥𝑓 initialized at a current
point in a task‐space 𝑥𝑥𝑥𝑐 = 𝑘𝑘𝑘(𝑞𝑞𝑞𝑐) especially when
the modiϐication is not small. In Figure 1, possible
motion scenarios are depicted. At regular conϐigu‐
rations 𝑞𝑞𝑞𝑐 , the motion generated with the Newton
algorithm (3) (at least inϐinitesimally) shifts the point

𝑥𝑥𝑥𝑓𝑥𝑥𝑥𝑐 𝛿A1

A3

B3

A4

A5

A6

A2

B2

Figure 1. Possible motions in a task‐space resulting from
modifying either the Jacobi or the manipulability matrix

𝑥𝑥𝑥𝑐 directly towards the goal (A1) and there are no
problems with the convergence of the algorithm even
when the Jacobi matrix is not frequently updated as
𝑞𝑞𝑞𝑐 is iterated. When modiϐications are relatively big
(as it happens at or around singular conϐigurations),
possible directions of motion can be quite different
(A2‐A6). Some of them (A3‐A6), even inϐinitesimally,
do not guarantee the decrease of a tracking error (so
the error is inevitable). Some others (A2‐A3) allow
the movement of the current point 𝑥𝑥𝑥𝑐 towards the
goal but with a carefully selected (optimized) value
of the positive coefϐicient 𝜉𝑖 , cf. Equation (3), which is
not to move further than points (B2‐B3). In this case,
the number of iterations to obtain a vicinity of the
goal point 𝑥𝑥𝑥𝑓 with an assumed accuracy 𝛿 increases.
Obviously, when 𝛿 is small and the absolute value of
ananglebetweena current directionofmotionand the
vector 𝑥𝑥𝑥𝑐𝑥𝑥𝑥𝑓 is close to 90∘, but does not exceed it, the
number of iterations to converge increases evenmore.

4. Evaluation of Robust Matrix Inversion
Methods
In order to compare methods of coping with sin‐

gularities via robust matrix inversions, some criteria
should be proposed. The most important four factors
are listed below:
1) How big is a matrix modiϐication?
2) How far is it allowed to move away from singulari‐

ties?
3) What is the computational complexity of the

method?
4) Can the aforementioned characteristics be com‐

puted analytically or numerically only?
QN. 1) The answer for the ϐirst question seems to

be obvious: a matrix distance between the original
manipulability matrix and the modiϐied one should
be calculated using a selected matrix norm. How‐
ever, the ϐirst method is based on modifying the
manipulability matrix (5) by adding to it either the
matrix (11) or (13), while the second method (22)
modiϐies singular values of the Jacobi matrix. The
methods based on modiϐication (11) and (22) are
comparable because decomposition (20) allows the
expression of the manipulability matrix (5) in terms
of singular values of 𝐽𝐽𝐽 as follows:

𝑀𝑀𝑀 = 𝑈𝑈𝑈 [𝐷𝐷𝐷,000𝑚,𝑟]𝑉𝑉𝑉𝑇 𝑉𝑉𝑉 ቈ
𝐷𝐷𝐷𝑇

000𝑟,𝑚቉ 𝑈
𝑈𝑈 = 𝑈𝑈𝑈𝐷𝐷𝐷2𝑈𝑈𝑈𝑇 . (23)

Consequently, the modiϐication (11) can be expressed
in terms of singular values

𝑀𝑀𝑀 +𝐴𝐴𝐴 = 𝑀𝑀𝑀 + 𝜆𝐼𝐼𝐼 = 𝑈𝑈𝑈(𝐷𝐷𝐷2 + 𝜆𝐼𝐼𝐼)𝑈𝑈𝑈𝑇 (24)

and the mid‐term matrix 𝐷𝐷𝐷2 = diag(𝑑21 , … , 𝑑2𝑚) is
increased by the value of

𝑓1 = 𝑚 ⋅ 𝜆. (25)
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When the modiϐication method based on (22)
is used, then the matrix 𝐷𝐷𝐷2 is replaced with
diag(𝑑21 , … , 𝑑2𝑚−𝑐 , 𝑑2min… , 𝑑2minᇣᇧᇧᇧᇤᇧᇧᇧᇥ

𝑐 times
), thus the increase

is equal to

𝑓2 =
𝑚

෍
𝑖=𝑚−𝑐+1

(𝑑2min−𝑑2𝑖 ) = 𝑐⋅𝑑2min−
𝑚

෍
𝑖=𝑚−𝑐+1

𝑑2𝑖 , (26)

where the corank 𝑐 was deϐined in (6) and counts
items satisfying the condition𝑑𝑖 < 𝑑min. The functions
𝑓1, 𝑓2, respectively, measure a distance between the
original matrix𝑀𝑀𝑀 and its modiϐied version, performed
either directly (24) or via increasing minimal singular
values (22).

QN. 2) Usually, a “distance” to singular conϐigura‐
tions is estimated by the value of the manipulability
matrix determinant (or its square root— themanipu‐
lability index)

det(𝑀𝑀𝑀(𝑞𝑞𝑞)) =
𝑚

ෑ
𝑖=1

𝑑2𝑖 (𝑞𝑞𝑞). (27)

The function (27) is non‐negative, has got an analyt‐
ical gradient with respect to 𝑞𝑞𝑞, and attains the zero
value at singular conϐigurations. Therefore, it is useful
in avoiding singularities by the optimization within a
null space of the Jacobi matrix for redundant manipu‐
lators [11]. Unfortunately, it does not show how far a
current conϐiguration is from a singular one. For this
purpose, a better choice is to take the minimal value
among singular values, or its value squared, i.e.,

𝑔1(𝑞𝑞𝑞) ∶= 𝑑𝑚(𝑞𝑞𝑞), 𝑔2(𝑞𝑞𝑞) ∶= 𝑑2𝑚(𝑞𝑞𝑞) (28)
as this value decides the well or badly conditioning
aspect of the manipulability matrix. Similar to (28),
also in other robotic tasks, a square of a positive value
is used instead of the value itself just to avoid the
time‐consuming square‐root operation, like in a task
of calculating the distance to obstacles.

The functions (28) have also one drawback as they
can be calculated only numerically at a given con‐
ϐiguration. Apparently, the minimal singular value of
the modiϐied manipulability matrix should be as big
as possible. This observation justiϐies selection (22)
to increase all the smallest singular values to the
same level. Using the function 𝑔2, the modiϐica‐
tions (11), (24), or (22) increase the minimal singular
value to

ℎ1(𝑞𝑞𝑞) ∶= 𝑑2𝑚(𝑞𝑞𝑞) + 𝜆, ℎ2 ∶= 𝑑2min, (29)
respectively. Now we are in a position to compare the
two modiϐications assuming that the manipulability
matrix increase is the same, 𝑓1 = 𝑓2. The better modi‐
ϐication should give a greater value of the resulting
minimal singular value squared. It will be proven that
ℎ1 < ℎ2, which means that the modiϐication (22) is
better than (11). At ϐirst, from 𝑓1 = 𝑓2 (cf. (25), (26)),
𝜆 is calculated and substituted into (29). Then,

ℎ1 < ℎ2 ⇔ 𝑐 ⋅ 𝑑2min −
𝑚

෍
𝑖=𝑚−𝑐+1

𝑑2𝑖 < 𝑚 (𝑑2min − 𝑑2𝑚).

(30)

Finally,

𝑐⋅𝑑2min−
𝑚

෍
𝑖=𝑚−𝑐+1

𝑑2𝑖 ≤ 𝑐⋅𝑑2min−𝑐⋅𝑑2𝑚 < 𝑚 (𝑑2min−𝑑2𝑚),

(31)
as 𝑐 < 𝑚 and 𝑑𝑖 ≤ 𝑑min for 𝑖 = 𝑚 − 𝑐 +
1,… ,𝑚. From (31), it can be deduced that the differ‐
ence between ℎ2 and ℎ1 increases as 𝑐 is small (in a
typical case 𝑐 = 1) and𝑚 is big (usually𝑚 ∈ {3,… , 6}).

QN. 3) It is commonly agreed that kinematic‐like
transformations are much simpler than those related
to dynamics. Nevertheless, the robust inverse kine‐
matics method based on the SVD decomposition is
computationally simpler than the other methods as
it couples the detection of singularities with passing
through them. In this case, computations performed at
the detection stage are effectively used in calculating
the robust inversion (21), (22). Moreover, the method
works in the same way for redundant as well as for
non‐redundant manipulators (the only difference is
that the sub‐matrix000𝑚,𝑟 in (20) disappears in the non‐
redundant case). The other robust methods do not
show this feature and both cases should be considered
and implemented separately.

QN. 4) All presented methods of robust inverse
kinematics are numerical in nature. For some simple
manipulators singular conϐigurations can be calcu‐
lated explicitly, for more complicated ones only ana‐
lytical conditions can be formulated to be satisϐied
at singular conϐigurations. For the PUMA 560 robot
[8] shoulder singularities are given by an expression
relating components of a conϐiguration vector while
elbow andwrist singularities can be calculated explic‐
itly.

5. Simulation Results
Simulations were performed on the non‐

redundant manipulator, Figure 2, equipped with
three rotational joints and described by the forward
kinematics

቎
𝑥
𝑦
𝑧
቏ = ቎

𝑐1𝐴
𝑠1𝐴

𝑎0 + 𝑎2𝑠2 + 𝑎3𝑠23
቏ , (32)

x

z

𝑞2

𝑞3

𝑞1

𝑎0

𝑎1

𝑎2
𝑎3

Figure 2. The three degrees of freedom manipulator
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where
𝐴 = 𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 (33)

and 𝑎0, 𝑎1, 𝑎3, 𝑎3 are length parameters. In (32), (33)
the standard robotic convention is used to denote
trigonometric functions and 𝑠23 = sin(𝑞2 + 𝑞3), 𝑐2 =
cos(𝑞2), etc. Singular conϐigurations are derived from
the Jacobi matrix

𝐽𝐽𝐽(𝑞𝑞𝑞)) = ቎
−𝑠1𝐴 −𝑐1(𝑎2𝑠2 + 𝑎3𝑠23) −𝑎3𝑐1𝑠23
𝑐1𝐴 −𝑠1(𝑎2𝑠2 + 𝑎3𝑠23) −𝑎3𝑠1𝑠23
0 𝑎2𝑐2 + 𝑎3𝑐23 𝑎3𝑐23

቏ ,

(34)
and they satisfy the condition

det(𝐽𝐽𝐽(𝑞𝑞𝑞)) = −𝑎2 𝑎3 𝐴 ⋅ 𝑠3 = 0. (35)

It appears that singular conϐigurations arise for𝑞3 = 0
at the boundary of the task space but also along the 𝑧‐
axis when 𝐴 = 0 if only the condition

𝑎2 + 𝑎3 ≥ 𝑎1 (36)

is met.
The two following singularity‐robust algorithms of

motion planning (3) are compared to:

Algorithm 1: To the manipulability matrix𝑀𝑀𝑀 in (4),
the term given in Equation (24) is added,

Algorithm 2: SVD‐based method (22) with equal
minimal singular values.

In order to make the algorithms comparable, the total
increase of the manipulability matrix was ϐixed and
the 𝜆 coefϐicient in Algorithm 1 was calculated from
the condition 𝑓1 = 𝑓2, cf. (25), (26) based on 𝑑min
parameter given.

The other data for a simulation are the following:
‐ accuracy of reaching sub‐goals along a given path
𝛿 = 10−9,

‐ unit‐less length parameters: 𝑎0 = 0, 𝑎1 = 0.3, 𝑎2 =
0.2, 𝑎3 = 0.3,

‐ detection of singularities 𝑑𝑚 < 10−3,
‐ the minimal singular value after modiϐication
𝑑min = 10−2.
Finally, the path to follow

቎
𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

቏ = ቎
0
0

(0.6 + 0.2 𝑡)ඥ(𝑎2 + 𝑎3)2 − 𝑎21
቏ (37)

is given on the (time) interval 𝑡 ∈ [0, 2] and all its
points are realizedwith singular conϐigurations as𝐴 =
0, so the path can be considered as hard to follow. The
range of admissible z‐coordinates for 𝑥 = 𝑦 = 0

ቈ𝑎0 −ට(𝑎2 + 𝑎3)2 − 𝑎21 , 𝑎0 +ට(𝑎2 + 𝑎3)2 − 𝑎21቉ .

Trajectories generated with both robust inverse
algorithms were almost the same: 𝑞1 = 300∘ took
almost the constant value (up to the numerical noise)
while the remaining components of the conϐiguration

 0
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Figure 3. Coordinates 𝑞2 and 𝑞3 corresponding to the
path followed

vector are depicted in Figure 3. The only difference
was observed at 𝑡 = 2 where the SVD‐based Algo‐
rithm 2 obtained the ϐinal path point with the pre‐
scribed accuracywhile Algorithm1 cannot do that and
stopped at the distance 5.6 ⋅ 10−6 from the target. All
other points of the path were obtained with the pre‐
scribed accuracy𝛿, thus both robust inverse kinematic
algorithms worked quite well. The point for 𝑡 = 2
is located at the boundary of the task‐space and it is
obtained in the corank 2 conϐiguration (not only𝐴 = 0
but also 𝑠3 = 0, cf. Equation (35)) andonly one column
of matrix 𝐽𝐽𝐽 in (34) is independent.

6. Auxiliary Issues
In this section, two mathematical problems are

addressed and two practical tips are given. In Subsec‐
tion 6.1 it is shown that a minimal singular value (the
function 𝑔1) used as a distance estimation of a current
conϐiguration (via singular values of its Jacobi matrix)
from a singularity is not a norm in a mathematical
sense. In Subsection 6.2, it is pointed out that for non‐
redundant manipulators reliable singularity‐robust
inverse kinematics cannot be performed directly on
the Jacobi matrix (but still it can be done using its
manipulability matrix or operations on its singular
values). The next two subsections provide practically‐
oriented hints. In Subsection 6.3, advantages of a nor‐
malization of forward kinematics are discussed while
in Subsection 6.4 it is shown how to minimize dis‐
advantages of existence of inadmissible motion direc‐
tions within a task‐space.
6.1. Is the Minimal Singular Value a Norm for the

Singularity Detection?

The function 𝑔1 deϐined in (28) and equal to the
minimal singular value deϐines a “distance” of a Jacobi
matrix to singularity. However, it is not a distance in
a strict mathematical sense as it does not satisfy the
triangle inequality. In order to show this, let us take
two exemplary matrices

𝐴𝐴𝐴 = ቈ1 0
0 0቉ , 𝐵𝐵𝐵 = ቈ0 0

0 1቉ , 𝐴𝐴𝐴 +𝐵𝐵𝐵 = 𝐼𝐼𝐼2. (38)

Apparently, 𝑔1(𝐴𝐴𝐴) = 𝑔1(𝐵𝐵𝐵) = 0 but 𝑔1(𝐴𝐴𝐴 + 𝐵𝐵𝐵) = 1.
It is known [7] that the maximal singular value can
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serve as a norm of a matrix (so called the spectral
norm). However, this norm is not useful in coping
with singularities as the smallest singular value of a
matrix impacts singularities the most. To emphasize
the importance of the minimal singular value in the
vicinity of singular conϐiguration let us assume that a
small displacement Δ𝑥𝑥𝑥 (‖Δ𝑥𝑥𝑥‖ = 𝜈) is to be executed
there. Using (2) and rearranging (20), the following
formula is obtained

𝑈𝑈𝑈𝑇Δ𝑥𝑥𝑥 = [𝐷𝐷𝐷,000𝑚,𝑟] ⋅ 𝑉𝑉𝑉𝑇Δ𝑞𝑞𝑞. (39)

In the worst possible case, when𝑈𝑈𝑈𝑇Δ𝑥𝑥𝑥 = (0,… , 0, 𝜈)𝑇 ,

𝜈 = ‖𝑈𝑈𝑈𝑇Δ𝑥𝑥𝑥‖ = 𝑑𝑚‖𝑉𝑉𝑉𝑇Δ𝑞𝑞𝑞‖ = 𝑑𝑚‖Δ𝑞𝑞𝑞‖. (40)

Equation (40) describes awell known fact that around
a singular conϐiguration velocities at joints can attain
very large (inϐinite) values. But it also prompts how to
upper‐bound the norm on the velocities by replacing
𝑑𝑚 by a design parameter 𝑑min

‖Δ𝑞𝑞𝑞‖ ≤ 𝜈/𝑑min. (41)

6.2. Varying the Jacobi Matrix for Non‐redundant
Manipulators

For redundant manipulators, the classical modiϐi‐
cation of the manipulability matrix (24) is provable
good for redundant manipulators. But the question
arises: is it possible to modify the Jacobi matrix itself
and avoid the computationally costly modiϐication via
themanipulability matrix (in this case non‐redundant
manipulator is considered as a special case of redun‐
dant one)? The answer is no. To prove this statement
let us analyze a hypothetical 2‐dof manipulator with
its Jacobi matrix expressed in a general form

𝐽𝐽𝐽 = ቈ𝑗11 𝑗12
𝑗21 𝑗22቉ (42)

and considered at a singular conϐiguration

det(𝐽𝐽𝐽) = 𝑗11 𝑗22 − 𝑗11 𝑗21 = 0. (43)

The modiϐied Jacobi matrix 𝐽𝐽𝐽 + 𝜆𝐼𝐼𝐼2, taking into
account (43), has got its determinant equal to

det(𝐽𝐽𝐽+𝜆𝐼𝐼𝐼2) = 𝜆(𝑗11+𝑗22)+𝜆2 = (𝑗11+𝑗22+𝜆)𝜆 (44)

which, in general, may take the value of zero for 𝜆 ≠ 0.
The same reasoning repeated for higher dimensional
conϐiguration spaces reveals that the polynomial (44)
will be of the 𝑛‐th degree with its coefϐicients depend‐
ing of items of 𝐽𝐽𝐽 and non‐zero value not‐guaranteed.
6.3. Normalization of Kinematics

The Jacobi matrix (2), (20) transforms velocities
from a conϐiguration space into a task‐space. In prac‐
tice, coordinates of vectors from the conϐiguration and
the task spaces have got a physical meaning and units
as well (angles, positions, and translations). Thus, in
some applications there is a practical need to weight
their contribution in the Newton algorithm (3).

In order to unify different (in units and ranges)
conϐiguration coordinates, a weighted pseudo‐inverse
matrix [11] can be used

𝐽𝐽𝐽#𝑊 =𝑊𝑊𝑊−1𝐽𝐽𝐽𝑇(𝐽𝐽𝐽𝑊𝑊𝑊−1𝐽𝐽𝐽𝑇)−1 (45)

where 𝑊𝑊𝑊 is a symmetric, positive deϐinite weight‐
ing matrix. This (right) pseudo‐inverse matrix results
frommaximizing �̇�𝑥𝑥 = 𝐽𝐽𝐽�̇�𝑞𝑞with the ϐixed value of �̇�𝑞𝑞𝑇𝑊𝑊𝑊�̇�𝑞𝑞.

While analyzing the decomposition (20), one can
notice that the matrix 𝑉𝑉𝑉𝑇 rotates velocities �̇�𝑞𝑞, then
the rotated velocity is scaled and truncated into 𝑚
dimensional object by the matrix [𝐷𝐷𝐷,000𝑚,𝑟] and ϐinally
this object is rotated in the 𝑚‐dimensional space by
thematrix𝑈𝑈𝑈 to get �̇�𝑥𝑥. In the previous sections singular
values were extensively used as a tool for detecting
singularities and constructing robust inverses. Here
a natural question can be posed about their units
and ranges. Assuming that rotation matrices are unit‐
less, then components of [𝐷𝐷𝐷,000𝑚,𝑟] should have the
same units as the Jacobi matrix 𝐽𝐽𝐽. Clearly, singular
values should depend on geometrical parameters of a
manipulator. In order to make them less dependent
on the parameters, it is advised to normalize com‐
ponents of forward kinematics (1) by dividing each
component by its maximal allowable value. Unfor‐
tunately, as components of kinematics depend also
on the conϐiguration, the optimization could be a
serious numerical task. Fortunately, it is quite sim‐
ple to get a reasonable approximation of the value
by summing up upper bounds of items contributing
to the component of kinematics. For an exemplary
expression

𝑥 = 𝑎1 + 𝑎2 cos 𝑞2 + 𝑎3 cos(𝑞2 + 𝑞3), (46)

the value is equal to 𝑎1 + 𝑎2 + 𝑎3. The normalization
of kinematics has got one more potential advantage.
Frequently, to complete the Newton algorithm (3), the
vector from a current location to the goal one should
drop below a given threshold: ‖𝑥𝑥𝑥𝑓 −𝑘𝑘𝑘(𝑞𝑞𝑞𝑖)‖ < 𝛿 with
the Euclidean metric ‖ ⋅ ‖ used. When the normalized
kinematics is used, the components of the vector are
comparable.

6.4. Admissible and Inadmissible Directions of Motion
at Singular Configurations

At singular conϐigurations, amotion in a task‐space
along vectors that belong to the corank(𝐽𝐽𝐽) dimen‐
sional space spanned by vectors perpendicular to
independent columns 𝐽𝐽𝐽,⋆,𝑧 , cf. (2), of the Jacobi matrix
cannot be realizedusing anyvelocities at joints. Gener‐
ally, the directions can be calculated with a numerical
procedure only (using the Gramm‐Schmidt ortogonal‐
ization algorithm [1]) but for the manipulator (32) it
can be done analytically.

At singular conϐigurations localized along the 𝑧‐
axis, the ϐirst column in (34) is a zero vector. It can be
checked bydirect calculations that a vector (𝑠1, −𝑐1, 0)
is perpendicular to the two remaining columns, so
along this direction the inϐinitesimalmotion cannot be
performed.
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Using the SVD‐decomposition (20), it can be eas‐
ily checked that the space of admissible motions in
a task‐space is spanned by (𝑚 − 𝑐) ϐirst columns
(𝑈𝑈𝑈⋆,1, … ,𝑈𝑈𝑈⋆,𝑚−𝑐) of the matrix 𝑈𝑈𝑈 while the remaining
𝑐 columns span the space of inadmissible motions.
Clearly, the higher corank 𝑐 (6) is, the more restricted
admissible motions are. As already mentioned in the
introductory section, singularity‐robust inverse kine‐
maticswill cause inaccuracy in tracking adesiredpath.
So, let us assume that at a singular conϐiguration a
desired motion is described by the vector Δ𝑥𝑥𝑥. The
angle between Δ𝑥𝑥𝑥 and its projection onto the sub‐
space spanned by (𝑈𝑈𝑈⋆,1, … ,𝑈𝑈𝑈⋆,𝑚−𝑐) may serve as a
qualitatively good estimator of an expected tracking
error. For a designer of a singularity‐robust algorithm
this observation can be useful while planning a path to
be followed very precisely.

7. Conclusion
In this paper various singularity‐robust methods

of inverse kinematics were discussed and their
reliable work has been evidenced even in the
most demanding circumstances. The theoretical
background of the methods given is aimed to help
to understand, analyze, and evaluate any particular
method. Some tips for robotics practitioners are
provided on how to design singularity‐robust
methods and/or to properly set their parameters.
In this paper, it has also been shown that the SVD‐
method with a ϐixed modiϐication of a sum of singular
values that sets all the smallest values to the same
level is the best within this class of methods as it
allows getting as far as possible from singularities
and also reducing joint velocities. This method can be
advised as the ϐirst choice method for computational
reasons as computations performed at the singularity
detection stage can be used in a regular as well as in
a singular case. In this paper, some questions related
to facilitate passing through singular conϐigurations
have been answered. They concern a transformation
of kinematics before planning as well as preparing a
path to be followed.
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