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Abstract:
As security is one of the basic human needs, we need
security systems that can prevent crimes from happen‐
ing. In general, surveillance videos are used to observe
the environment and human behavior in a given location.
However, surveillance videos can only be used to record
images or videos, without additional information. There‐
fore, more advanced cameras are needed to obtain other
additional information such as the position and move‐
ment of people. This research extracted this information
from surveillance video footage using a person tracking,
detection, and identification algorithm. The framework
for these is based on deep learning algorithms, a popu‐
lar branch of artificial intelligence. In the field of video
surveillance, person tracking is considered a challenging
task. Many computer vision, machine learning, and deep
learning techniques have been developed in recent years.
The majority of these techniques are based on frontal
view images or video sequences. In this work, we will
compare some previous work related to the same topic.

Keywords: Person tracking, Person detection, Person
identification, Video surveillance, Artificial intelligence.

1. Introduction
Nowadays, video surveillance is expanding rapidly,

both technologically and economically. It has become
one of the essential links in the security policies of
governments. This evolution responds to the security
needs of every citizen, in line with the increase of
delinquency and criminality.

Video surveillance is now becoming increasingly
necessary to monitor both public and private places.
In this context, camera networks are installed in abun‐
dance in the streets, shopping centers, public trans‐
portation, of ices, airports, apartment buildings, etc.

A video surveillance system consists essentially
of monitoring a multiple number of security cam‐
era feeds at the same time. However, the increase in
the number of installed cameras makes it extremely
dif icult to manually process the data generated by
these cameras. To help security monitoring personnel
explore this data, it is necessary to make the video
surveillance task by automating some of its functions.
Among these include object detection, person detec‐
tion, event and human action recognition, tracking of
people, etc. Another application is to recognize people

 

Figure 1. Casablanca is giving itself the means to fight
against insecurity

Figure 2. Video‐surveillance architecture: live viewing
and a posteriori viewing

who leave the ield of view of one camera and reap‐
pear in another. The video surveillance system must
then be able to reidentify the person and continue the
tracking.

The research of the estimation of the 3D move‐
ment of a person is an important ield of computer
vision, because of its numerous possible applications:
human–computer interfaces, animation, interaction
with virtual environments, games, etc.

Capturing 3D human motion in real time, with a
single or multiple cameras and without markers is
a dif icult to achieve. This is due to the ambiguities
resulting from the lack of information of depth, partial
occultation of human body parts, the elevated number
of degrees of freedom, and the variation in the propor‐
tions of the human body, as well as the color of the
clothes of thedifferent people present in the scene. For
these reasons, the number of works dealing with the
estimation of people tracking continues to increase.

In this paper, we will present the different
approaches to pose estimation and the tracking of
people’s movements.

59



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N◦ 1 2023

Figure 3. Object tracking in deep learning

2. Methods
2.1. Definition

Object tracking is an application of deep learning in
which the program takes an initial set of object detec‐
tions and develops a unique identi ication for each
of the initial detections, and then tracks the detected
objects as they move through frames of a video.

In other words, object tracking involves automat‐
ically identifying objects in a video and interpreting
them as a set of trajectories with high accuracy. Often
there is an indication around the tracked object, for
example, a square that follows the object, showing the
user where the object is on the screen.

Different type of object tracking

Object tracking is used in a variety of use cases
involving different types of input images. Whether the
intended input is an image or video, or real‐time video
versus prerecorded video, it impacts the algorithms
used to create object‐tracking applications.

The kind of input also impacts the category, use
cases, andapplicationsof object tracking.Here,wewill
brie ly describe a few popular uses and types of object
tracking, such as video tracking, visual tracking, and
image tracking.

Video tracking: Video tracking is the process of locat‐
ing a moving object (or multiple objects) over time
using a camera. It has many uses, including: human–
computer interaction, security and surveillance, video
communication and compression, augmented reality,
traf ic control, medical imaging, and video editing.
Video tracking can be a time‐consuming process due
to the amount of data contained in the video. Adding
to the complexity is the potential need to use object
recognition techniques for tracking, a dif icult prob‐
lem in itself.

Image tracking: Image tracking is intended to detect
two‐dimensional images of interest in a given input.
These images are then continuously tracked as they
move through the scene. Image tracking is ideal for
datasets with high contrast images (e.g., black and
white), asymmetry, few patterns, and multiple iden‐
ti iable differences between the image of interest and
other images in the set. Image tracking relies on com‐
puter vision to detect and augment images after the
image targets have been predetermined.

Visual tracking: Visual tracking or visual target track‐
ing is a research topic in computer vision that is
applied in a wide range of everyday scenarios. The
goal of visual tracking is to estimate the futureposition
of a visual target that has been initialized without the
availability of the rest of the video.

3. Literature Review
This section provides a short outline of various

algorithms employed in the literature. The section is
categorized into ancient generic, machine learning,
features, and deep learning‐based ways. A compre‐
hensive survey of various tracking methods are often
found in previous studies.

The main purpose of tracking techniques is to
detect objects in a video object in a video sequence
and to keep track of the successive images in order
to ind the trajectories of each detected object. Con‐
ventional techniques are generally based on motion
and observation models. The motion model involves
detecting and predicting the object’s location the
appearance of the object and its position in the
image. Some researchers have used the model‐based
method for object tracking. Many researchers have
used machine learning for object tracking, which clas‐
si ies the tracked object, such as boosting, random
forest, Hough forest, structural learning, and support
vector machine. Some have proposed feature‐based
tracking methods, such as Haar‐type features, local
binary model, histogram of oriented gradient, scale‐
invariant feature transform, discrete cosine trans‐
form, and shape features [4–7]. Other techniques use
Kalman ilters or the Hungarian algorithm. In order
to improve the performance of the tracking meth‐
ods, different researchers have combined the infor‐
mation from several indices and presented object
trackingmethods that combine a feature‐based detec‐
tor with the probabilistic segmentation method. The
majority of these methods are mainly developed for
frontal view datasets that may suffer from occlusion
problems.

3.1. Reviewing Some Related Work

Review on: Convolutional Neural
Network–Based Person Tracking Using Overhead
Views

This paper emphasizes on overhead view person
tracking using Faster region convolutional neural net‐
work (Faster‐RCNN) in combination with GOTURN
architecture [2]. The main work in this paper, the
CNN model is used for top view tracking of people
in different indoor and outdoor environments. The
use of the top view overcomes the various problems
encountered in the front view dataset.

The authors brie ly explained different tracking
algorithms used in literature. They classi ied them
into traditional generic methods, machine learning
methods, features, and deep learning‐based methods.
The authors in the article have tried to explain Faster‐
RCNN person detection for person detection using an
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overhead view video‐frames approach. Faster‐RCNN
has two main steps.

The irst step produces region anchors (regions
with a probability of occurrence of the probability of
occurrenceof the object (person)) via theRPN (Region
proposal networks). The next step is to classify the
object (person) using detected regions and extracts
the information from the bounding box [2]. For track‐
ing, the ellipsoid GOTURN is used, which is based on
CNN layer architecture.

The authors get this result: the Faster‐RCNNdetec‐
tion model achieved the true detection rate ranging
from 90% to 93% with a minimum false detection
rate of up to 0.5%. The GOTURN tracking algorithm
achieved similar results with the success rate ranging
from 90% to 94%.
Review on: Long‐Term Identity‐Aware
Multi‐Person Tracking for Surveillance Video
Summarization

Authors Shoou‐I Yu, Yi Yang, Xuanchong Li, and
Alexander G. Hauptmann elaborate a study about
a multi‐person tracking algorithm for very long‐
term (e.g. month‐long) multi‐camera surveillance
scenarios. The proposed tracker propagates iden‐
tity information to frames without recognized faces
by uncovering the appearance and spatial manifold
formed by person detections. The algorithm was
tested on a 23‐day 15‐camera dataset (4,935 hours
total).

The authors reviewed work that follows the
very popular tracking‐by‐detection paradigm. They
explained carefully the four main components of
the tracking‐by‐detection paradigm object localiza‐
tion, appearancemodeling,motionmodeling, anddata
association [2,3].

The setting was to see the tracking‐by‐detection‐
based multi‐object as a constrained clustering prob‐
lem. The location hypothesis that is a person detection
result can be viewed as a point in the spatial‐temporal
space, and the goal is to group the points, so that the
points in the same cluster belong to a single trajec‐
tory. A trajectory should follow the mutual exclusion
constraint and spatial locality constraint, which are
de ined in the following two constraints:
‐ Mutual exclusion constraint: a person detection
result can only belong to at most one trajectory.

‐ Spatial‐locality constraint: two person detection
results belonging to a single trajectory should be
reachable with reasonable velocity, that is, a person
cannot be in two places at the same time.
The authors propose a tracking algorithm that can

be resumed in four main steps: compute Laplacian
matrices; compute spatial locality matrix; compute
diagonal matrix; compute diagonal matrix. The algo‐
rithm was tested in four datasets for experiments ter‐
race1 [8], Caremedia.

8h the 15 camera Caremedia 8h dataset
is a newly annotated dataset that has 49
individuals performing [3], Caremedia 23d.
The 15 camera Caremedia 23d dataset is a

newly annotated data set that consists of
nursing home recordings spanning over 23
days [3]. The proposedmethod was compared
with three identity-aware tracking baselines
multi‐commodity network low, Lagrangian
relaxation, and non‐negative discretization.
Therefore, other trackers that did not have
the ability to incorporate identity information
were not compared [3].

The indings were able to localize a person 53.2%
of the time with 69.8% precision. They further per‐
formed video summarization experiments based on
their tracking output. Results on116.25hours of video
showed that they were able to generate a reasonable
visual diary fordifferent people, thuspotentially open‐
ing the door to automatic summarization of the vast
amount of surveillance video generated every day.

Review on: Fast Online Object Tracking and
Segmentation: A Unifying Approach

To allow online operability and fast speed,
the authors adopt the fully convolutional SiamMask
framework. Moreover, to illustrate that their approach
is gnostic to the speci ic fully convolutional method
used as a starting point, they consider the popular
SiamFC and SiamRPNas two representative examples;
they then adapt them to propose their own solution
to the SiamMask.

The fundamental building block of the track‐
ing system is an of line‐trained fully convolutional
Siamese network. This compares an exemplar image
z against a large search image x to obtain a dense
response map. z and x are, respectively, a w by h
crop centered on the target object and a larger crop
centered on the last estimated position of the tar‐
get. The two inputs are processed by the same CNN
yeilding two feature maps that are cross‐correlated.
We have in the gφ equation each spatial element of
the response map, which we see as the left side of
the equation gφ referring to the response of a candi‐
date window RoW [9]. For SiamFC, the goal is for the
maximum value of the response map to correspond
to the target location in the search area x. However,
in SiamMask, the authors replace the simple cross
correlationwithdepth‐wise cross correlation andpro‐
duce amulti‐channel responsemap. SiamFC is trained
of line on millions of video frames with the logistic
laws they refer to as Lsim. The performance of SiamFC
was improvedby relying on a regionproposal network
rpn, which estimates the target locationwith a bound‐
ing box of variable aspect ratio SiamRPN outputs box
predections in parallel with classi ication scores, and
these are referred as Lbox and Lscore. In SiamMask, the
authors point out that besides similarity scores and
bounding box coordinates, it is possible for the RoW
(response of the candidatewindow) of a fully convolu‐
tional Siamesenetwork to also encode the information
necessary to produce a pixel‐wise binary map. They
predict w by h binary masks, one for each RoW using
a simple two‐layer neural network hθ . The authors
presented two variants; one combines the mask with
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rbn parameters box and score, and the other one com‐
bines the mask with elsin from cmfc. In order to have
the comparison against the tracking benchmarks, it
is required to have a bounding box as inal represen‐
tation of the target object. The authors showed that
the mbr strategy to obtain a rotated bounding box
from a binarymask offers a signi icant advantage over
popular strategies that simply report excess aligned
bounding boxes [10–18].

The authors explain that their method aims at the
intersection between the tasks of visual tracking and
video object segmentation to achieve high practical
convenience [11]. However, in addition to tracking
the wire bounding box, it also generates the mask
and achieves state‐of‐art performance [12–22]. The
performance measure used is the expected average
overlap( EAO), which considers both robustness and
accuracy of a tracker. As a result, SiamMask can be
considered as a strong baseline for OnAVOS. First, it’s
almost two orders of magnitude faster than accurate
approches, and second, it is competitive with recent
Video Object Segmentation (VOS) methods that do
not employ ine‐tuning, while being four times more
ef icient than the fastest ones; also it doesn’t need a
mask for initialization.
Review on: A Comparison of Multicamera
Person‐Tracking Algorithms

Authors A. W. Senior, G. Potamianos, S. Chu, Z.
Zhang, and A. Hampapur conducted a study about
a comparison of four tracking algorithms that have
been applied to people in 3D or 2D multiple cameras
in indoor environments. The setting was to present
four different approaches that have been taken to
tracking a person in indoor scenario instrumented
with multiple cameras with overlapping ields of
view [1–19]. The irst method was the background
subtraction tracker. The second tracker uses a radi‐
cally different approach to the tracking of the speaker,
which is the particle ilter tracker. The face detection‐
based tracker was the third method, and the fourth
method for tracking the speaker is the edge‐based
body tracker to use a 3D model‐based tracker that
they developed for articulated body tracking. The data
on which they analyzed tracker performance was col‐
lected as part of the CHIL project—a consortium of
European Union institutions. All initial data were col‐
lected by theUniversity of Karlsruhe in its smartmeet‐
ing room, and consists of video from four calibrated
static cameras mounted in the corners of the 5.9 m by
7.1 m room.

The indings were that in the particle‐ iltering
approach, there is potential for extending this
approach to track multiple targets, though occlusion
is much more complex, and the feature space is much
larger at two dimensions per candidate. The face
tracking system relies on face detection, which is
not perfect, and cannot be guaranteed with fewer
than four cameras, but here works well, and indeed
leads to the best system we have hitherto reported on
the CHIL data. Finally, the edge alignment technique
works very well once initialized but does not recover

from tracking failures. The authors suggested a
combination, using the particle iltering approach for
detection and initialization and the edge alignment
approach for tracking may be feasible.

Review on: SimpleTrack: Understanding and
Rethinking 3D Multi‐Object Tracking

The authors talk about SimpleTrack, which ana‐
lyzes 3D MOT (Multiple Object Tracking) proposed
with some very simple yet effective improvements,
and I’m happy to see that many of the improve‐
ments are actually adopted by some recent 3D MOT
books [27]. Ziqi Pang, Zhichao Li, and Naiyan Wang
make the following contributions. First, they sum‐
marize a checking by detection framework. Second,
they analyze some video cases. Third, they propose
some effective solutions, and inally they also rethink
some existing benchmarks so that every researcher
can compare fairly to each other [16].

To familiarize with 3D MOT visualization, the
notion to give 3D MOT is to track objects coherently
over time, which includes both localization and also
identi ication. A general tracking by detection frame‐
work is we want to associate the detection boundary
boxes to the old track list on every frame, and that
is to say, we want to use some association matrix to
link every detection boundary box to every motion
prediction of the tracks. Then we can use the bounty
boxes to update the states of the tracks. The irst
data case we notice is related to how we prepro‐
cess the detection boundary boxes, so with the key
insight there is a difference between object detection
andmultiple object tracking, because object detection
wants tomaximize themap they generally have to out‐
put many redundant body boxes just to improve the
recall. However, this will confuse the trackers, thenwe
propose to remove the redundant bounding boxes by
more regressive nms. Compared to score iltering, this
more aggressivenms is evenbetter because it cankeep
the spatial diversity of the bodyboxes. The secondpart
we focus on is how we can do better association.

Previously when people do association, they can
use some associationmatrix such as Lu or L2 distance.
However if we use IOU, it is not lexible enough if this
frame rate is really low, and if the agent is moving
abruptly, the IOUmay lose target. However, if you lose
use of the L2 distance, it is now discriminative enough
to be aware of [16]. For example, the orientation and
in that case they may associate the response positive
detection B to the motion prediction the Blue Bunny
boxes instead of the true positive A.

Figure 4. Life cycle management example
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To overcome the disadvantages of the two associ‐
ated matrixes, we propose to use Glu generalized IOU,
which combines the best of two worlds, and you can
better know both of the methods.

The inal part is about how we can do life cycle
management. Life cyclemanagementmeans youknow
how we can determine if a track is alive or dead. Most
of the works they focus on have better association
because they think this is themain source of ID switch.
However, after doing some data analysis, we found
out that the early termination consumes more than
90% of the ID switches, which is really surprising. So,
early termination here means that we have a track we
initially assign it to, but then we terminate it, and it is
switched to idb so that’s one ID switch. To avoid this
thing from happening, we can use a low‐score detec‐
tion body box to indicate the existence of an object.
That is to say, if there is a low‐score bounding box
corresponding to a track, we don’t have to output that
bounty box, but we have to keep that track alive. This
thing is called a two‐stage association, and they really
improve the performance.

Finally, if you look at the performance on the web
open dataset and nuisance, our method is really com‐
petitive compared to some related methods, and this
proves that our solutions are simple yet effective [16].

A brief notion about some rethinking of the bench‐
mark we mentioned is that the irst is to use higher
frame reads, and the second is to use output motion
model predictions and design low scores so these two
will give you better checking results. Also, it’s better
for the motor evaluation.

Review on: YOLOv7: Trainable Bag‐of‐Freebies
Sets New State‐of‐the‐Art for Real‐Time Object
Detectors

This new paper called YOLOv7 the trainable bag of
freebies that sets a new state‐of‐the art for real‐time
object detectors. As the title suggests, it’s a new state‐
of‐the‐art model for real‐time object detection.

The paper is all about this video introduction.
Before getting into this subject, let’s understand the
history of how people arrived at this paper. Alexi took
up the YOLO torch from the original author Joseph
Redman, who released the irst three YOLO series
models. When Redmond quit the computerization
industry due to ethical reasons, Alexi maintained his
work for the YOLOv3 and also released YOLOv4, want‐
ing to enter the computer vision research stage with
cross‐stage partial networks that allowedYOLOv4 and
v5 to build more ef icient features. From that, they
discovered YOLOv4 and scaled it, which was the irst
paper Alexi and Wayne collaborated on. In doing so,
they put a YOLOv5 Pytorch implementation over the
line. Wang Chiang Yao also released the YOLOr, which
introduced new methods with explicit knowledge in
neural networks. Now they’re joined again to sample
something magical, the yolo v7 model. In this article,
we are going to talk about the abstract of the paper,
how the algorithmworks, what approaches they used,
why they used the particular methods model compar‐
isons, and inally why is it so awesome. The YOLOv7

trainable bag of freebies sets a new state‐of‐the‐art for
real‐time object detectors.

The paper states that themodel can ef iciently pre‐
dict video inputs ranging from5 fps to160 fps. YOLOv7
has the highest average precision of 56.8%. YOLOv7
outperforms both transformer‐based object detectors
and convolution‐based object detectors. Some of the
object detectors that YOLOv7 outperformwere YOLOr
yellow rx, YOLOv5, etc. [17].

The abstract compares it with YOLOv4, and
because both of the models are using bag of freebies,
the cost of running the model has been reduced by
50% from the same dataset due to its incredible
speed and accuracy. The parameters in the hidden
layer of neural networks are also reduced up to
40%. Model scaling has never been easy. They can
maintain the original model design and structure of a
well‐performing compound. YOLOv7 has achieved 1.5
times higher average precision than YOLOv4. This is a
big deal because YOLOv7 has 75% fewer parameters
and 36% less computational time than YOLOv4.
How does it work? YOLO uses a sole convolution
neural network to predict bounding boxes and class
probabilities considering the entire image in a single
evaluation in one step. For one unit, YOLO predicts
multiple bounding boxes. The class probabilities
for each box and all the bounding boxes across the
classes make it the one‐stage detection model, unlike
earlier object detectionmodels, which localize objects
and images by using regions of the image with high
probabilities of contenders YOLO considers the full
image.

Now we’ll talk about the architecture of YOLO.
Image frames are featured through a backbone, which
is then combined and mixed in the neck, and then
they are passed along andYOLOpredicts the bounding
boxes, the classes of the bounding box, and objects of
the bounding boxes. Let’s understand each of its mod‐
ules separately. First, the input layer is nothing but the
image input you provide. It can be a two‐dimensional
array with three channels: red, blue, and green. It can
also be a video input at each frame of some image
input. What is the backbone? It’s a deep neural net‐
work composed mainly of convolutional layers.

The main objective of the backbone is to extract
the essential features. The selection of backbone is a
key step, as it will improve the performance of object
detection. Oftentimes, pre‐trained neural networks
are used to train the backbone. Some of the commonly
used pre‐trained networks are vgg‐16 imagenet, rou‐
tinenet, resnet50, etc.

For YOLOv7, the paper used the following pre‐
trained weights: vovnet, cspvo. and net Elan. We will
learn more about why these weights are used during
the study. The object detector models insert addi‐
tional layers between backbone and head, which are
referred to as a copy of the detectors. The essen‐
tial role of the neck is to collect feature maps from
different stages. Usually a neck is composed of sev‐
eral bottom‐up parts and several top‐down parts for
enhancement. We use fpn, r b, and pan detection hap‐
pens in the head.
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The head is also called a dense prediction to set the
director to decouple the object localization and classi‐
ication task for each module once the detectors make
the prediction for this localization and classi ication at
the same time. This layer is present only in one stage
after detectors like YOLO ssd rpn into self‐detection.
They were completely different. Sparse prediction is
for two‐stage detectors frcnn and rfcn highly different
which does the traditional class probabilities for the
model input. Our YOLO is one stage. Together they
form the YOLO architecture.

Let’s dive deeper into the topics and technical
words previously mentioned. The irst term is bag of
freebies model, which refers to increasing the model
accuracy by making improvements without actually
increasing the training cost. The older versions of
YOLOv4alsouse thebagof freebiesmodels. In this sec‐
tion, we’ll learn some of the trainable bag of freebies
used for this particular paper batch. Normalization
can be an activation topology, and this part mainly
connects the batch normalization layer directly to the
convolutional layer. The purpose of this is to inte‐
grate the mean and variance of batch normalization
into the bias and rate of the convolution layer at the
inference stage [17].

Second, implicit knowledge in YOLOr combined
with convolutional feature maps in addition and mul‐
tiplication. Implicit knowledge in YOLOr canbe simpli‐
ied to a vector by pre‐computing an inference state.
This vector can be combined with the bias and weight
of the previous or subsequent convolutional layer.
The inal ema model is the technique used in mean
teacher, and in the system they use the ema model
purely as the inal interference model training opti‐
mizers. The author uses gradient prediction to gener‐
ate course‐de ined hierarchical labels. The author also
used extended ef icient layer aggregation networks
and performed a model scaling for concatenation‐
based models and identifying connections in one con‐
volutional layer [17].

Finally, the author usedMicrosoft’s Coco dataset to
train theYOLOv7 fromscratchwithout using anyother
datasets or pre‐trained weights. The model is able
to perform with these pre‐trained weights only using
the Microsoft Coco dataset. During the research, it
was igured out that the average precision was higher
when the iou thresholdwas increased. The iou is noth‐
ing but intersection over union. It is a term used to
describe the extent of overlapof twoboxes; the greater
the region of overlap the greater the iou. We train a
model to output a box that its perfectly around an
object.

For example, in Figure 4, we have a green box
and a red box. The green box represents the ground
truth, and the red box represents the prediction from
our model. The aim of this model would be to keep
improving its prediction until the red box and the
green box perfectly overlap; that is the iou between
the two boxes equals to one coming to layer aggre‐
gation networks. The ef iciency of a YOLO network’s
convolutional layers in the backbone is essential to
ef icient interference speed when started down the

Figure 5. Example model

Figure 6. Layer Aggregation Network

Figure 7.Model re‐parameterizing

path of maximum ef iciency with cross‐state partial
networks in YOLOv7.

The authors built and researched what happened
to be in this topic, keeping in mind the amount of
memory it takes to keep players in memory along
with the distance it takes the gradient to back prop‐
agate through the layers; the shorter the gradient the
more powerful the network will be to learn the inal
layer aggregation. They chose elan in an extended
version of the elan computational block model. Scal‐
ing all concatenation‐based models will change the
input width of some layers and the depth of those
models. These provide great support to the model in
increasing the accuracy, as the model is now capable
of identifying small objects and large objects.

The scaling factors the model is dependent
on resolution, depth stage, and width model re‐
parameterizing, and use gradient low propagation
plans to analyze how re‐parameterized convolutions
should be combined with different networks. Rep
Conv combines three into three convolution, one
into one convolution, and identify connections in
one convolution layer. Repconv without identity
connection is used to design the architecture of
planned re‐parameterized convolution [17,26].
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Figure 8. Results

The re‐parameterization technique involves aver‐
aging a set of model weights to create a model that
is more robust to the general pattern that is trying
to model in research. There has been a decent focus
on model re‐parameterization. A piece of the net‐
work has its own re‐parameterization strategies. The
YOLOv7 author uses gradient low propagation paths
to see which model in the network should have re‐
parameterized strategies, which should not model the
level ensemble. The weighted average of the weights
of a model of different iteration numbers were used
to evaluate this sample module level ensemble train‐
ing. Multiple identical models with different training
data and the average rates of various training model
modules level ensemble have been used in YOLOv7
for re‐parameterization. We split a module into mul‐
tiple identical and different module branches during
training and integrate multiple branch modules into a
completely equivalent module during inference. That
module level ensemble is the next topic of the auxiliary
head course. To ind we call the head responsible for
the inal output, the lead head and the head used to
assist in the training is called the auxiliary head. They
use the lead head prediction as guidance to gener‐
ate a cost of buying hierarchy levels. The reason to
do this is that the lead head has a relatively strong
learning capability, so soft levels in data from it should
be representative of the distribution and correlation
between source data and the target. The inal level is
the same as the soft level generated by the lead head
guided label assigner, and the course label is gener‐
ated by allowingmore grids to be treated as a possible
target by relaxing the constraints of the possible sam‐
ple assignment process results. Comparing the model
in front of the existing model the algorithm must be
impressive and provides a lot of scope for improve‐
ment. It is able to predict bounding box properly with
high con idence. It’s also able to predict images and
videos more accurately.

The paper has done an impressive job of pre‐
senting this summary. The replacement problem of
the re‐parameterization model has been overcome by
this gradient low propagation path to analyze how
re‐parameterization convolutional networks can be
combined with different networks. It combines three
into three and one into one convolutional. In one
convolutional layer, repconvn, the model was able to
overcome the problem of dynamic label assignment
by using a course to ind the lead head guided label

assigner. This auxiliary head was really helpful to
increase the ef iciency of the model paper also intro‐
duced extended ef icient layer aggregation networks
and compound scaling for model scaling [17,23].

4. Conclusion
Video object tracking is the process of basically

monitoring an object throughout a video frame. What
that means is you want to localize that object and
then you want to be able to predict the trajectory of
that object so you know where it’s going to be at the
next frame. There are different categories of video
object tracking. You could do multi‐object tracker or
single object trackers online or of line—basically, if
your models are pre‐trained or if it’s going on the ly
and detection based.

There’s a lot of different applications for video
object tracking medical imaging and robotics, even in
ields like sports analytics. A tracker has two main
components. Typically, the detection component has
an appearance model and takes advantage so that
leverage is spatial features. The detection models
work frame by frame, and then you have the object
motion model, which will tie those frames together so
you can predict where that detection you localized on
the individual framewill actually be on the next frame.
In the following frames, some of the main challenges
in tracking are occlusion are that if you’re tracking an
object, and either the two objects get very close to
each other or if it goes behind some other structure
and you lose your actual detections, you’ll still have a
track on that object because you’re project predicting
the trajectory, but you won’t be able to actually see
that object. When you can see it again, you need to
be able to accurately pair the track that you had with
the trajectory to the detection that represents that
speci ic object. A lot of tracking systems are sensi‐
tive to appearance and scale changes, which is one of
the main reasons why we use deep learning now in
the tracking ield because it adds an extra layer that
augments pre‐existing tracking methods. As you may
know, deep learning models are very computation‐
ally expensive, so to get those working at a real‐time
frame rate usually takes 30 frames per second or 60
framesper second,. They have to be pretty lightweight,
especially if it’s on something like a self‐driving car
or an aircraft. You can’t have so much hardware on it
because of the weight, so that’s de initely a challenge
that needs to be mitigated. I mentioned one of the
largest applications just in the commercial sector is
self‐driving cars. This is a gift froma video fromNvidia
actually, and this shows some of the driverless car
technology.

That’s usually some attract object as assigned a
boundingbox, and that is also assigned aunique object
indicator, which helps you from frame to frame across
the video sequence keep track of that what that is and
save some information about it. One small difference
with this video versus some of the methods that we
talked about, the mask method, is it’s a segmentation
method, so every single picture in the frame has been
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identi iedwith the outputs of the systems. Some of the
newer detectors like the YOLO algorithm that is tied
with a classi ier so you’ll be able to localize the object
and classify it at the same time. With the second com‐
ponent, you have the detection and then you use that
detection for your object of interest to instantiate your
track. Your track iswhere you’re going tobe estimating
your trajectory of your object, and the two main ways
you can do that are by measurement dynamic models
like a common ilter [21,22].

There are deep learning methods that can also
be used to predict the trajectory of objects. Typically,
computer vision deep learning methods are kind of
more in the detector side, so that’s a pretty novel
advancement, and the speci ic neural network that is
used in this context is an lstm network, a long short‐
term memory, if anyone is familiar. So once you have
your detection object and you have your track, you
need to know how they go together. There’s an asso‐
ciation algorithm component that allows you to cal‐
culate the similarity of your detections in your tracks
and pair it together so you can update your track
estimateswith the information that you’re going to get
fromyourdetection frame.At this point, assuming that
the track information is up until the last frame, your
detection frame is your current frame, so you update
that. You cankeepgoing forwardwithyourpredictions
and then the output of that is to get your consistent
identity label. Youwant toknowthat carnumberone is
car number one from the B frame one to the end of the
video sequence, and then there’s a track maintenance
step where basically if you’re tracking an object, you
don’t get detections on it for a certain amount of time.
You might want to do something like delete that track
or downgrade it’s trustworthiness score.

The current state‐of‐the‐art trackingmethod is not
deep learning, and the reason I’m concluding here
is because it gives a good understanding of a lot of
the components within a tracker and then the deep
learning methods build on to it. The current state‐
of‐the‐art is called Sort. It’s a simple online real‐time
tracker. This is a multiple object tracker, and it works
in real time as stated at the frame rate because it
doesn’t have a deep learning step. This one is going to
be speci ically very sensitive to things like occlusions
and skill changes. The good thing about this algo‐
rithm is it’s very lightweight. We can use something
for the detection step, which is the irst step. We can
use something like a CNN‐based detection algorithm.
It still has to be one of the more lightweight ones,
but we can use that with the rest of the algorithm
and still have it running at the frame rate. The most
commonly used detection algorithm is the YOLO algo‐
rithm. The reason why that one is used over some
other ones is it stands for “you only look once.” How
other convolutional neural networks work is there’s
a sliding window, which basically means you have to
pass over the image something like 2,000 times. This
only passes over once, and we save a lot of resource
consumption. That way, once we have that detection
and we instantiate our track based off the detection,
we’ll have that box from thedetection. Then there’s the

estimation step with a common ilter, and that takes
in our position state. Our velocity state does some
dynamic modeling updates and measurements, and
there are different noise models that are included into
it as well. That allows us to recursively estimate what
our position is going to be on our current frame, so
after we have our tracks updated our detections are
updated.

Then there’s that association step, the common
method that’s used, which is the Hungarian method,
and that’s essentially just a cost minimization algo‐
rithm that uses the Mahalanobus distance at this met‐
ric. That it’s minimizing is the reason why that’s used
is because everything coming out of the Coleman ilter
is a distribution. So the Mahalanobus distance takes
into account the distributions as opposed to some‐
thing like the Euclidean distance, which is just going
to be for a single number. Then there’s track main‐
tenance step where you’re going to have counters on
things like track age and the association history. Infor‐
mation like what detections it’s been associated with,
howmany frames you’ve seen it for, others you haven’t
had detections on it, etc. can be used cleverly in order
to upgrade or downgrade tracks to get to the object
that you want to get to. Some images of A Sort tracker.
show that when the target cross over there’s that
wedge that forms, and that wedge actually indicates
that you’re searching for detections in that general
area.When they cross or there’s an occlusion, you lose
that information and you have ambiguous detections.
So this algorithm is sensitive to that, and the way we
ix that sensitivity is with deep learning. The irst deep
learning algorithm is a deep sort, essentially that sort
algorithm.

The main challenge in this topic is to ind a bal‐
ance between computational ef iciency and perfor‐
mance. All of these methods have characteristics and
limitations under certain circumstances, and they are
de ined as follows:
Lighting: Light differs in many circumstances; low
light adds darkness to the image while higher light
adds shadow to the object.
Positioning: Template matching requires a uniform
position; otherwise, it cannot detect the object, even
if it is present in the image.
Rotation: The image can be rotated in any direction.
In this case, some shapes are unable to be identi ied if
the shape matching method is used.
Occlusion: Object behind the object is sometimes not
completely visible so it cannot be detected, and the
useful part can be ignored [24,25].

Our goal is to detect and track all objects in a
scene, and usually these are the types of scenes that
we’re looking at. The objects are usually all of the
same type, either pedestrian tracking or car tracking,
and we have a lot of them so there are a lot of occlu‐
sions. There are problems with different viewpoints,
and therefore there are different levels of occlusions,
depending also on the viewpoint of the camera.Wecan
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alsohavemoving cameras; these are all types of scenes
that we want to deal with using a single algorithm.
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