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Abstract:
This study examines the possibility of implementing  
intelligent artificial limbs for patients after injuries or 
amputations. Brain-computer technology allows signals 
to be acquired and sent between the brain and an ex-
ternal device. Upper limb prostheses, however, are quite 
a complicated tool, because the hand itself has a very 
complex structure and consists of several joints. The 
most complicated joint is undoubtedly the saddle joint, 
which is located at the base of the thumb. You need to 
demonstrate adequate anatomical knowledge to con-
struct a prosthesis that will be easy to use and resemble 
a human hand as much as possible. It is also important 
to create the right control system with the right software 
that will easily work together with the brain-computer 
interface. Therefore, the proposed solution in this work 
consists of three parts, which are: the Emotiv EPOC + 
Neuroheadsets, a control system made of a servo and 
an Arduino UNO board (with dedicated software), and 
a hand prosthesis model made in the three-dimensional 
graphic program Blender and printed using a 3D printer. 
Such a hand prosthesis controlled by a signal from the 
brain could help people with disabilities after amputa-
tions and people who have damaged innervation at the 
stump site.

Keywords: BCI, EEG, hand prosthesis, hand, prosthesis, 
3D printing

1. Introduction 
Brain testing uses several methods, one of which 
is the measurement of brain waves. These brain 
waves can be collected in the form of electrical sig-
nals. The acquisition of brain signals can be done 
invasively and non-invasively. The invasive method 
involves placing sensors inside the scalp, but this is 
a risky course of action. The other method is non-
invasive, and the sensors are implanted above the 
skin. However, this method is noisy, making it dif-
ficult to extract useful information. The connection 
between the brain and an external device is called 
the brain-computer interface (BCI) [1-3]. Currently, 
the most popular data source for BCI is EEG sig-
nals from surface brain activity. This is because 
these types of measurement are non-invasive [4, 5]. 

BCI can improve the quality of life for people with  
severe motor disabilities. BCI captures the user’s 
brain activity and translates it into commands that 
control an effector such as a computer cursor, a 
robotic limb, or a functional electrical stimulation 
device [6]. BCI has many applications, such as in 
medicine. RuiNa et al. [7] in their paper presented 
the control of an electric wheelchair using BCI. In 
their design they used visual evoked potentials: 
SSVEP. The wheelchair consists of a hybrid visual 
stimulator that combines the advantages of liq-
uid crystal display (LCD) and light emitting diodes 
(LED). M. Vilela and L. R. Hochberg [6] described 
new developments to improve the user experience 
of BCI with effector robots. Full efficient manipula-
tion of robots and prosthetic arms via a BCI system 
is challenging due to the inherent need to decode 
multidimensional and preferably real-time control 
commands from the user’s neural activity. Such func-
tionality is fundamental if BCI-controlled robotic or 
prosthetic limbs are to be used for daily activities. 

BCI also has applications in rehabilitation, such as 
BCI-controlled robots. They are designed for motor 
assistance to help paralyzed patients to improve up-
per and lower limb mobility [8]. Different algorithms 
are used to classify brain signals. 

Channel selection is a key topic in BCI. Imagining 
hand movement is a frequently used component of 
the learning data set for algorithms. For example, 
Milanović [9] used a sequence of 70 tasks involving 
alternating imagining a right-hand movement and a 
resting hand movement. S. Soman and B. K. Murthy 
[10] created a design based on a BCI system for gene-
rating synthesized speech that operates on a blinking 
eye detected from the user’s electroencephalogram 
signals. Khan et al. [11] developed a broad overview 
of the applications of BCI interfaces in the context of 
the upper extremity. Gubert et al. [12] analyzed left- 
and right-hand motion imagery. They used publicly 
available databases and the CSP (Common Spatial 
Patterns) algorithm. Hernández-Del-Toro et al. [13] 
used the Emotiv EPOC interface. As a test sequence, 
they used a set of repetitions of imagined words spo-
ken in Spanish (up, down, left, right, choice) repeated 
randomly 100 times each by 27 individuals. Fourteen 
EEG channels were used; the sampling rate was 128 
Hz. Discrete wavelets transform (DWT) and fractal 
methods, among others, were used to analyze the 
signals. The nearest neighbor method (decision tree 
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method) and support vector machine (SVM) were 
used for classification, among other tools. 

Task irrelevant and redundant channels used 
in BCI can lead to low classification accuracy, 
high computational complexity, and application 
inconvenience. By choosing optimal channels, the 
performance of BCI can improve significantly. B. Shi 
et al. [14] in their paper proposed a novel binary 
harmony search (BHS) to select optimal channel sets 
and to optimize the accuracy of the BCI system. BHS 
is implemented on learning datasets to select opti-
mal channels, and test datasets are used to evaluate 
the classification performance on the selected chan-
nels. The authors proposed a BHS method for selec-
ting optimal channels in MI-based BCI. Their results 
validate the BHS algorithm as a channel selection 
method for motor imaging data. The BHS method, 
costing less computation time, gives better average 
test accuracy than steady-state genetic algorithms. 
The proposed method can improve the practicality 
and convenience of BCI system. 

F. M. Noori et al. [11] proposed a new technique 
for determining optimal feature combinations and 
obtaining maximum classification performance for 
BCI-based functional near-infrared spectroscopy 
(fNIRS). The results of the proposed hybrid GA-SVM 
technique, by selecting the optimal feature combina-
tions for fNIRS-based BCI, provide opportunities to 
enhance classification performance.

 Janani et al. [15] applied a deep learning neural 
network algorithm to classify motion imagery based 
on infrared signal. Functional near-infrared spec-
troscopy (fNIRS) was used, in which infrared light 
passes through a hemodynamic system. The pheno-
menon of change in absorption of infrared radiation 
depending on the wavelength of radiation was used. 
The principle of operation is like the blood oxygen 
saturation meter.

 BCI will also find application in neuro-prosthetics. 
Neuroprosthetics is a combination of neuroscien-
ce and biomedical engineering. Implantable devices 
can significantly improve quality of life due to their 
unique performance. The combination of biomedical 
engineering and neuro-prosthetics has led to the de-
velopment of new hybrid biomaterials that meet the 
needs of ideal neuroprosthetics. The site of implanta-
tion of the prosthesis determines the type of material 
and method of fabrication. P. Zarrintaj et al. [16] in 
their article described the types of biomaterials used 
for bionic neuroprostheses. The diversity of neuro-
prosthetics necessitates the use of a wide range of 
materials from organic to inorganic. However, using 
only metals, due to incompatibility with soft tissues, 
can cause inflammation. Metal-polymer hybrids can 
reduce the disproportion between soft tissues and 
electrodes, where the polymer part can regulate the 
modulus of the metal. Moreover, different types of 
electrodes should be selected for different types of 
signal recording. Therefore, the selection of bioma-
terials for neuroprostheses is crucial and requires 
knowledge of the electrode implantation site and ma-
terial characteristics. 

2.  Examples of Implementation Concept in 
the Field of Artificial Hand

This article describes the concepts of a proprietary 
BCI-controlled hand prosthesis. The hand prosthesis 
controlled by the signal from the brain enables people 
with disabilities without a hand or after amputations, 
and people with damaged innervation at the stump 
site. This solution uses a non-invasive method, so peo-
ple who are not entirely convinced of this method can 
test whether it suits them without interfering with 
their body. The main goals are to select an EEG device, 
design and construct a prototype of a hand prosthesis, 
select and program an appropriate control system. 

A prosthesis is a tool that supports or replaces an 
amputee in carrying out their daily tasks. Instead of 
passive devices that are purely aesthetic, the current 
devices have im-proved functionality using robotic 
technology. M. A. Abu Kasim et al. [17] presented the-
ir conceptual idea to use a non-invasive Emotiv head-
set to control a prosthetic hand using LabVIEW. This 
design is intended for the use of cost-effective upper 
limb prostheses controlled by signal artifacts and 
uses facial expressions. This device can be used and 
controlled by paralyzed persons with limited com-
munication skills via a graphical user interface (GUI). 
It is worth noting that the non-invasive BCI method 
was used to create the project. The GUI is created with 
LabVIEW software connected to the Ar-duino board 
via a serial USB data connection.

The use of body-powered prostheses can be 
tiring and lead to further compliance and prosthetic 
problems. BCI makes it possible to inspect dentures 
for patients who are otherwise unable to operate such 
devices due to physical limitations. The problem with 
BCIs is that they usually require invasive logging me-
thods where surgery needs to be performed. G. Lange 
et al. [18] presented a study to test the ability to control 
the movement of an upper limb prosthetic terminal 
device by classifying electroencephalogram data from 
the actual grasping and releasing movement. Thus, 
they developed a novel EMG-assisted approach to clas-
sifying EEG data from hand movements. This demon-
strates the possibility of a more intuitive control of the 
prosthetic end device of the upper limb with a low-cost 
BCI without the risk of invasive measurement.

R. Alazrai, H. Alwanni, M. I. Daoud [19] described 
a new EEG-based BCI system that they used to deco-
de the movements of each finger in the same hand. It 
is based on the analysis of EEG signals using the qu-
adratic time frequency distribution (QTFD), or Choi-
William distribution (CWD). In particular, CWD is used 
to characterize the various components over time of 
spectral EEG signals and to extract functions that can 
capture motion-related information. The extracted 
CWD-based functions are used to create a two-tier clas-
sification structure that decodes the finger movements 
in the same hand.

J. E. Downey, J. Brooks, S. J. Bensmaia [20] descri-
bed technologies designed to sense the state of the 
hand and contact with objects and connect with the 
peripheral and central nervous systems. The skil-
lful manipulation of objects is based not only on a 
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sophisticated motor system that moves the arm and 
hand, but also on the accumulation of sensory signals 
that convey information about the consequences of 
these movements. The development of a skillful bio-
nic hand therefore requires the restoration of both 
control and sensory signals. It is important that the 
bionic hand is well constructed and allows for fre-
edom of movement: to do this you need to properly 
attach the sensors. Research aims to create artificial 
sensory feedback through electrical nerve stimulation 
in amputees or electrical brain stimulation in tetra-
plegic patients. While artificial sensory feedback, still 
in its early stages, is already giving bionic hands more 
dexterity, ongoing research to make artificial limbs 
more natural offers hope for further improvements.

Guger et al. [21] presented a system that uses EEG 
for hand prosthesis control. The digital input / output 
channels are used to control a remote control that is 
connected to a microcontroller to control the prosthe-
sis. The microcontroller receives commands from the 
remote control and regulates the speed of the grip. 
The technique of imagining the movement was used to 
control the hand. After the appropriate beep was he-
ard, the user had to imagine the movement of his left or 
right hand depending on the arrow that was displayed 
on the monitor. It all took a few seconds, and then for 
the next time the EEG signal was properly classified 
and used to control the prosthesis. One session requ-
ired the authors to make as many as 160 attempts. The 
authors performed three sessions. The operation of 
the system is based on the BCI software and hardware. 
Matlab Simulink is used to calculate various parame-
ters that describe the current EEG state in real time. 
Matlab also supports data acquisition, synchroniza-
tion, and presentation of the experimental paradigm.

In their article, G. R. Müller-Putz and G. Pfurtscheller 
[22] presented a prototype of a two-axis electric hand 
prosthesis control, which uses an asynchronous four-
-class BCI based on static and visual evoked poten-
tials (SSVEP). The authors constructed a stimulation 
device. For the experiment with the prosthetic device, 
they modified the prosthesis of the hand in such a way 
that, in addition to the gripping function (opening and 
closing the fingers), it was also possible to rotate the 
wrist (left and right). Four red LEDs are mounted at 
specific locations on the armature. The authors used 
four healthy participants for their research. They per-
formed four sessions of 40 attempts, and the parti-
cipants had to follow the instructions given to them 
by a beep. Users also had to focus on the appropriate 
flashing lights attached to the prosthesis to trigger the 
appropriate prosthetic action. The LED lights were 
not attached accidentally. Each was attached precise-
ly to make the right movement: one LED on the index 
finger to turn right, and one LED on the fifth finger to 
turn left. There were also two LEDs attached to the 
forearm. The first lamp was used to open the hand, 
and the second to close it. The authors proved that an 
SSVEP-based BCI, operating in asynchronous mode, is 
feasible for the control of neuroprosthetic devices.

In this article, T. Beyrouthy et al. [23] presented a 
preliminary design of a mind-controlled, intelligent, 

3D-printed prosthetic arm. The arm is controlled by 
brain commands received from the headset via an 
EEG. The arm is equipped with a network of intelligent 
sensors and actuators. This smart network provides 
the arm with normal hand functionality and smooth 
movements. The arm has different types of sensors, 
including temperature sensors, pressure sensors, 
ultrasonic proximity sensors, accelerometers, poten-
tiometers, strain gauges, and gyroscopes. EEG signals 
are recorded using the Emotiv EPOC wireless head-
set. The EEG signals provided by the input unit are 
sampled and processed by the processing unit. The 
arm is equipped with a special servo and an Arduino 
microcontroller, which ensures an appropriate inter-
face between the mechanical and processing units. 
Multiple sensors allow the arm to interact with and 
adapt to the surrounding environment and to com-
mand the arm and provide feedback to the patient.

In Constantine et al.’s application [24], they used 
a comprehensive model structure, from feature 
construction to classification, using a technological 
neural network. The process of starting from the be-
ginning meant that the initial solution of the team was 
put together by the tools, starting from the beginning 
of the initial instantiation of the computer solution 
(CCI). The proposed architecture is complemented by 
the design and implementation of a hand prosthesis 
with Google Degree of Freedom (DOF). This incor-
porates a Field Programmable Gate (FPGA) that co-
nverts electroencephalographic (EEG) AR gates into 
prosthetic movement. They also proposed a new 
subject selection and grouping technique that is ava-
ilable with the subject’s motor intentions. The model 
implemented with the proposed architecture showed 
a successful pattern of 93.7% and a classification time 
of 8.8 years for FPGA. Their implementation allows 
the application of BCI for the technique used in FPGA 
practice.

In their article, J. W. Sensinger, W. Hill, and  
M. Sybring explore the many aspects that influence the 
ability of an upper limb prosthesis to affect a person’s 
daily life. They argue that these influences can be cate-
gorized into four domains: aspects intrinsic to the per-
son; factors focused on the design, control, and sensory 
feedback of the prosthesis; facets external to the per-
son; and outcome measures used to evaluate devices, 
activities, or quality of life. The purpose of a prosthetic 
device is to improve a person’s quality of life [25].

3. Materials and Methods
The methodology has three stages: acquisition of EEG 
data from the selected BCI device, design and printing 
of a 3D-printed prosthesis hand, and programming of 
the control system. The EEG signal acquisition device 
is the Emotiv EPOC+ NeuroHeadset and has the fol-
lowing specifications [26]: 

- 14 recording electrodes and 2 reference elec-
trodes, offering optimal positioning for accura-
te spatial resolution.

- the channel names based on the international 
10-20 electrode location system are: AF3, F7, 
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F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, 
with CMS / DRL references at locations P3 / P4. 

- uses sequential sampling method, single ADC, 
at 256 SPS (2048 Hz internal) - sample rate per 
second.

- operates at 16-bit resolution per channel with a 
frequency response of 0.16 - 43 Hz.

- supports Bluetooth Smart 4.0 LE.
- has high resolution (14-16 bit)
- typical operating time of the device from a full 

charge is 12 hours. 

The control system is a microcontroller (Arduino 
UNO) and servo (Feetech servo FT6335M standard). 
Arduino is an open-source electronics platform based 
on easy-to-use hardware and software. The Arduino 
UNO is a microcontroller board that has 14 digital 
input/output pins (6 of which can be used as PWM 
outputs), 6 analog inputs, a 16 MHz ceramic resona-
tor (CSTCE16M0V53-R0), a USB connector, a power 
jack, an ICSP jack, and a reset button. It is based on the 
ATmega328P. It is a low-power, 8-bit CMOS microcon-
troller type based on AVR® with an enhanced RISC 
architecture. By executing instructions in a single 
clock cycle, the device achieves processor throughput 
approaching one million instructions per second per 
megahertz, optimizing power consumption compared 
to processing speed. The Arduino UNO board is 5V. It 
has 32 kB of Flash memory, 2 kB of RAM, 14 digital  
I/Os of which 6 can be used as PWM channels, 6 analog 
inputs, and popular communication interfaces [27]. 
The prosthetic hand model was designed in Blender. 
Blender is a free and open-source 3D modeling soft-
ware. It was developed by NeoGeo but has been de-
veloped by the Blender Foundation since 2002. From 
the beginning, Blender’s main programmer was Ton 
Roosendaal. It is available for various hardware and 
software platforms, including Microsoft Windows, 
macOS, and many others. The program caters to all 
the needs of 3D graphic designers. It can model, ani-
mate, simulate, render, compose and track motion, 
edit video, and create 2D and 3D animation [28].

4. Results 
It is reasonable to assume that as a result of the loss 
of the hand (no hand), the brachial plexus is not func-
tioning or may be damaged. This is a bundle of nerve 
fibers running from the spine all the way to the hand. 
It is important for the patient with the artificial hand 
to be able to control the prosthetic hand indepen-
dently with the help of EEG signals. The task of such 
a prosthesis will be therefore the ability to execute 
the commands in correlation with Emotiv EPOC+ 
NeuroHeadset device. This solution will allow the  
patient to fully control his hand even if the nerves in 
the amputated limb are not fully functional.

4.1. EEG Signal Acquisition Device
In the global market, there are many companies produc-
ing Brain-Computer Interface devices. However, two 
companies play a key role: Emotiv Systems and NeuroSky. 

The device that we chose to acquire EEG signals is the 
Emotiv EPOC+ NeuroHeadset. It allows communication 
with a computer based on brain activity, facial muscle 
tension, and emotions. It has 14 recording electrodes 
and 2 reference electrodes. This amount is sufficient in 
this case. It connects wirelessly to the computer and mo-
bile devices and has 9-axis motion sensors. It stands out 
for its long working time (up to 12 hours). The device 
sets up quickly. It is also important to remember to prop-
erly moisten the reference sensors with saline solution 
so that signal reception occurs properly. 

In the box of the EPOC+ Headset (Fig. 1) are:
- Brain-Computer Interface with built-in lithium 

battery,
- universal USB receiver,
- humidifier packet, 
- saline solution,
- USB charger with Mini-B connector,
- quick start guide.

4.2. Expressiv Suite Functions
The Expressiv Suite app in the Emotiv Control Panel 
features an avatar that mimics facial expressions and 
shows teeth clenching, left and right eye movements 
(Fig. 2), eye blinking, left or right eye blinking, eye-
brow raising and smiling. 

Fig. 1. Basic components of Emotiv EPOC+ Neuroheadset

Fig. 2. Screenshot of the application Expressiv Suite 
during looking right
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In this app, there is a control panel next to the 
avatar that allows you to adjust the sensitivity with 
sliders. For each facial expression, you can check its 
effectiveness. If the Expressiv Suite app does not 
respond easily to a particular facial expression, use 
the slider to increase the sensitivity. If the stimulus 
is triggered too easily, causing an unwanted result, 
then use the slider to decrease the sensitivity. You 
can increase or decrease the sensitivity by moving 
the sensitivity slider to the right or left respective-
ly. Each of the seven types of facial expressions can 
also be assigned any action in the form of calling any 
combination of keys or mouse buttons. This makes 
it possible to operate applications, play games or 
control a device such as a wheelchair or prosthesis 
using facial expressions. The EmoKey is used for this 
(Fig. 3). Next to each slider is a key button, which 
is used to configure facial expressions for EmoKey. 
EmoKey combines Emotiv’s technology with appli-
cations, converting detected events into any com-
bination of keystrokes. EmoKey runs in the back-
ground but is safe for your device and allows you to 
create mappings. EmoKey’s mappings are relatively 
simple, like linking the detection of teeth clenching 
to a mouse key press, for example. The app then 
immediately captures the moment when the user 
clenches their teeth. To configure facial expressions 
for EmoKey, you need to select the appropriate 
expression you want to link and click the Key but-
ton next to the description of, for example, clench 
teeth, which will bring up a configuration dialog. 
You can also set the facial expression to be continu-
ous by selecting Hold in the key box. There are also 
options for further configurations, such as key hold 
time and key trigger delay; using these, only actions 
to which key presses are assigned are sent to the 
active application window. Some expressions have 
the option “occurs” and others have “is equal to,”  
“is greater than,” “is less than.” For example, when 
you type “0.3” in the condition field it will cause 
clench teeth to be shown when a clench greater 
than 30% of full scale is detected. You can also 
manage and save Emokey mappings using the 
EmoKey menu at the top of the Control Panel win-
dow. Mappings can be loaded or saved and can be 
suspended.

4.3. Methods of Prosthesis Design
The hand prosthesis was modeled in Blender. Many 
features of the rich software were used to create the 
hand. Among others, scaling, extrude function and 
Bevel function were used. Two solids were used to 
create the prosthesis: a cylinder and a cube. To en-
able the hand to have the right proportions Rotate 
and Move tools were used. The joints were created 
using cylinders, which were placed and scaled ac-
cordingly. The holes in the joints were made using 
the Boolean modifier. The fingers in the hand have 
two joints and resemble hinge joints. They consist 
of three parts, but the latter part is part of the meta-
carpus (Fig. 4).

The saddle joint of the thumb is too complicated, 
so it was replaced by a hinge joint in the hand model. 
The thumb consists of 2 parts (Fig. 5). The latter part 
of the thumb connects immediately to the metacar-
pus, as in the other fingers. In addition, the thumb, so 
that it can replicate the behavior of the human hand, 
has been placed at an angle.

The largest part of the hand and the prosthesis is 
the metacarpus (Fig. 6). It has a special depression at 
the bottom. At the top are parts that are supposed to 
reflect the tendons. 

The hand prosthesis resembles a human hand in 
appearance. However, its mobility is much less, as it 
has only 11 degrees of freedom and includes 9 mo-
vable joints. For the purpose of this project, however, 
this amount is sufficient. The final design of the hand 
prosthesis is shown in Fig. 7. 

4.4. Final Model of Hand Prosthesis
The entire model consists of 10 parts that were 
printed on a 3D printer using PLA filament. 
PrusaSlicer software was used for 3D printing. The 
parts of the prosthesis were printed in two stages 
using the Creality Ender 3 printer. The parts of the 
fingers were printed together with proper spacing, 
and the metacarpals were printed separately. The 

Fig. 3. Screenshot of the application Expressiv Suite 
with used EmoKey for clenching teeth

Fig. 4. Index finger design - side and top view (the red 
circle marks the hooks to which thin lines resembling 
tendons are attached)
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metacarpal took the longest time to print: 10 hours. 
PLA filament in black and gray was used for printing. 
The prototype hand prosthesis consists of 10 parts. 
The parts were properly sawn after printing so that 
they could fit well. The parts of the prototype pros-
thesis were connected using 3 mm diameter screws. 
Figures 8 and 9 show the printed hand before and 
after assembly.

4.5.  The Signal Transmission to the  
Prosthesis Hand

When performing a movement, the user does not 
need to make a muscle movement directly, but sim-
ply clenches his teeth or blinks his eye or raises his 
eyebrows. In creating an appropriate effective ac-
tivity matrix, it is important to differentiate a given 
facial expression, and the movement should be ap-
propriately assigned to a given facial expression. This 
provides the opportunity to properly classify the 
user’s intentions and thus build the executive sys-
tem. Using Emotiv’s EPOC+ device, the EEG signal is 
acquired from the patient’s head surface using elec-
trodes placed on the device. Using the Expressiv Suite 

app included with the Emotiv EPOC+ NeuroHeadset 
hardware, it is possible to identify the facial expres-
sions of the user using the device. The application 
uses EmoKey to assign the appropriate keys from 
the keyboard (i.e., time in µs of servo rotation) to a 
specific facial expression. The serial port monitor is a 
tool available to the Arduino software that allows the 
servo to be controlled. The minimum and maximum 
servo rotation time in µs is stored for a particular 

Fig. 8. 3D printed hand prosthesis – before assembly

Fig. 5. Thumb design

Fig. 6. Metacarpus design

Fig. 7. Final design of hand prosthesis

Fig. 9. 3D printed hand prosthesis – after assembly
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facial expression. Depending on the particular facial 
expression, the servo rotation time that was previ-
ously assigned to the particular facial expression is 
entered on the serial port monitor. This causes the 
servo to rotate, for example, by its maximum angle, 
which gives the effect of a hand movement. The ac-
quisition of the EEG signal from the user’s head to the 
Expressiv Suite application is based on wireless com-
munication using a Bluetooth connection. Receiving 
the signal from the computer by the control system, 
for the time being, is done by wire. A schematic of 
signal acquisition and transmission to the prosthetic 
hand is shown in Figure 10.

4.6. Communication
In the Expressiv Suite app, the user selects given 
facial expressions to which he assigns specific num-
bers using the EmoKey. These numbers are the cor-
responding rotation time of the servo. Two servo 
positions are demonstrated in the project: a 0-de-
gree position and a 180-degree position. The 0-de-
gree position corresponds to a time of 0 µs, and the 
180-degree position corresponds to a time of 2400 
µs. Table 1 shows the relationships, for example, 
of facial expressions to the finger movement of the 
prosthetic hand. A time of 2400 µs was assigned to 
the teeth clench expression and a time of 0 µs was 
assigned to the raised brow expression. When the 
user performs a given facial expression, this servo 
time is outputted on the serial port monitor, caus-
ing it to rotate and move the prosthetic hand. Facial 
expressions can be customized to the user’s liking, 
i.e., instead of a clench teeth, there can be a blink of 
the eye or a smile.

Tab. 1.  Relationship of facial expression to hand finger 
movement

Facial expressions Servo rotation time Movement

clench teeth 2400 µs finger bends

raise brow 0 µs finger bends

4.7. Tests 
The using of the hand prosthesis prototype was 
tested for a selected finger and for selected facial 
expressions. Cables were attached to the prototype 
and to the servo. For the test, the hand prosthe-
sis was placed in such a position that it could be 
moved only through brain waves. It was also neces-
sary to properly place the servo. Then the program 
dedicated to the microcontroller used was turned 

on along with the necessary tool — the monitor 
of the serial port, to be able to control the servo. 
The next step was to properly prepare the Emotiv 
EPOC+ NeuroHeadset. After preparing the de-
vice on the computer, the Expressiv Suite app was 
selected, to which appropriate servo rotation times 
were assigned to the given facial expressions using 
EmoKey. Lifting the eyebrows was assigned “2400” 
and “0” was assigned to the clenched teeth. The 
finger is bent when clamping with the teeth and 
when the eyebrow is lifted, the finger is straight-
ened. Facial expressions can be adjusted depending 
on the user’s preferences; therefore, performance 
tests were also performed during sideways move-
ment of the eyeballs and blinking. It is important 
to concentrate properly when performing a given 
facial expression. User can trace facial expressions 
by looking at the avatar in the Expressiv Suite app. 
It is also advisable that the user, before attempting 
to make movements of such a prosthesis, which is 
controlled by facial expressions, should practice 
the given facial expressions using the Expressiv 
Suite application itself. Fig. 11 shows the user dur-
ing the prototype performance test.

4.7. Artifacts 
The most common BCI is based on EEG signals, and 
there are a number of interferences during the elec-
troencephalographic test. Artifacts can be divided 
into technical and biological. The sources of interfer-
ence are artifacts introduced by physiological pro-
cesses, i.e., muscle activity, facial expression, heart 
rate, and technical solutions, such as the power grid. 
Therefore, the signal must be significantly amplified 
and must also consider the voltages generated at the 
skin-electrode interface. After filtering out mains 
frequency interference and performing the filtering 
and feature extraction the signal should be clean. 
The result of these actions will be the expected sig-
nal properties. Undoubtedly, during diagnostic test-
ing of EEG signals, artifacts are eliminated as much 
as possible. Normal signal EEG (no artifacts) shows 
in Fig. 12. 

Facial expressions, as already mentioned, are 
also among the artifacts, but for the purposes of 
using the Expressiv Suite in Emotiv Control Panel 
artifacts are as desirable as possible. In this appli-
cation, therefore, there is a built-in algorithm for 
the detection of artifacts, or signal interference. 
Figures 12-15 show artifacts during different facial 
expressions. 

5. Discussion
Some difficulties were encountered during the pro-
totype development. The control problem was that 
initially in the concept implementation, the Congnitiv 
Suite app in Emotiv Control Panel could be used for 
control. However, this application requires a very high 
level of concentration and trained senses to be able to 
use it freely. Therefore, it was concluded that it would 
be better to control using the Expressiv Suite app, 

Fig. 10. Diagram of signal transmission to the prosthesis
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Fig. 14. Artifact – EEG signal during raising brows

Fig. 15. Artifact – EEG signal during smiling Fig. 16. Artifact – EEG signal during blinking eyes

Fig. 11. Test of using hand prosthesis

Fig. 12. EEG signal – no artifacts

Fig. 13. Artifact – EEG signal during clenching teeth

which is more intuitive and simpler for the user. It is 
worth noting that, therefore, control by facial expres-
sions is significant for this solution. When modeling 
the prosthetic hand, instead of using 14 joints as in 

the human hand, it was decided that 9 moving parts 
would be sufficient for the purpose of this prototype, 
and the thumb saddle joint, which has too complicat-
ed a structure, was replaced by a hinge joint in the 
hand model. 
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6. Conclusion 
This article shows one of the many proposed solu-
tions for improving the functioning of people without 
an upper limb. This proposal is to control a prosthetic 
arm using brain waves. The use of such a prosthesis 
is very important for disabled people. Such a hand 
prosthesis controlled by facial expressions can help 
amputees and people who have damaged innervation 
in the stump area. This solution uses a non-invasive 
method, so people who are not fully convinced by this 
method can test it for themselves without interfering 
with their bodies.  

AUTHORS
Julia Żaba – Faculty of Electrical Engineering, 
Automatic Control and Informatics, Opole University 
of Technology, Opole, 45-758, Poland, E-mail: j.zaba.
rzedow@gmail.com.

Szczepan Paszkiel* – Faculty of Electrical 
Engineering, Automatic Control and Informatics, 
Opole University of Technology, Opole, 45-758, 
Poland, E-mail: s.paszkiel@po.edu.pl.

*Corresponding author

References
[1] Ramadan, R.A.; Vasilakos, A. V. Brain computer in-

terface: control signals review. Neurocomputing, 
vol. 223, 2017, 26–44, doi:10.1016/J.
NEUCOM.2016.10.024.

[2] Bernal, S.L.; Celdrán, A.H.; Pérez, G.M. Neuronal 
Jamming cyberattack over invasive BCIs af-
fecting the resolution of tasks requiring visual 
capabilities. Comput. Secur. vol. 112, 2022, 
doi:10.1016/J.COSE.2021.102534.

[3] Shivwanshi, R.R.; Nirala, N. Concept of AI for 
acquisition and modeling of noninvasive mo-
dalities for BCI. Artif. Intell. Brain-Computer 
Interface, 2022, 121–144, doi:10.1016/
B978-0-323-91197-9.00007-2.

[4] Dagdevir, E.; Tokmakci, M. Optimization of pre-
processing stage in EEG based BCI systems in 
terms of accuracy and timing cost. Biomed. 
Signal Process. Control, 2021, 67, doi:10.1016/j.
bspc.2021.102548.

[5] Bassi, P.R.A.S.; Rampazzo, W.; Attux, R. Transfer 
learning and SpecAugment applied to SSVEP 
based BCI classification. arXiv 2020, doi:10.1016/j.
bspc.2021.102542.

[6] Vilela, M.; Hochberg, L.R. Applications of 
brain-computer interfaces to the control of robotic 
and prosthetic arms. In Handbook of Clinical 
Neurology; Elsevier B.V., 2020; vol. 168, pp. 87–99.

[7] Na, R.; Hu, C.; Sun, Y.; Wang, S.; Zhang, S.; Han, 
M.; Yin, W.; Zhang, J.; Chen, X.; Zheng, D. An em-
bedded lightweight SSVEP-BCI electric wheel-
chair with hybrid stimulator. Digit. Signal 
Process. vol. 116, 2021, 103101, doi:10.1016/J.
DSP.2021.103101.

[8] Robinson, N.; Mane, R.; Chouhan, T.; Guan, C. 
Emerging trends in BCI-robotics for motor 
control and rehabilitation. Curr. Opin. Biomed. 
Eng. vol. 20,  2021, 100354, doi:10.1016/J.
COBME.2021.100354.

[9] Miladinović, A.; Ajčević, M.; Jarmolowska, J.; 
Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P.P.; 
Accardo, A. Effect of power feature covariance shift 
on BCI spatial-filtering techniques: A compara-
tive study. Comput. Methods Programs Biomed.  
vol. 198, 2021, doi:10.1016/j.cmpb.2020.105808.

[10] Soman, S.; Murthy, B.K. Using Brain Computer 
Interface for synthesized speech communica-
tion for the physically disabled. In Proceedings 
of the Procedia Computer Science; Elsevier B.V., 
vol. 46, 2015; 292–298.

[11] Noori, F.M.; Naseer, N.; Qureshi, N.K.; Nazeer, 
H.; Khan, R.A. Optimal feature selection from 
fNIRS signals using genetic algorithms for 
BCI. Neurosci. Lett. vol. 647,  2017, 61–66, 
doi:10.1016/j.neulet.2017.03.013.

[12] Gubert, P.H.; Costa, M.H.; Silva, C.D.; Trofino-Neto, 
A. The performance impact of data augmentation 
in CSP-based motor-imagery systems for BCI ap-
plications. Biomed. Signal Process. Control, vol. 
62, 2020, doi:10.1016/j.bspc.2020.102152.

[13] Hernández-Del-Toro, T.; Reyes-García, C.A.; 
Villaseñor-Pineda, L. Toward asynchronous 
EEG-based BCI: Detecting imagined words seg-
ments in continuous EEG signals. Biomed. Signal 
Process. Control, vol. 65,  2021, doi:10.1016/j.
bspc.2020.102351.

[14] Shi, B.; Wang, Q.; Yin, S.; Yue, Z.; Huai, Y.; Wang, 
J. A binary harmony search algorithm as chan-
nel selection method for motor imagery-based 
BCI. Neurocomputing, vol. 443,  2021, 12–25, 
doi:10.1016/j.neucom.2021.02.051.

[15] Janani A.; Sasikala M.; Chhabra, H.; Shajil, N.; 
Venkatasubramanian, G. Investigation of deep 
convolutional neural network for classification 
of motor imagery fNIRS signals for BCI applica-
tions. Biomed. Signal Process. Control, vol. 62, 
2020, 102133, doi:10.1016/j.bspc.2020.102133.

[16] Zarrintaj, P.; Saeb, M.R.; Ramakrishna, S.; Mozafari, 
M. Biomaterials selection for neuroprosthetics. 
Curr. Opin. Biomed. Eng., vol. 6,  2018, 99–109.



1212

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  16,      N°  4       2022

[17] Kasim, M.A.A.; Low, C.Y.; Ayub, M.A.; Zakaria, 
N.A.C.; Salleh, M.H.M.; Johar, K.; Hamli, H. 
User-Friendly LabVIEW GUI for Prosthetic 
Hand Control Using Emotiv EEG Headset. In 
Proceedings of the Procedia Computer Science; 
Elsevier B.V., vol. 105, 2017; 276–281.

[18] Lange, G.; Low, C.Y.; Johar, K.; Hanapiah, 
F.A.; Kamaruzaman, F. Classification of 
Electroencephalogram Data from Hand Grasp 
and Release Movements for BCI Controlled 
Prosthesis. Procedia Technol., vol. 26, 2016, 
374–381, doi:10.1016/j.protcy.2016.08.048.

[19] Alazrai, R.; Alwanni, H.; Daoud, M.I. EEG-based 
BCI system for decoding finger movements with-
in the same hand. Neurosci. Lett., vol. 698, 2019, 
113–120, doi:10.1016/j.neulet.2018.12.045.

[20] Downey, J.E.; Brooks, J.; Bensmaia, S.J. Artificial 
sensory feedback for bionic hands. In Intelligent 
Biomechatronics in Neurorehabilitation; Elsevier, 
2019; pp. 131–145 ISBN 9780128149423.

[21] Guger, C.; Harkam, W.; Hertnaes, C.; Pfurtscheller, 
G. Prosthetic Control by an EEG-based Brain-
Computer Interface (BCI).

[22] Müller-Putz, G.R.; Pfurtscheller, G. Control of 
an electrical prosthesis with an SSVEP-based 

BCI. IEEE Trans. Biomed. Eng., vol. 55, 2008,  
361–364, doi:10.1109/TBME.2007.897815.

[23] Beyrouthy, T.; Al Kork, S.K.; Korbane, J.A.; 
Abdulmonem, A. EEG Mind controlled Smart 
Prosthetic Arm. In Proceedings of the 2016 
IEEE International Conference on Emerging 
Technologies and Innovative Business Practices 
for the Transformation of Societies (EmergiTech); 
IEEE, 2016; pp. 404–409.

[24] Constantine, A.; Asanza, V.; Loayza, F.R.; 
Peláez, E.; Peluffo-Ordóñez, D. BCI System us-
ing a Novel Processing Technique Based on 
Electrodes Selection for Hand Prosthesis Control. 
IFAC-PapersOnLine, vol. 54,  2021, 364–369, 
doi:10.1016/J.IFACOL.2021.10.283.

[25] Sensinger, J.W.; Hill, W.; Sybring, M. Prostheses—
Assistive Technology—Upper. Encycl. Biomed. 
Eng. vols. 2-3, 2019, 632–644, doi:10.1016/
B978-0-12-801238-3.99912-4.

[26] EMOTIV Website online: www.emotiv.com  
(accessed on August 2022)

[27] ARDUINO Website online: https://store.ardui-
no.cc/ (accessed on August 2022)

[28] BLENDER Website online: www.blender.org  
(accessed on August 2022)


