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Abstract:
Simultaneous Localization and Mapping (SLAM) is
applied to robots for accurate navigation. The stereo
cameras are suitable for visual SLAM as they can give
the depth of the visual landmarks and more precise
estimations of the robot’s pose. In this paper, we present
a survey of SLAM methods, either Bayesian or bio‐
inspired. Then we present a new method of SLAM, which
we call stereo Extended Kalman Filter, improving the
matching by computing the innovationmatrices from the
left and the right images. The landmarks are computed
from Oriented FAST and Rotated BRIEF (ORB) features
for detecting salient points and their descriptors. The
covariance matrices of the state and the robot’s map
are reduced during the robot’s motion. Experiments are
done on the raw images of the Kitti dataset.

Keywords: Simultaneous localization and mapping,
stereo cameras, extended Kalman filter, mobile robots,
navigation

1. Introduction
Simultaneous Localization and Mapping (SLAM) is

an essential task for robot navigation. It allows the
robot to reach its goal without errors because it is
suitable for planning an optimal path and avoiding
obstacles. The robot uses several sensors to construct
maps, such as cameras, LIDAR arrays, or IMUs. As
maps are computed when the robot moves, local‐
ization is vital for mapping. Several new mapping
methods have recently appeared to allow the robot
to be autonomous in indoor environments, allowing
robots to do tasks such as cleaning houses. Also, out‐
door environments must be mapped for tasks such as
autonomous driving.

The robot SLAM includes several techniques,
which can be divided into Bayesian and bio‐inspired
methods using neural networks and deep learning.
The Bayesian approach constructs maps by taking
data from sensors and building representations of
the environment using landmarks, point clouds, or
graphs. The bio‐inspired techniques are inspired by
neuroscience, especially the place cells and the grid
cells to build representations. Another distinction
between SLAM maps is that they can be metrical
or topological. The metrical maps are based on the
extraction and tracking of landmarks computed using
the SLAM methods.

The topological maps construct graphs represent‐
ing places and then link those places with edges. The
edges in topological maps are suitable for planning as
they show the cost of navigation from one place to
another by avoiding obstacles. More attention is given
to each technique in the following paragraphs.

The Bayesian mapping methods are divided into
those that use landmarks and those that use objects.
Both optimize the robot’s pose and the map regarding
the motion commands and the observations. Mapping
with landmarks is generally based on creating sparse
representations of the environment with the vision or
laser scans. Mapping with objects uses deep learning
techniques to detect the objects; these deep learn‐
ing detections require increased GPU performances
but are more accurate. The data association in such
scenarios is accomplished using semantic labels to
associate the 3D objects in the map with the new
measures. Moreover, topological maps with objects
use deep learning methods for object detection and
scene segmentation. They use the concept of place, a
node in a graph representing, for instance, an ofϐice
and a kitchen, and the relation between the places’
edges. Each place could be a class obtained with scene
segmentation with Convolutional Neural Networks or
a set of objects.

In contrast, bio‐inspired methods rely upon the
domain of navigation of the mammal brains. Grid cells
and the place cells in the mammalian entorhinal cortex
and the hippocampus are responsible for localization
and mapping. These cells provide machinery for the
indexing of poses and places through path integra‐
tion and perceptions. The mammal can construct a
topological map that allows it to navigate accurately
to its goal. Bio‐inspired methods aim to replicate this
process in robotic SLAM applications.

This paper aims ϐirst to make a short survey of
SLAM methods and then to present a new method
of SLAM with stereo cameras using ORB features.
The new method extends the Monocular SLAM but
uses the ORB features suitable for SLAM due to their
robustness when viewpoints and scale change. This
new method improves the active search algorithms
used in Monocular SLAM by considering the right and
left images measurements to increase the number of
matchings.
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Figure 1. The creation of two places using objects
detected with Convolutional Neural Networks by
considering each object as a vertex in a graph and two
places are connected with an edge

The paper is organized as follows: First, we present
a survey of visual SLAM methods; second, our method‐
ology, which consists of fusing information from the
stereo camera to increase the number of correct
matchings in ϐiltering the observations, third, we
adress the experiments and results; ϐinally, we present
the conclusion.

2. A Survey of SLAM Techniques
Visual SLAM using landmarks

The paper [18] presents a method of localization
and mapping with Radio Frequency Identiϐiers, which
uses the Blackwellized localization technique based
on particle ϐilters. It extends the metrical mapping
with a topological map for trolley navigation in a
supermarket. The paper [4] presents a survey of the
SLAM methods during the last decade. The seminal
work of visual SLAM is [6], which used Extended
Kalman Filter (EKF) with a monocular camera. The
work [15] presents a method of visual SLAM that ini‐
tializes the landmark using their inverse depth. This
measurement changes when the camera moves, and
thus its covariance is reduced. When a new landmark
is created, the number of detected landmarks is low,
and its inverse depth is also initialized. The ORB SLAM
2 and 3 uses bundle adjustment instead of EKF to
update the current pose and all the poses from the
start position [16], [5]. It describes the scene with the
visual bag of words DBow2 library [10] , which are
used for place recognition as well.
2.1. Brain Inspired SLAM

The work in [2] is signiϐicant as it builds a system of
localization and mapping using the grid and place cells
knowledge. It uses a continuous attractor network to
implement a neural ϐield to model the robot’s path
integration.

Figure 2. 2 maps created with the Growing When
Required Network by clustering the places by
computing distances between the current one and the
others based on the activity of the neurons

It builds a Hebbian neural network to model the
place recognition of the robot. A map is built to show
in the world frame the activity of the pose cell net‐
work. This map is semi‐topological, and it connects
the nodes with edges representing the direction of the
motion of the robot’s head. A path planning Dijkstra
algorithm is implemented as well in the RatSLAM. An
extension of RatSLAM called NeuroSLAM is developed
to deal with 3 dimensions experience maps, including
the XYZ world frame coordinates. In this work, the
depth is also coded in the pose cell network [28]. In
[19], a new brain‐inspired SLAM system that extends
the NeuroSLAM and exploits the semantics of scenes is
developed. It trains a continuous attractor network by
stimulating it with visual objects. Then, it constructs
2D/3D experience maps and relax them.

2.2. SLAM with Objects

[26] built a SLAM system with dynamic objects
at different semantic levels. They proposed a missed
detection compensation algorithm based on the speed
invariance in adjacent frames. [27] proposed a real‐
time and robust visual SLAM system based on ORB‐
SLAM2 for a dynamic environment. They incorpo‐
rated deep learning object detection for preprocess‐
ing data relied on dynamic targets or static objects.
They reduced the tracking errors and enhanced the
accuracy of the computation of the pose and the map.
[7] worked with semantic and geometric uncertainty
inherent in object detection methods, modeled the
non‐linear data association with objects, and devel‐
oped a max‐mixture type model that accounts for mul‐
tiple data association hypotheses for object detection
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Figure 3. Overview of our method

with Mobile Net Single‐Shot multibox Detection (SSD).
[8] solved the semantic SLAM problem using non‐
parametric belief propagation. [22] formulated lidar
inertial odometry atop a factor graph by marginalizing
old lidar scans to a global map.
2.3. Place Recognition

The survey in [14] [13] presented several meth‐
ods for Visual Place Recognition (VPR) and how it is
shaped by the recent advances in deep learning. Then
the survey shows how metric‐learned techniques are
used to develop such systems in the presence of occlu‐
sions and distortions in the images. They concluded
that the future trends in image classiϐication, object
detection, and methods related to learning objects
such as buildings would affect long‐term place recog‐
nition. In recent research, deep learning methods
have become useful in VPR, such as in [24] where
they boosted the performance of learned features
with geometric transformations based on reasonable
domain assumptions about navigation on a ground
plane. Besides, detecting loop closures with the VPR
approach is very important as it allows correction of
the robot’s trajectory on a topological map. In ORB‐
SLAM 2 and 3 [5, 16], they detect candidates of loops
by extracting and comparing a visual bag of words
ORB features from the current keyframe and those not
directly connected to this keyframe and which are con‐
nected in the Covisibility graph. [25] developed a new
deep learning technique to detect loop closures using
hierarchical retrieval of frames from video streams
collected by a mobile robot.

In [17], a self‐supervised approach using deep
learning is proposed to allow robot learning from
examples of loops that used GPS‐aided navigation. The
robot learned a distance metric for visual descriptors
using Convolutional Neural Networks for place recog‐
nition. They used a corset method to detect loops for
retrieving frames [25] . There are several methods to
detect places and create maps. Another application of
VPR systems is using objects instead of visual features.
In [9], objects are detected from Kinect 3D data used to
build a topological graph of objects (see Fig. 1). Then
from this graph, a topological map is created where
places are detected based on the distance between
objects. A pair‐wise matching score between the cur‐
rent and previous places is computed to decide if a
place is familiar to detect the loop. This pair‐wise
matching score depends on the environment. Image‐
quality high‐resolution 3D point clouds can also be
used to identify places by describing scenes with
DBoW features and then applying Perspective‐n‐Point
(PnP) to detect places [23]. Finally, places can also
be detected using semantic segmentation to create
suϐle maps from registered frames by using Condi‐
tional Random Fields or semantic labeling to correlate
objects to scenes extracted with convolutional neural
networks [1].
2.4. Brain Based Navigation

The navigation using bio‐inspired models can be
done for mapping or localization. One of the seminal
works in modeling the associative learning in place
cells and grid cells is in [20].
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An associative neural network models the posi‐
tioning of a mammal with place cells for place recogni‐
tion or grid cells for localization at different scales in
the space.

Another model for explaining connections
between place cells and grid cells is developed in [12].
This one has inputs and outputs from place cell
activities. By learning weights of connections to the
hidden layer representing the grid cells, triangular
patterns are generated. Inhibitory connections are
used between the neurons of the hidden layers, which
makes the model recurrent as well.

The navigation is not only relied on the place and
grid cells but also to object vector cells used by the
brain to memorize the places that visited an animal
by taking as landmarks the objects regardless to their
type [11]. It has been shown that the object vector cells
spike when the animal is near an object. Each object
relies on one or several neurons. The neurons’ ϐiring
ϐield depends on the distance and the vector between
the animal and the detected object. Those cells create
a memory of the animal able to know when a place is
familiar.

The Growing When Required networks are also
used in [29] to model the place cells activities. This
auto‐associative network can create maps of the robot
for planning in a topological graph where nodes are
the places, and the edges are the path between places
(Fig. 2). The cost of each path depends on the existence
of an obstacle. Thus, a direct and forward model of the
robot motion is developed with dynamic neural ϐields,
which take as stimuli the camera data and predicts
the actions that the robot should take [29]. The slow‐
ness of the variation of the activities of the place cells
and head direction cells is modeled with Slow Feature
Analysis.

The modeling of the activity of grid cells in complex
environments has been performed with deep rein‐
forcement learning networks in [3]. Patterns similar to
the experiments are obtained by training a deep neu‐
ral network that learns from the place cells’ activities
and head direction cells. Therefore, the artiϐicial agent
can localize itself in an unfamiliar environment using
the model.

3. Presentationof the StereoSLAMwith Fusion
of Innovation Jacobians

3.1. Overview and Contribution

We present in this paper a new method of visual
Simultaneous Localization and Mapping (Fig. 3) using
stereo cameras which provides the depth of the 3d
camera points. The problem of SLAM is tackled with
the ϐiltering approach using Extended Kalman Filter
to estimate the pose of the robot and the maps. We
start by initializing our system with a set of landmarks
computed with triangulation of ORB feature points
(Fig. 4). The state of the camera (Eq. 1) is updated
with the perception of those landmarks. As the robot
acquires stereo images, it has as an observation of the
right and the left images.

When using only the right or the left images, we
noticed some steps where the robot could not update
the pose with EKF caused by the lack of correct match‐
ings or because the jacobian of the innovation is very
high. When it is the case, the active search region in the
new frame cannot be processed because it depends on
the eigenvalues of the covariance of the innovation.
Therefore, we compute the innovation matrices for
the right and left images and do matching against the
ORB feature points using template matchings. Then
we fuse the two measures by discarding the redundant
features. The steps characterizing our system are as
following (see algorithm):

Result: Algorithm of Stereo EKF SLAM
matched_landmarks={}
X=null
for i≤ len(way_points) do
if map ={} then

initialize_map()
initialize_state()

end
else

if len(matched_landmarks≤ 50 then
initialize_new_landmarks()

end
[�̃�𝑡 , ̂Σ𝑡]=prediction(slam, robot_model)
compute_covariance_of_new_landmarks()
for j≤ len(all_landmarks) do
if landmark[j] is observable then

ℎ𝑡𝑟 𝑗=inverse_stenope_model
(landmark[j], right)
ℎ𝑡𝑙 𝑗=inverse_stenope_model
(landmark[j], left)
𝐻𝑖𝑙=observationJacobian(ℎ𝑡𝑟 𝑗)
𝐻𝑖𝑟=observationJacobian(ℎ𝑡𝑟 𝑗)

end
end
𝑆𝑟=compute_innovation_matrix_right()
𝑆𝑙=compute_innovation_matrix_left()
𝑧𝑡 = matching(𝑆𝑟 , 𝑆𝑙)
[�̃�𝑡 , ̃Σ𝑡] = update(�̂�𝑡 , ̂Σ𝑡 , ̂𝑧𝑡 , ℎ𝑡)

end
end

1) Extraction of ORB features: We choose ORB fea‐
tures for the scene understanding as they are
invariant to rotation and multi‐scale. Thus when
we use them, the robot could update the landmarks
of the map points (landmarks). They are extracted
with a rate of 0.03 second per image, which is per‐
formant comparing to SURF 0.04 second or SIFT
0.13 second. The ORB descriptor uses a rotated
version of BRIEF according to the orientation of the
key points [21].

2) Initialization themap:The map is initialized with
50 landmarks computed by triangulating ORB fea‐
tures in the right and left images. The initial poses
of the landmarks are computed at the reference
frame. The initial pose of the camera is taken at the
reference position also.
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Figure 4.Matching of ORB features between two left and right images by taking 20 matchings using the correspondance
of keypoints inside the red rectangle plane

3) Extraction of frames and keyframes: We extract
a frame composed of the robot’s pose at each step,
including 3d coordinates and the quaternion, and
the angular and linear velocities. It also includes
the ORB feature points and their BRIEF descrip‐
tors. We create a Keyframe if the robot passes four
frames.

4) Computation of the innovation: We project the
3D map points in the right and the left cameras, and
we compute the two innovation matrices. Then we
do matchings in the left and the right images using
the two innovation matrices which are of size (2,2).

5) Filtering with EKF: The ϐiltering is done for each
keyframe by applying the Extended Kalman Filter
(EKF) . The update is done by projecting the land‐
marks of the map in the right and left image planes.
The matching points are used for the update.

3.2. State Vector of the Stereo Camera

Let’s have the state of the camera ϐixed on the robot
given with the following vector (Eqs. 1, 2):

𝑋𝑡 = ൣ𝑟𝑤𝑐 𝑞𝑖 𝑉𝑖 𝜔𝑖൧ (1)

Where 𝑟𝑤𝑐 is the 3d pose of the camera in the absolute
frame, 𝑞𝑖 is the orientation quaternion, 𝑉𝑖 is the linear
velocity, and 𝜔𝑖 is the angular velocity.

The covariance of the pose of the camera is a 13*13
matrix represented by:

⎡
⎢
⎢
⎣

𝜎𝑥𝑥 𝜎𝑥𝑦 ⋯ 𝜎𝑥𝜔
𝜎𝑦𝑥 𝜎𝑦𝑦 ⋯ 𝜎𝑦𝜔
⋮

𝜎𝜔𝑥 𝜎𝜔𝑦 ⋯ 𝜎𝜔𝜔

⎤
⎥
⎥
⎦

(2)

3.3. The Representation of the Visual Feature

We represent each visual feature as a Cartesian
vector in the world [𝑦𝑖 = 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖] where 𝑍𝑖 is com‐
puted by the triangulation of ORB features from the
left and the right image planes using the baseline of
the stereo camera. We start by initializing the map by
several features obtained by a stereo camera. We use
ORB features as salient features to describe the ϐirst
frame. To obtain the features in the camera frame, we
apply the triangulation Equation (3):

𝑥3𝐷 = ൤𝑏.(𝑢𝑟−𝑢0)
𝑑

𝑏.(𝑣𝑟−𝑣0)
𝑑

𝑓.𝑏
𝑑

𝑇൨ (3)

Where b is the baseline expressed in meter, 𝑢0 and
𝑣0 are the coordinates of the optical center, f is the
focal distance expressed in pixels, and 𝑢𝑟 and 𝑣𝑟 are
the coordinates of the matched feature in the right
image.

The depth d is computed using the triangulation
of matching feature points by considering the epipo‐
lar constaint. In the world frame, the landmark (map
point) is given with the following equation:

𝑦𝑖 = 𝑅𝑐𝑤 ∗ 𝑥3𝐷 + 𝑡𝑐𝑤 (4)

Where𝑅𝑐𝑤 and 𝑡𝑐𝑤 are the rotation and the translation
matrices from the robot to the world frame given with
the visual odometry module of the robot.
The motion model of the camera

We obtain the linear and angular velocities from
visual odometry using viso2_ros node in the Robotic
and Operation System (ROS). We modiϐied the motion
model in [6] as the velocity is not constant (Eq. 5).
We start by initializing the ϐirst pose of the camera;
then, we compute the new 3d pose by multiplying the
previous pose by the rotation matrix 𝑅𝑐𝑤 and adding
the product of the velocity and the time slot between
two successive frames.

[𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡] = 𝑅𝑐𝑤 ∗ ቎
𝑥𝑡−1
𝑦𝑡−1
𝑧𝑡−1

቏ + 𝑉𝑡−1 ∗ 𝑑𝑡 (5)

𝑉𝑡 has 3 components 𝑣𝑥 , 𝑣𝑦 and 𝑣𝑧 .dt is the time differ‐
ence from the t‐1 to t

We convert the rotation quaternion of the camera
to Euler angles, 𝜓, 𝜃, and 𝜙.

We update those angles using the angular velocity
vector 𝜔 (Eqs. 6, 7, 8):

𝜓𝑡 = 𝜓𝑡−1 + 𝜔𝑥 ∗ 𝑑𝑡−1 (6)
𝜃𝑡 = 𝜃𝑡−1 + 𝜔𝑦 ∗ 𝑑𝑡−1 (7)
𝜙𝑡 = 𝜙𝑡−1 + 𝜔𝑧 ∗ 𝑑𝑡−1 (8)

Where 𝜔 = [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧] is the angular velocity of
the camera.

Then we express 𝜓𝑡 , 𝜃𝑡 , 𝜙𝑡 in terms of the quater‐
nion.

The next camera state is expressed with the vector
of dimension (13, 1) (Eq. 9):

ൣ𝑥𝑡 𝑦𝑡 𝑧𝑡 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑡 𝑉𝑡 𝜔𝑡൧ (9)

Observations of the landmarks

The camera captures the image, and the robot
observes the nearest landmarks on the map. By match‐
ing map points to image points, the robot can correct
its pose. Then it should project them using the inverse
pinhole model to the new keyframe.
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Let us have the pose of the landmark 𝑦𝑖 in the
world frame. The pose of this feature in the camera
frame is given with its observation:

ℎ𝑅𝐿 = 𝑅𝑅𝑊(𝑦𝑊𝑖 − 𝑟𝑊) (10)

Where 𝑅𝑅𝑊 is the inverse of the rotation matrix
given by transforming the quaternion of the robot
state to a rotation matrix, and 𝑟𝑊 is the pose of the
camera in the world frame.

To get coordinates of the predicted feature, we
multiply it by the intrinsic parameters of the right and
the left cameras:

For the left camera, the observation is given with
(Eq. 11).

ℎ𝑖 = ቈ𝑢𝑣቉ = ൦
𝑢𝑙0 − 𝑓𝑘𝑙𝑢

ℎ𝑅𝐿𝑥
ℎ𝑅𝐿𝑧

𝑣𝑙0 − 𝑓𝑘𝑙𝑣
ℎ𝑅𝐿𝑦
ℎ𝑅𝐿𝑧

൪ (11)

Where 𝑢𝑙0, 𝑣𝑙0, 𝑓𝑘𝑙𝑢 and 𝑓𝑘𝑙𝑣 are the standard
camera calibration parameters.

The same equation is for the right camera expects
that we use its speciϐic intrinsic parameters.
3.4. Active Search

We project the landmarks in the left and the right
images to make data associations between the land‐
marks and the detected ORB features associated with
them. We project on the left and the right image planes
to compute the left and right innovations matrices.
Then we look for the best matchings using the tem‐
plate matching algorithm for the two images. We con‐
sider the two planes because when we use only the left
or the right image, it appears that in some places, we
do not have a lot of associations or no one at all. Thus,
the update is not accurate. With our method, at each
step, we have good association.
Estimation of the camera pose

The Extended Kalman Filter applied to visual
SLAM with stereo cameras is similar to one of the
monocular cameras in [6] and [15] in such a way that it
uses the active search to match the predicted features
and the measured ones. Indeed, To determine the area
in which we apply template matching, we should com‐
pute the Jacobian matrix 𝑆𝑖 given with (Eq. 12):

𝑆𝑖 =
𝛿𝑢𝑑𝑖
𝛿𝑥𝑣

𝑃𝑥𝑥
𝛿𝑢𝑑𝑖
𝛿𝑥𝑣

𝑇
+ 𝛿𝑢𝑑𝑖

𝛿𝑥𝑣
𝑃𝑥𝑦𝑖

𝛿𝑢𝑑𝑖
𝛿𝑦𝑖

𝑇

+ 𝛿𝑢𝑑𝑖
𝛿𝑦𝑖

𝑃𝑦𝑖𝑥
𝛿𝑢𝑑𝑖
𝛿𝑥𝑣

𝑇
+ 𝛿𝑢𝑑𝑖

𝛿𝑦𝑖
𝑃𝑦𝑖𝑦𝑖

𝛿𝑢𝑑𝑖
𝛿𝑦𝑖

𝑇
+ 𝑅 (12)

here 𝑥𝑣 is the pose of the camera, 𝑢𝑑𝑖 is the distorted
feature point in the image, and 𝑦𝑖 is the feature in the
world frame. Also, R is the noise of the observation of
pixels.

Also, 𝑃𝑥𝑥 is the covariance of the robot pose of size
(13*13). 𝑃𝑥𝑦𝑖 is the covariance between the camera
pose and the feature a 13*6 matrix, and 𝑃𝑦𝑖𝑥 is the
transpose of 𝑃𝑥𝑦𝑖 , and P𝑦𝑖𝑦𝑖 is the covariance of the
features a 3*3 matrix.

In order to compute the error on the feature, we
should compute the covariance of each initialized fea‐
ture (Eq. 13): In the context of stereo camera, the com‐
putation of 𝛿𝑦𝑖

𝛿ℎ is done with the following equation
because we have 3 components of the image point:

𝛿𝑦𝑖
𝛿ℎ =

⎡
⎢
⎢
⎢
⎣

𝑏∗𝑥𝑙
𝑥𝑙−𝑥𝑟

2
0 0

−𝑏 𝑏∗𝑦𝑙
𝑥𝑙−𝑥𝑟

𝑏
𝑥𝑙–𝑥𝑟

0
−𝑏( 𝑓

𝑥𝑙−𝑥𝑟
)2 0 0

⎤
⎥
⎥
⎥
⎦

(13)

Where (𝑥𝑙 , 𝑦𝑙) and (𝑥𝑟 , 𝑦𝑟) are the image coordi‐
nates in the left image and its corresponding in the
right image, and b is the baseline, and f is the focal
length.

The jacobian S (12) is computed for the two planes
and the matching is performed using the left and right
jacobians. Indeed, some points have the jacobian very
high, so the uncertainty ellipse around the measured
ORB feature point is not suitable. That is why we
should use a lot of matchings.
Estimation of the camera pose and its covariance with
EKF SLAM

We use the Extended Kalman Filter to compute the
new estimated pose of a robot, for that we compute
the Kalman gain using the equation (Eq. 14):

𝐾 = 𝐻 ∗ 𝑃𝐻𝑇 + (𝐻 ∗ 𝑃 ∗ 𝐻𝑇 + 𝑅)−1 (14)

Where:
H is the jacobian of the measures computed using

the model of observation of the stereo camera. We
compute H for the right and the left cameras by mea‐
suring each landmark. It is observable if it is pro‐
jected on the image plane. The jacobians are computed
by differentiating the h function (see Eq. 10) by the
pose of the camera and its quaternion. We compute
the updated pose of the camera using the equation
(Eq. 15):

�̃�𝑡 = �̂�𝑡 + 𝐾𝑡 ∗ (𝑧𝑡 − ℎ(�̂�𝑡)) (15)

Where �̃�𝑡 is the predicted robot state with the
motion model, 𝑧𝑡 is the measured matched map points.
Moreover we compute the updated covariance using
this formula (Eq. 16):

̃𝑃𝑡+1 = (𝐼 − 𝐾𝑡+1.𝐻𝑡+1) ̂𝑃𝑡+1 (16)

Where ̂𝑃𝑡+1 is the predicted covariance of the cam‐
era and I is an identity matrix of size (13+numbre of
features)*(13+numbre of features).

4. Results and Discussion
Experiments

We have implemented our system using the
Python language on ROS melodic distribution. We
used the Kitti dataset (2011_09_26_drive_0017) for
the tests. The odometry data is obtained with the
visual odometry node (viso_2 ros), which we run in
ofϐline to obtain the linear and angular velocities.
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Table 1. The intrinsic parameters of the stereo camera
(left and right planes) have the same values

𝑓𝑥 7.21𝑒−4 m
𝑓𝑦 7.21𝑒−4 m
𝑐𝑥 1242 pixels
𝑐𝑦 375 pixels
𝑑𝑥 10𝑒−6 m
𝑑𝑦 10𝑒−6 m

baseline 0.06216 m

Table 2. Noise of velocities

Noise of linear velocity 6m/s
Noise of angular velocity 1 rad/s

0 20 40 60 80 100 120
x axis (meter)

−80

−70

−60

−50

−40

−30

−20

−10

0

y 
ax

is 
(m

et
er
)

The ground truth of the �obot which poses are computed using  isual odometry

Figure 5. The trajectory obtained with visual odometry
with the viso2ros package of ROS

The tracking method is implemented in a Python
thread to allow parallel programming such as in [16].

We used the calibration data available in the Kitti
dataset (table (1).

Our system allows us to update the camera pose
and the landmarks with the EKF. The choice of the
noises on the image pixels and the robot poses is as
follows: 5 pîxels for computing covariance of the pixel
measurements 𝑅𝑖 , 6m/s for the linear velocity, and
1rad/s for the angular velocity.
4.1. The Trajectory of the Camera Using Visual Odome‐

try

We used viso_2ros package to compute the trajec‐
tory of the kitti car using the mono_odometer node.
We obtain the following trajectory (Fig. 5):

We add some noise to this trajectory to apply
the prediction step of the Extended Kalman Filtering
(Fig. 2). the red line represents the true trajectory of
the robot which is used to evalueate the algorithm of
position computation. Using the prediction equations,
we obtain the following ϐigure where we remark that
the covariance of the position increases, which is nor‐
mal as the robot does not correct its position regarding
the ground truth.
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Figure 6. Predicted positions and covariances of the
camera
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Figure 7. The estimation of the pose of the robot in 2D.
The ellipses of the covariance are reduced inside the
trajectory of the robot due to the application of EKF

Figure 8. The projection of the landmarks of the map on
the right and the left images in the time 𝑇1. The red
ellipses represent the covariances of the near
landmarks observed in the new keyframe.

4.2. Update of the Pose of Robot

We update the state of the robot (Fig. 7) by ϐil‐
tering noise accumulated on the linear and angular
velocities, which depends on the location of the cam‐
era and its quaternion. The following ϐigure shows
the estimation of the robot poses with covariances
reduced comparing to the predicted case (Fig. 6). The
covariance of the error on the estimation of the robot
pose is reduced after the robot is moving.
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Figure 9. The projection of the landmarks of the map on
the right and the left images in the time 𝑇2. The red
ellipses represent the covariances of the near
landmarks observed in the new keyframe.

Figure 10. Detected landmarks using the projection on
the camera model in the plane XY

Figure 11. The tracking of the landmark 48 with the
ellipses of the covariance in the plane XZ (Z is the depth)

4.3. Update and Management of Map

To update the map, we use the correction step of
the EKF but after doing an active search of the correct
matches to reobserve the map points and reduce their
uncertainty. The matching threshold of the template
matching is set to 0.8. The patch of the template match‐
ing is set to 20 pixels. We consider the undistorted
ORB feature points in our implementation.

The ϐigures (Figs. 8, 9) show the tracking of the
ORB features with EKF.

Moreover, the computed landmarks at time t show
their XY poses with uncertainty (Fig. 10). This latest is
reduced when the camera moves because of the appli‐
cation of the Kalman gain. We also show the evolution
of the landmark of number 48 (Fig. 11). In this ϐigure,
we represent the XZ coordinates in the image plane to
view the depth of the features. This latest should be
lower than a threshold to accept it. This threshold is
set in our experiment to 40 ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒.
4.4. Discussion

We remark in the Figure 7 that the ellipse of covari‐
ances is reduced because of the application of the
update of the extended Kalman ϐilter. When we com‐
pare to the Figure 6, the ellipses are smaller. When

we increase the number of extracted ORB features, the
result is better, but the computation time is higher
because of the complexity of the template matching.
Also, if the number of observable landmarks is lower
than a threshold at each keyframe, we should add
new features to the map. We set the threshold to 50
features for our experiment. otherwize we keep only
50 observations from the camera which are taken ran‐
domly.

5. Conclusion
In this paper, we presented a new method of stereo

SLAM using the ORB feature points. We improved the
jacobian matrix of the image observation of the update
of the EKF to include matching from the left and the
right images using two jacobians of the variation of
the measures of the ORB features. This optimize the
ϐiltering with EKF. We proved that our method reduces
the error’s covariance associated with the state of the
robot and the map. We mentioned that stereo cameras
with ORB features are convenient for visual SLAM
as we could get the depth by triangulation without
inverse depth parametrization. From perspective, we
could use visual objects instead of landmarks to get
the observations and use a neural network learning
algorithm for creating the metrical map such as Grow‐
ing When Required Networks. We could also develop
a SLAM based on the poses of landmarks using a com‐
petitive neural network.
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