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Abstract:
EEG‐based emotion classification is considered to sep‐
arate and observe the mental state or emotions. Emo‐
tion classification using EEG is used for medical, security
and other purposes. Several deep learning and machine
learning strategies are employed to classify the EEG
emotion signals. They do not provide sufficient accu‐
racy and have higher complexity and high error rate.
In this manuscript, a novel Reinforced Spatio‐Temporal
Attentive Graph Neural Networks (RSTAGNN) and Con‐
textNet for emotion classification with EEG signals is
proposed (RSTAGNN‐ContextNet‐GWOA‐EEG‐EA). Here,
the input EEG signals are taken from two benchmark
datasets,namely DEAP and K‐EmoCon datasets. Then,
the input EEG signals are pre‐processed,and the fea‐
tures are extracted utilizing ContextNet with Global Prin‐
cipal Component Analysis (GPCA). After that, the EEG
signal emotions are classified using Reinforced Spatio‐
Temporal Attentive Graph Neural Networks method.
RSTAGNN weight parameters are optimized under the
Glowworm Swarm Optimization Algorithm (GWOA). The
proposed model classifies the EEG signal emotions with
high accuracy. The efficacy of the proposedmethod using
the DEAP dataset attains higher accuracy by 24.05%,
12.64% related to existing systems, like Multi‐domain
feature fusion for emotion classification (DWT‐SVM‐EEG‐
EA‐DEAP), EEG emotion finding utilizing fusion mode
of graph CNN with LSTM (GCNN‐LSTM‐EEG‐EA‐DEAP)
respectively. The efficiency of the proposedmethod using
the K‐EmoCon dataset attains higher accuracy 32.64%,
15.65% related to existing systems, like Toward Robust
Wearable Emotion Realization along Contrastive Repre‐
sentation Learning (CAT‐EEG‐EA‐K‐EmoCon) and Human
Emotion Recognition using Physiological Signals (CAT‐
EEG‐EA‐K‐EmoCon) respectively.

Keywords: emotion recognition, electroencephalogram
(EEG), reinforced spatio‐temporal attentive graph neu‐
ral networks (RSTAGNN), glowworm swarm optimization
algorithm (GWOA)

1. Introduction
Emotions have a signiϐicant role in human

decision‐making, interaction, and cognitive
processes [1]. As technology and knowledge of
emotions advance, there are more prospects for
autonomous emotion identiϐication systems [2].

There have been successful scientiϐic advances
in emotion identiϐication utilizing text, audio, facial
expressions, or gestures as stimuli [3]. However,
one of the new and intriguing routes this research
is taking is the use of EEG‐based technology for
automatic emotion identiϐication, which is becom‐
ing less invasive and more economical, leading to
widespread usage in healthcare applications [4]. The
emotions of a person can be identiϐied using physio‐
logical signals or non‐physiological signals like video
and audio. Between these, the physiologic signals
such as EEG (Electroencephalogram), ECG (Electro‐
cardiogram), SC (Skin Conductance), and Electromyo‐
gram (EMG) accurately deϐine the emotion of humans
related to the other counterparts, but it does not pro‐
vide enough results of classiϐication of emotions [5].
This reason lies in the fact that EEG signals are mea‐
sured directly at the surface of the brain, represent‐
ing the actual human condition. EEG‐based emotion
analysis is useful for patients suffering from stroke,
seizurediagnosis, autism, attentiondeϐicit, andmental
retardation [6]. Several deep learning and machine
learningmethods are used to categorize the EEG emo‐
tion signals from the input dataset, but thosemethods
do not provide sufϐicient accuracy, and the complexity
and error rate were high [10–14]. The goal of this
paper is to overcome these issues.

The main contributions of this manuscript are
summarized below:
‐ A novel RSTAGNN and ContextNet for emotion clas‐
siϐication with EEG signals is proposed (RSTAGNN‐
ContextNet‐GWOA‐EEG‐EA).

‐ The input EEG signals are taken from two bench‐
mark datasets such as DEAP [14] and K‐EmoCon
dataset [15].

‐ The input EEG signals are pre‐processed, and fea‐
ture extraction is done using ContextNetwith Global
Principal Component Analysis (GPCA) [7].

‐ After that, the EEG signal emotions are classi‐
ϐied using the Reinforced Spatio‐Temporal Attentive
Graph Neural Networks (RSTAGNN) [8] method.

‐ RSTAGNN weight parameters are optimized using
GWOA [9]. Finally, the model classiϐies the EEG sig‐
nal emotions with high accuracy.

‐ The proposed technique is executed in theMATLAB.
The metrics, like accuracy, precision, recall, and f‐
score, are evaluated.
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‐ Then, the efϐiciency of RSTAGNN‐ContextNet‐
GWOA‐EEG‐EA method using DEAP dataset
is evaluated with existing DWT‐SVM‐EEG‐EA‐
DEAP [10], GCNN‐LSTM‐EEG‐EA‐DEAP [11] and the
performance of K‐EmoCon dataset is comparedwith
existing systems, like CAT‐EEG‐EA‐K‐EmoCon [12]
and CAT‐EEG‐EA‐K‐EmoCon [13] respectively.
The remaining manuscript is speciϐied as fol‐

lows: section 2 divulges related works, the proposed
methodology is illustrated in Section 3, the results
and discussion are exempliϐied in Section 4, and the
conclusion of the manuscript is given in Section 5.

2. Literature Survey
Amongvarious researchworks onEEGbasedEmo‐

tion analysis using DEAP andK‐EmoCon dataset, a few
recent investigations are assessed here,

Khateeb et al. [10] presented multiple domain
feature fusion for emotion characterization utiliz‐
ing the DEAP dataset (DWT‐SVM‐EEG‐EA‐DEAP). The
imageries were pre‐processed to transfer data as
well as reduce data dimensionality. After that, multi‐
domain features were extracted to identify stable fea‐
tures to classify the EEG emotion signals. Then, these
signals were classiϐied using support vector machine
classiϐier. But, the complexity was high.

Yin et al. [11] presented multiple domain feature
fusion for emotion categorization under DEAP dataset
(GCNN‐LSTM‐EEG‐EA‐DEAP). Initially, the input data
was calibrated using 3s baseline data that were split
into 6s segments using a time window; after that, the
differential entropywas extracted fromevery segment
for constructing the feature cube. Then, these feature
cubeswere fusedwith graph convolutional neural net‐
works including long‐ or short‐termmemories neural
networks for classifying EEG signal emotional data.

Dissanayake et al. [12] presented Toward
Robust Wearable Emotion Identiϐication including
Contrastive Representation Learning (SigRep‐EEG‐
EA‐ K‐EmoCon). The input EEG emotion signals
were taken from the K‐EmoCon dataset. Then, these
signals were pre‐processed to lower the signal
resampling. After that, the statistical features were
extracted. Those extracted features were used in the
self‐supervised technique to classify the EEG emotion
signal with high accuracy. But the complexity was
greater.

Yang et al. [13] presented Mobile Emotion Iden‐
tiϐication utilizing Multi Physiological Signals with
Convolution‐augmented Transformer (CAT‐EEG‐EA‐
K‐EmoCon). The input EEG emotion signals were
taken from the K‐EmoCon dataset. Particularly, it uses
arousal andvalencedimensions, learning connections,
and reliance across several modal physiological data
to identify the users’ emotions.. This method provides
better accuracy but the error rate was high.

Figure 1. Proposed system

3. Proposed Methodology
In this section, a novel RSTAGNN and ContextNet

for emotion classiϐication using EEG signals is
explained. Figure 1 depicts the block diagram of the
proposed system.
3.1. Data Acquisition

The input datasets are taken from the DEAP and
K‐EmoCon datasets. The DEAP dataset is made up of
physiological recordings from 32 people who viewed
40 one‐minute‐longmusic videos. K‐EmoCon is amul‐
tiple modal dataset that involves a detailed explana‐
tion of ongoing emotions experienced through natu‐
ralistic conversations. The dataset has multiple modal
measurements taken with commercial devices during
16 sessions of partner discussions of about 10minutes
duration on a social topic, including video recordings,
EEG, and peripheral physiological cues. These two
data sets are then pre‐processed, and features are
extracted with ContextNet with GPCA.
3.2. Pre‐processing and Feature Extraction Using Con‐

textNet with Global Principle Component Analysis
(GPCA)

In this, pre‐processing is done for two datasets,
such as the DEAP dataset and the K‐EmoCon. The data
sets are capturedwith several devices along dissimilar
sampling rates. To merge the signal frequency, ϐirst
split the continual signals into four‐second window
sizes through a one‐second overlap. The data transfor‐
mation and data reduction process is used.
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Here, the pre‐processing is done for reducing the
individual differences of the dataset for varying age,
gender, and personality. The pre‐processing is done
using the convolution layer of the multi‐task learning
ContextNet by data transformation and data reduc‐
tion.

Here, the data transformations are used to reduce
the EEG data values from both datasets during the
training process; otherwise, thismay affect the perfor‐
mance of the classiϐication. Then, the data transforma‐
tion of the input dataset using the convolution layer of
the multitask learning ContextNet and its equation is
given in Equation (1)–(2)

𝐸𝐸𝐺𝑠𝑖𝑔𝑛𝑎𝑙(𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔)(ℎ)[𝑎𝑇𝑖 ;𝑊𝑇]
= ℎ𝑧(𝑦𝑇𝑖 ;𝑊𝑇

𝑧 ) (1)
where

𝑦𝑇𝑖 = ℎ𝑓(𝑎𝑇𝑖 ;𝑊𝑇
𝑓 ) (2)

where ℎ𝑓 is represented as the context aware function
with data transformation parameters are 𝑊𝑇

𝑧 , ℎ𝑧 , ℎ𝑓 ,
the speciϐied task with context representation of data
is represented as the 𝑊𝑇

𝑓 , 𝑦𝑇𝑖 , and the particular task
with context for transforming the data is given with
task 𝑇, ℎ is the number of input EEG emotional signals
from thedatasetwith 𝑖𝑡ℎcontext. Then, the data reduc‐
tion process takes place after transforming the data
using equation (2) and the data reduction equation is
given in (3).

𝑦𝑖 = ℎ𝑓(𝑎𝑖;𝑊𝑓) (3)
Brain Wave data also contains some duplicate entries
and are removed. The ϐinal 2‐dimensional vector is the
pre‐processed input for Convolution layer. Then, the
ϐinal pre‐processed equation is given in Equation (4).
𝑎𝑇(𝐿) = 𝑎𝑇 ∗ ℎ𝜑

=
𝐿−1


𝐿=0

(𝜑𝐿,1(𝐹−1𝑂 𝑋)𝐿 + 𝜑𝐿,2((𝐹−1𝐼 𝑋𝑇)𝐿))𝑎𝑇 (4)

Equation (4) is knownas the ϐinal pre‐processed equa‐
tion, and the data dimensions are reduced to improve
the classiϐication process. Then, the pre‐processing
signals are given to GPCA and the ReLu layer for
extracting statistical features, domain features, and
the frequency features from input EEG signal datasets.
GPCA creates a low‐dimensional data representation
that captures as much of the data’s diversity as possi‐
ble. GPCA is applied with the number of features set
as 32. So, the two dataset shapes after preprocessing
are 32 participants x 40 trails x 32 channels x 32
data. Here, the data is normalized for eliminating the
dimension, and the normalized global data is given to
the feature extractionprocess usingGPCA, and is given
in Equation (5),

𝑠𝑎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑗𝑖) =
𝑎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑗𝑖) − �̄�𝑖

𝜎𝑖
(5)

where 𝑠𝑎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑗𝑖) is represented as the normalized
data from the pre‐processed used to extract the fea‐
tures, and �̄�𝑖 is represented as the global data of the
GPCA.

It employs 100 initial convolution ϐilters and a
three‐row, one‐column convolutional kernel. Between
each convolutional layer, dropout is used. Max Pool‐
ing Layer is the following layer. Over 3x3 blocks,
this pooling is a typical 2‐dimensional max pooling.
To obtain CNN accuracy, the maximum pooled out‐
put is ϐlattened and applied with soft plus activation.
Using GPCA with the ContextNet method, statistical
features such as mean and variance are extracted, and
time domain features, such as Hjorth parameters and
entropy features, are extracted as EEG signals. Here,
Hjorth parameters are activity 𝐴𝑓 , mobility 𝑀𝑓 , com‐
plexity 𝐶𝑓 , where 𝑓 is represented as the features and
its formulas are given in equations (6)–(8)

𝐴𝑓 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧𝑖) (6)

𝑀𝑓 = ඨ𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧′𝑖)
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧𝑖)

(7)

𝐶𝑓 =
𝑀′
𝑓

𝑀𝑓
(8)

Where 𝑧𝑖 implicates input EEG signal, 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧′𝑖)
implicates variance of initial derivative of input signal,
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧𝑖) is represented as signal variance, and
𝑀′
𝑓 is represented as mobility of initial derivative of

input EEG signal (𝑧′𝑖).
After that, the entropy feature is extracted by split‐

ting EEG signals into 10 equal parts with no overlap‐
ping, and its equation is given in (9)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑓 =
𝑚1


𝑖=1

ℎ(𝑧𝑖) log𝑏 ℎ(𝑧𝑖) (9)

where𝑚1 is represented as the 1/10𝑡ℎ of the total EEG
signals (𝑚), ℎ refers count of features.

Frequency domain features of the EEG signal fea‐
tures are extracted using the non‐stationary and non‐
linear and its sub bands are represented as the alpha
subbands (8–15Hz), beta (16–32Hz), and gamma sub
bands (>32 Hz), then the power rates are estimated
using these sub‐bands is given in Equation (10),

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑓 =
1
𝑚

𝑚1


𝑖=1

ℎ(𝑧𝑖)2 (10)

where 𝑧𝑖 is represented as frequency domain, power
rates are designed to alpha, beta, and gamma sub‐
bands. These extracting features are given to the
RSTAGNN to categorize EEG signal emotions based on
arousal, valance, and dominance.
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3.3. EEG Signal Emotions ClassificationUsing Reinforced
Spatio‐Temporal Attentive Graph Neural Networks
(RSTAGNN)

RSTAGNN is used to classify EEG signal emotions,
such as arousal, valance, and dominance. It consists of
three parts: diffusion convolution on directed graph,
spatial‐temporal encoder, and multi‐step prediction
decoder. In this, the feature‐extracted EEG signals are
given to the input of diffusion convolution on directed
graph. It is an 𝐿‐order directed graph convolution net‐
work, and its equation is given in Equation (11)

𝑎𝑇(𝐿) = 𝑎𝑇 ∗ ℎ𝜑

=
𝐿−1


𝐿=0

(𝜑𝐿,1(𝐹−1𝑂 𝑋)𝐿 + 𝜑𝐿,2((𝐹−1𝐼 𝑋𝑇)𝐿))𝑎𝑇

(11)

where ℎ𝜑 is represented as the convolution ϐilter with
feature extracted EEG signals, ∗ refers to diffusion
convolution, 𝐿 refers count of diffusion steps,𝜑𝐿,1 and
𝜑𝐿,2 ∈ ℑ𝐿 represents trainable parameters of the two
graph directions,𝐹𝑂 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑋) is represented as
the out‐degree diagonal matrix, 𝐹𝐼 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑋𝑇)
is represented as in‐degree diagonal matrix and its
complexity is given in Equation (12).

𝑂(𝐿) = 𝑂(𝐿|𝜉|) ≪ 𝑂(𝑀2) (12)

where 𝜉 is represented as the weight parameter for
representing complexity.

The spatial attention weights of the EEG sig‐
nals are represented using the Spatio‐temporal Traf‐
ϐic Encoder, and their equation is provided in Equa‐
tion (13)

𝛽𝑗𝑇 =
exp(𝛽𝑗𝑇)

∑𝑀
𝑖=1 exp(𝛽

𝑗
𝑇)

(13)

where 𝑇 refers to the time step with 𝑖𝑡ℎ and 𝑗𝑡ℎ EEG
signals, 𝑀 refers to number of samples, 𝛽 refers to
the weight parameter for representing accurateness
of the EEG signal emotion classiϐication. Then the EEG
emotion signals are classiϐiedusing theMulti‐stepPre‐
diction Decoder, and its equation is given in (17) with
the attention weights 𝑤′

𝑇 , 𝑇 for every hidden state,
namely soft functions are normalized to [0, 1], and its
equation is given in (14)

𝜒′𝑇 , 𝑇 = 𝑆𝑜𝑓𝑡 max(𝑤′
𝑇 , 𝑇) =

exp(𝑤′
𝑇 , 𝑇)

∑𝑡
𝑇=1 exp(𝑤′

𝑇 , 𝑇)
(14)

where 𝜒 is represented as the weight parameter for
representing the error rate of the EEG signal emotion
classiϐication.

To enhance the classiϐication accuracy of
RSTAGNN, GWOA is used for optimizing the proposed
model. Here the weight parameters are 𝜉, 𝛽, 𝜒, where
𝜉 is represented as the complexity, 𝛽 is represented as
the accuracy, 𝜒 is represented as the error rate, these
parameters are optimized using GWOA byminimizing
𝜉, 𝜒 and maximizing 𝛽.

Initialization

Random Generation

Fitness Function

Update luciferin value to increase accuracy

Update luciferin volume for reducing

complexity

Perform mutation operation to minimizing

error rate

Is Halting Criteria

Satisfied

Termination

Yes

No

1II

Figure 2. Flowchart for GWOA to optimize RSTAGNN

3.4. Stepwise Process of GWOA for Optimizing
RSTAGNN

GWOA optimizes the parameters of RSTAGNN.
These parameters are optimized for assuring accu‐
rate classiϐication of the EEG emotion signals. GWO is
deϐined as swarm cognizance. Figure 2 portrays the
ϐlow chart for the GWOA for optimizing RSTAGNN. The
stepwise processing of GWOA is delineated below,

Step 1: Initialization
Initially, all glowworms have approximately equal

levels of luciferin depending on the lesser and upper
bounds of glowworms production power and control
parameters. The initial population of glowworm is
represented as 𝐼.

Step 2: Random Generation
Afterward the initialization procedure, the input

parameters are created randomly. The maximal ϐit‐
ness values are designated with respect to the exact
classiϐication of the EEG emotion signals.

Step 3: Fitness Function
It is examined to attain the objective function,

which is an exact classiϐication of the EEG emotion
signals with optimum value. RSTAGNNweight param‐
eters are selected as 𝜉, 𝛽, 𝜒, where 𝜉 is represented as
the complexity, 𝛽 is represented as the accuracy, 𝜒 is
represented as the error rate, and these parameters
are optimized using GWOA by minimizing 𝜉, 𝜒 and
maximizing 𝛽. The ϐitness function is articulated in
Equation (15),

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝛽),𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝜉, 𝜒)
(15)
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Step 4: Update luciferin value to increase accu‐
racy 𝛽.

In GWOA, every glowworm updates its location
through a pre‐determined amount of trials. The glow‐
worm’s position update is exhibited in Equation (16),

𝛾𝑔𝑖 = 𝑑 ∗ 𝑇𝑎𝑛𝑠𝑖𝑔 ቆ1 − 𝑔
𝑔max

ቇ𝛽𝑖 (16)

here 𝑑 refers random count of normal distribution
at [0, 3], 𝑇𝑎𝑛𝑠𝑖𝑔 refers tangent sigmoid operations, 𝑔
refers to the current iteration count, 𝑔max refers to the
maximal number of iterations, and 𝛽𝑖 is represented
as the optimizing parameter for increasing accuracy.

Step 6: Update luciferin volume for reducing com‐
plexity 𝜉.

Here, luciferin volume is used to reduce the com‐
plexity of the system while classifying the EEG emo‐
tion signals. Exploration of glowworm for ideal solu‐
tions is determined using Equation (17),

𝛽 = 1
1 + 𝑁𝐼𝑖𝑗

(17)

Let 𝛽 imply a randomly chosen location, 𝑗 for glow‐
worm, 𝑖 for reducing computational complexity to
classify EEG emotional signal, and 𝑁𝐼𝑖𝑗 represents the
new source.

Step 7: Perform mutation operation to minimize
error rate 𝜒.

The mutation process acts under probability val‐
ues on the basis of ϐitness values presented by glow‐
worm. For this purpose, a ϐitness base selection strat‐
egy is employed. This is articulated in Equation (18),

𝑁(𝑀) = ቊ𝜒 ቆ𝑆2 ∗ ቆ1 − 𝑔
𝑔max

ቇቇ + 1ቋ (18)

where, the training data of RSTAGNN for classify‐
ing EEG emotion signals with high accuracy denotes
𝑁(𝑀), 𝑔 implies current iteration count, 𝑔max denotes
ideal location, 𝑆 refers maximal count of iterations, 𝜒
refers round for minimizing error rate.

Step 8: Termination.
Theoptimumweight‐parameters 𝜉,𝛽,𝜒 are chosen

at RSTAGNN under GWOA iterative repeat step 3 until
fulϐilling the halting criterion 𝐼 = 𝐼 + 1. At the end,
RSTAGNN classiϐies EEG emotion accurately by dimin‐
ishing the error and complexity utilizing GWOA.

In this manuscript, a novel RSTAGNN and Context
Net for emotion classiϐication using EEG signals
is effectively executed. The RSTAGNN‐ContextNet‐
GWOA‐EEG‐EA method is executed in MATLAB
environment. The output of the proposed method
using DEAP dataset attains higher precision by
32.99%, 46.64% estimated to the existing systems,
like DWT‐SVM‐EEG‐EA‐DEAP and GCNN‐LSTM‐EEG‐
EA‐DEAPand the performance of the proposed system
using K‐EmoCon dataset attains higher precision
15.75%, 31.86% related to existing systems, like
SigRep‐EEG‐EA‐K‐EmoCon and CAT‐EEG‐EA‐K‐
EmoCon respectively.

4. Results and Discussion
In this section, a novel RSTAGNN and ContextNet

for emotion classiϐication with EEG signals is dis‐
cussed. The experiments are conducted using MAT‐
LAB on the GPUworkstationwith an Intel Xeon CPU@
3.20GHz and 32.0GB RAM. The performance metrics,
like precision, Accuracy, f‐score, recall are examined to
authenticate the effectiveness of the proposed system.
The performance of the proposed system using DEAP
dataset is analyzed to the existing systems, like DWT‐
SVM‐EEG‐EA‐DEAP [10], GCNN‐LSTM‐EEG‐EA‐DEAP
[11] respectively, and the performance of K‐EmoCon
dataset is compared with existing system like CAT‐
EEG‐EA‐K‐EmoCon [12] and CAT‐EEG‐EA‐K‐EmoCon
[13] respectively.
4.1. Dataset Description

Experiments are conducted using DEAP and K‐
EmoCon datasets. Of the total dataset, 80% was used
for training and 20% for testing.
4.2. Performance Metrics

The evaluation parameters, such as the accuracy,
precision, recall, f‐score for detecting emotion from
input EEG signals, are analyzed, and the performance
equation is given in (19).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑇 + 𝑇𝑁
𝑇𝑇 + 𝑁𝑇 + 𝑁𝑁 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 = 𝑇𝑇
𝑇𝑇 + 𝑇𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑇
𝑇𝑇 + 𝑁𝑇

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(19)

here (𝑇𝑃) indicates True Positive, (𝑇𝑁) refers True
Negative, (𝐹𝑃) represents False Positive, (𝐹𝑁) indi‐
cates False Negative.
4.3. Comparison of Performance Analysis with various

methods used for EEG Emotion Analysis

The below section portrays comparison tables of
the proposed method compared with the existing
method.

Table 1 shows the performance analysis of the
EEG emotion using the DEAP database. The accu‐
racy analysis of the proposed method shows 34.94%,
28.94% higher Valence accuracy, 23.95%, 28.94%,
higher Arousal accuracy, and 28.94%, 27.84%, higher
Dominance accuracy. The precision analysis of the
proposed method shows 34.94%, 28.94%, higher
Valence precision, 23.95%, 28.94%, higher Arousal
precision, and 28.94%, 27.84%, higher Dominance
precision. The recall analysis of the proposed method
shows 34.94%, 28.94%higher Valence recall, 23.95%,
28.94%, higher Arousal recall, and 28.94%, 27.84%,
higher Dominance recall.
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Table 1. Performance metrics of EEG emotion Analysis using the DEAP dataset

Performance metrics Labels Methods
DWT-SVM-EEG-EA-

DEAP
GCNN-LSTM-EEG-

EA-DEAP
Proposed Context NET-CNN-
RSTAGNN-EEG-EA-DEAP

Accuracy Valence 62.75 64.75 95.30
Arousal 67.42 63.84 87.50

Dominance 61.64 64.86 89.06
Precision Valence 64.86 69.08 76.65

Arousal 71.08 53.75 83.87
Dominance 43.86 69.05 74.97

Recall Valence 69.84 54.86 76.86
Arousal 52.86 64.74 77.86

Dominance 53.75 69.07 75.86
F‐Score Valence 66.75 64.85 77.65

Arousal 58.64 66.85 87.86
Dominance 66.65 55.85 74.75

Table 2. Performance metrics of EEG emotion Analysis using K‐EmoCon dataset

Performance metrics Labels Methods
SigRep-EEG-EA-

K-EmoCon
CAT-EEG-EA-
K-EmoCon

Proposed Context NET-CNN-
RSTAGNN-EEG-EA-DEAP

Accuracy Valence 69.67 48.85 88.564
Arousal 47.06 68.86 78.95

Precision Valence 55.96 63.65 78.56
Arousal 85.96 68.76 64.64

Recall Valence 68.78 45.86 77.85
Arousal 67.86 53.86 63.86

F‐Score Valence 69.86 50.76 75.64
Arousal 63.87 56.97 76.95

The F‐score analysis of the proposed method
shows 34.94%, 28.94%, higher Valence F‐score,
23.95%, 28.94%, higher Arousal F‐score, 28.94%,
27.84%, higher Dominance F‐score related to the
existing system like DWT‐SVM‐EEG‐EA‐DEAP and
GCNN‐LSTM‐EEG‐EA‐DEAP respectively.

Table 2 shows the performance analysis of the
performance metrics of EEG emotion nalysis utilizing
K‐EmoCon data set. The accuracy analysis of the pro‐
posedmethod attains 32.75%, 35.75%higher Valence
accuracy and 25.75%, 26.86% higher Arousal accu‐
racy. The precision analysis of the proposed method
shows 32.86%, 26.86% higher Valence precision,
31.86%, 26.86% higher Arousal precision. The recall
analysis shows 32.86%, 44.75% higher Valence recall,
25.75%, 25.87% higher Arousal recall. The F‐score
analysis shows 25.86%, 31.75% higher Valence F‐
score, 25.86%, 33.86%, higher Arousal F‐score related
to the existing system like Sig Rep‐EEG‐EA‐K‐EmoCon
and CAT‐EEG‐EA‐K‐EmoCon respectively.

4.4. Justification

Emotions are crucial for decision‐making, plan‐
ning, reasoning, and other aspects of human mental‐
ity. For e‐healthcare systems, it is increasingly impor‐
tant to recognize these emotions. The use of biosen‐
sors like the Electroencephalogram (EEG) to identify
patients’ mental states who may require particular
care provides crucial feedback for ambient assisted

living (AAL). This study explored the purpose of deep
learning classiϐication for EEG‐basedemotion analy‐
sis and evaluated its performance on DEAP and K‐
EmoCon datasets. The rate of emotion recognition
conϐirms that there is sufϐicient information in the
EEG data to distinguish between various emotional
states. Notably, the suggested ϐindings support the
feasibility of using fewer electrodes to train clas‐
siϐiers for real‐time HCI applications. The accuracy
between other kinds of features is somewhat dif‐
ferent, then the outcomes show that statistical fea‐
tures are appropriate for emotion recognition. Per‐
formance is likely to improve when training incorpo‐
rates more data or better‐quality, higher‐resolution
videos are veriϐied. Compared to a single model using
the same input video size, a bigger one, the Rein‐
forced Spatio‐Temporal Attentive Graph Neural Net‐
works performed better overall and saved a signif‐
icant amount of time regarding training and infer‐
ence. It enable EEG signal emotions classiϐication
using video recordings, EEG, and peripheral physio‐
logical cues, also scientiϐically interesting along clin‐
ically impactful. Simulation outcomes show that the
RSTAGNN‐ContextNet‐GWOA‐EEG‐EA provide higher
accuracy of 38.58%, and 43.87%, higher F‐score of
23.64%, 31.91%, higher precision of 32.67%, and
45.39%, higher recall of 34.09% and 45.51% for
DEAP dataset compared with existing methods, like
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DWT‐SVM‐EEG‐EA‐DEAP and GCNN‐LSTM‐EEG‐EA‐
DEAP respectively. For the K‐EmoCon dataset, the pro‐
posed RSTAGNN‐ContextNet‐GWOA‐EEG‐EA method
provides higher accuracy of 58.31% and 56.34%
higher F‐Measure of 45.56% and 23.31% higher pre‐
cision of 25.69%, 54.39%, higher recall of 45.17%
and 21.33% compared with existing methods like
CAT‐EEG‐EA‐K‐EmoCon and CAT‐EEG‐EA‐K‐EmoCon
respectively.

5. Conclusion
In this manuscript, RSTAGNN and ContextNet for

emotion classiϐication using EEG signals is effectively
executed. The RSTAGNN‐ContextNet‐GWOA‐EEG‐EA
method is activated in MATLAB environment. The
efϐicacy of the proposed method using DEAP dataset
attains higher precision 32.99%, 46.64% compared
with the existing systems, like DWT‐SVM‐EEG‐EA‐
DEAP and GCNN‐LSTM‐EEG‐EA‐DEAP [11] respec‐
tively. The performance of the proposedmethod using
K‐EmoCon dataset attains higher precision 24.17%
and 12.39% compared with the existing systems, like
CAT‐EEG‐EA‐K‐EmoCon and CAT‐EEG‐EA‐K‐EmoCon
respectively.
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