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Abstract:
In the chemical and petrochemical industry, the Continu‐
ous Stirred Tank Reactors (CSTR) are, without doubt, one
of the most popular processes. From a control point of
view, the mathematical model describing the temporal
evolution of the CSTR has a strongly nonlinear cross‐
coupled character. Moreover, modeling errors such as
external disturbances, neglected dynamics, and parame‐
ter variations or uncertaintiesmake its control task a very
difficult challenge. Even though this problem has been
the subject of a wide number of control strategies, this
article attempts to propose a viable, robust, nonlinear
decoupling control scheme. The idea behind the proposed
approach lies in the design of two nested control loops.
The inner loop is responsible for the compensation of the
nominal model nonlinear cross‐coupled terms via static
nonlinear feedback; whereas the outer loop, designed
around an Extended State Observer (ESO) of which the
additional state gathers the global effect of modeling
errors, is charged to instantaneously estimate, and then
to compensate the ESO extended state. This way, the
CSTR complex dynamics are reduced to a series of decou‐
pled linear subsystems easily controllable using a simple
Proportional‐Integral (PI) linear control to ensure the
robust pursuit of reference signals respecting the desired
performance. The presented control validation was per‐
formed numerically by an objective comparison to a clas‐
sical PID controller. The obtained results clearly show the
viability and the effectiveness of the proposed control
strategy for dealing with such nonlinear, strongly cross‐
coupled plants subject to a wide range of disturbances
despite the precision of their described mathematical
model.

Keywords: CSTR, Robust control, Feedback Linearization,
ESO

1. Introduction
The CSTR is one of the most used pieces of equip‐

ment in process engineering. Its main role is to con‐
vert reactants into ϐinished or semi‐ϐinished prod‐
ucts; therefore, it plays a primary role in many chem‐
ical processes [1–4]. CSTRs are generally controlled
around a certain equilibriumpoint, where it is approx‐
imated by a locally valid linear model. This approach
has the advantage of simplifying the synthesis of the
controllers because it allows the use of all classical
linear control theory tools.

One of the examples of these classical tools is the
PID controller widely used in industrial applications
[5–7].

Unrivaled since it appeared in 1922 [8], the PID
controller has dominated the industrial scene all over
the past century, allowing the propulsion of the tech‐
nological revolution toward new horizons even in its
simple form. The huge success of PID control in the
practitioner’s society lies essentially in the simplicity
of the design and implantation tasks. Nevertheless,
pressed by modern industry demands increasingly
more and more exigent in terms of efϐiciency, control
theorywas always constrained to develop new control
mechanisms satisfying the newly imposed require‐
ments [9, 10]. In search of new advanced control
schemes, theories have evolved in several directions,
giving a very rich bibliography over 80 years.

For the CSTR control example, various control
strategies, such as the exact feedback linearization
control [11, 12], the nonlinear backstepping con‐
trol [2], the model predictive control [4, 13–19], dif‐
ferent optimal control strategies [20–23], the adap‐
tive control approaches [24–27], and the slidingmode
control theory [1, 28–32] have been proposed among
others. We can also ϐind several articles based on
successful combinations between advanced nonlinear
control theories and soft computing tools such as arti‐
ϐicial neural networks (ANN) [33, 34], fuzzy inference
systems (FIS) [3,35], andmany bio‐inspired optimiza‐
tion algorithms such as the genetic algorithm (GA) [7,
36], etc. These combinations have been addressed, in
general, to overcome some speciϐic difϐiculties related
to certain synthetic difϐiculties induced by the mathe‐
matical rigor of the original approaches, or to alleviate
some disadvantages presented by the previously cited
controls.

However, in themidst of this theoretical revolution
in the control ϐield, the industry seems uninterested
in most of the proposed modern control approaches
by presenting a high inϐlexibility for PID control, even
knowing its shortcomings well, despite the improve‐
ments introduced to it during the past decades. This
fact, probably, lies in their pragmatic way of reϐlec‐
tion, aiming most of the time to achieve a sufϐiciently
acceptable compromise between the controller design
simplicity and the required performance. On the other
hand, it seems that they are missing out on the oppor‐
tunities offered by the great digital revolution as they
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cannot fully take proϐit from the modern digital pro‐
cessor’s capacities [9,10].

Born as a necessity to establish new bridges
between modern industry demands and modern con‐
trol advances, the Active Disturbance Rejection Con‐
trol (ADRC) was introduced for the ϐirst time in the
original text in [37] and a fewyears later for the Anglo‐
phone society in [38]. It was the fruit of much work
fed by a deep comprehension of both practitioners’
and academic researchers’ way of reϐlecting when it
comes to addressing control systems problems, the
constraints and the challenges facing them, and the
opportunities offered by the accelerated development
of digital technology.

Even the ADRC original framework is composed
from ϐive main components; the Extended State
Observer (ESO) represents the controller’s corner‐
stone. The ADRC idea is based on the real time estima‐
tion and the active compensation of the total inϐluence
of the model nonlinearities combined with the differ‐
ent disturbance types, such as external disturbances,
modeling errors, parameters variations or uncertain‐
ties, etc. The global effect of the model nonlinearities
and disturbances is considered as the observer’s aug‐
mented state.

Owing to its great potential for dealingwith awide
range of disturbance structures, ESO based robust
control, including the ADRC original version, has pre‐
sented an unmistakable viability to address a large set
of practical control applications before even having a
rigorous proof of theoretical fundamental questions
such as the ESO convergence or the closed loop stabil‐
ity which came several years later [39–43]. Moreover,
it has shown a high ϐlexibility to handle many more
applications than PID control, such as time delayed
systems control, multivariable decoupled control, cas‐
cade control, and parallel system control [10]. Also,
ESO based control has known some major advances
in the context of its generalization to more complex
problems in the last few past years, such as stochastic
systems control [44] and distributed parameter con‐
trol systems [43].

Motivated by the huge potential, the simplicity of
the design procedure, and the wide immergence of
ESO based robust control paradigm in simulation and
engineering applications, readers can refer to the lit‐
erature [45–49]. In this paper, we attempt to illus‐
trate how to use the ESO for improving the nonlinear
multivariable decoupled control robustness in a sim‐
ple and clear manner. The proposed method’s main
idea lies in the use of conventional exact feedback
linearization control, widely used for dealing with
multivariable afϐine nonlinear plants in association
with an extended state observer charged to estimate
in real‐time and then actively compensate the whole
effect of modeling errors caused by the total differ‐
ence between the real plant dynamics and the nominal
descriptive model used for the design of the decou‐
pling static state feedback. The desired, robust closed
loop dynamics are achieved using a proportional‐
integral controller in a second external loop.

The present article is organized as follows: After
presenting this introduction, the second section is
devoted to the process presentation and modeling.
Then, the theoretical development of the proposed
control is exposed in detail. Once the process model
and the controller design are presented, the simu‐
lation results are shown and commented on in the
third section. Finally, the conclusion summarizing and
highlighting main advantages of the proposed control
strategy is given in the fourth and last section.

2. The CSTR Mathematical Model

The proposed CSTR model, shown in Figure 1,
is described by the equations given below as found
in [50]:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑑𝐶𝐴
𝑑𝑡 = 1

𝑉Δ𝐹𝐿(𝐶𝐴𝑖 − 𝐶𝐴) − 𝑘0expቆ
−𝐸𝑎
𝑅𝑇𝑅

ቇ𝐶𝐴

𝑑𝑇𝑅
𝑑𝑡 = 1

𝑉Δ𝐹𝐶(𝑇𝑖 − 𝑇𝑅) −
Δ𝐻.𝑘0
𝜌.𝐶 expቆ−𝐸𝑎𝑅𝑇𝑅

ቇ𝐶𝐴

+ 𝑈.𝐴
𝑉.𝜌.𝐶 (𝑇𝐶 − 𝑇𝑅)

(1)
It is obvious that the model (1) is of the form:

ቊ
�̇� = 𝐹(𝑥) + 𝐺(𝑥)𝑢

𝑦 = ℎ(𝑥) (2)

where:
‐ 𝑥 = ൣ𝑥1 𝑥2൧

𝑇 = ൣ𝐶𝐴 𝑇𝑅൧
𝑇: is the state vector.

‐ 𝑢 = ൣ𝑢1 𝑢2൧
𝑇 = ൣ𝐹𝐿 𝐹𝐶൧

𝑇: the control input.

‐ 𝑦 = ℎ(𝑥) = 𝑥: the controlled output.

𝐹(𝑥) =
⎡
⎢
⎢
⎢
⎣

−𝑘0expቆ
−𝐸𝑎
𝑅𝑥2

ቇ𝑥1

−Δ𝐻.𝑘0
𝜌.𝐶 expቆ−𝐸𝑎𝑅𝑥2

ቇ𝑥1 +
𝑈.𝐴
𝑉.𝜌.𝐶 (𝑇𝑖 − 𝑥2)

⎤
⎥
⎥
⎥
⎦

(3)

𝐺(𝑥) =
⎡
⎢
⎢
⎢
⎣

1
𝑉 (𝐶𝐴𝑖 − 𝑥1) 0

0 1
𝑉 (𝑇𝑖 − 𝑥2)

⎤
⎥
⎥
⎥
⎦

(4)

Control inputs, controlled outputs, and process
parameters are given in Table 1.

3. Feedback Linearization Control

The necessary and sufϐicient condition allowing
the existence of static, nonlinear feedback ensuring
the exact linearization of the system (2) is guaranteed
if and only if the output’s global relative degree equals
to the system’s order.
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Table 1. Proposed CSTR manipulated variables and
parameters [50]

Symbol Description Value
𝐹𝐿 Reactant ϐluid ϐlow rate [m3/h] –
𝐹𝐶 Coolant ϐluid ϐlow rate [m3/h] –
𝐶𝐴 Concentration of the reactant A in

the reactor [kg mol/ m3]
–

𝑇𝑅 Temperature in the CSTR [K] –
𝑉 Reaction volume [m3] 24
𝐴 Effective heat interchange surface

[m2]
24

Δ𝐻 Enthalpy of the reaction [kJ/kmol] −2100
𝐸𝑎 activation energy [kJ/kmol] 2100
𝑘0 Reaction velocity constant [h−1] 59,063
𝜌 Density of the reactant A [kg/ m3] 800
𝑈 Heat transfer coefϐicient between

the cooling jacket and the reactor
[kJ/(h. m3.K)]

4300

𝑇𝑖 Jacket cooling ϐluid initial
temperature [K]

306

𝐶𝐴𝑖 Feed concentration of reactant
A[kg mol/ m3]

10

𝐶 Speciϐic heat capacity of reactant
A [kJ/(kg.K)]

3

𝑅 Ideal gas constant [kJ/kg kmol] 8,314

, , = −

Figure 1. Simplified scheme of the proposed CSTR

3.1. The Output Relative Degree

Bydeϐinition, the output relative degree is the least
number of the output’s time derivatives to get at least
one control input [51]:

�̇� = 
ℎ̇1(𝑥)
ℎ̇2(𝑥)

൩ = ቈ
𝐿𝐹ℎ1(𝑥) + 𝐿𝐺ℎ1(𝑥).𝑢
𝐿𝐹ℎ2(𝑥) + 𝐿𝐺ℎ2(𝑥).𝑢



=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝑘0expቆ
−𝐸𝑎
𝑅𝑥2

ቇ𝑥1 +
1
𝑉 (𝐶𝐴𝑖 − 𝑥1) 𝑢1

−Δ𝐻.𝑘0
𝜌.𝐶 expቆ−𝐸𝑎𝑅𝑥2

ቇ𝑥1 +
𝑈.𝐴
𝑉.𝜌.𝐶 (𝑇𝑖 − 𝑥2)

+ 1
𝑉 (𝑇𝑖 − 𝑥2)𝑢2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

From (5), it is clear that 𝐶𝐴 and 𝑇𝑅 relative degrees are
equal respectively to r1 = 1 and r2 = 1.

Therefore, the output vector global relative degree
is equal to r = r1+r2 = 2, and noting that the sys‐
tem order n = 2, the existence of a static nonlinear
feedback allowing the exact linearization of (2) is then
ensured.

Equation (5) can be rewritten as described below:

�̇� = ቈℎ̇1(𝑥)ℎ̇2(𝑥)
 = 𝐴(𝑥) + 𝐷(𝑥).𝑢 (6)

where:

𝐴(𝑥) = ቈ𝐿𝐹ℎ1(𝑥)𝐿𝐹ℎ2(𝑥) = 𝐹(𝑥) (7)

𝐷(𝑥) = ቈ𝐿𝐺ℎ1(𝑥)𝐿𝐺ℎ2(𝑥) = 𝐺(𝑥) (8)

𝐿𝐹 , 𝐿𝐺 denotes the Lie derivatives [51].
3.2. Linearizing Feedback Control Design

From the equation (5), it is obvious that the
searched static nonlinear feedback linearization con‐
trol is deϐined as:

𝑢 = 𝐷−1(𝑥).[𝑉 − 𝐴(𝑥)] (9)

where, 𝐴(𝑥) and 𝐷(𝑥) are given by the equations (3)
and (4) respectively. The term 𝑉 = [𝑣1 𝑣2]𝑇 is the new
control input issued from the external control loop.

Applying the control law (9) to the system(2) leads
to the following linear decoupled system:

ቊ�̇�1 = 𝑣1
�̇�2 = 𝑣2 (10)

3.3. Outer Loop Controller Synthesis

Applying the following PI control law to the outer
control loop:

⎧⎪
⎨⎪⎩

𝑣1 = −𝐾11𝐶𝐴 − 𝐾12න(𝐶𝐴 − 𝐶𝑟𝑒𝑓𝐴 )𝑑𝑡

𝑣2 = −𝐾21𝑇𝑅 − 𝐾22න(𝑇𝑅 − 𝑇𝑟𝑒𝑓𝑅 )𝑑𝑡
(11)

yields the following closed loop transfer function:

G(s) =
⎡
⎢
⎢
⎢
⎣

K12
s2 + K11s+ K12

0

0 K22
s2 + K21s+ K22

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜔2
1

s2 + 2𝜁1𝜔1s+ 𝜔2
1

0

0 𝜔2
2

s2 + 2𝜁2𝜔2s+ 𝜔2
2

⎤
⎥
⎥
⎥
⎦
(12)

where, s is the Laplace operator, 𝜁i and 𝜔i are respec‐
tively the closed loop desired damping ratios and
band‐width frequencies.
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3.4. Extended State Observer Based Robust Feedback
Linearization Control

First, let us introduce the modeling errors by con‐
sidering them as parameters variations and uncer‐
tainties in the nominal model (2). This leads to the
following perturbed model:

ቊ�̇� = 𝐹(𝑥) + Δ𝐹(𝑥) + (𝐺(𝑥) + Δ𝐺(𝑥))𝑢
𝑦 = ℎ(𝑥) (13)

By applying the nonlinear control feedback (9) to the
perturbed system (13), the exactly linearized system
(10) becomes of the form:

�̇� = 𝑉 + 𝜂(𝑥, 𝑉) (14)

where:

𝜂(𝑥, 𝑉) = Δ𝐺(𝑥)𝐺−1(𝑥)(𝑉 − 𝐹(𝑥)) + Δ𝐹(𝑥) (15)

The system (14) can be re‐expressed as:

ቊ
�̇�1 = 𝑣1 + 𝜂1(𝑥, 𝑉)
�̇�2 = 𝑣2 + 𝜂2(𝑥, 𝑉)

(16)

The next step consists of designing two extended
state observers, allowing the estimation of the system
states and the two unknown disturbances functions
𝜂1 and 𝜂2. So, each subsystem of equation (16) can be
rewritten in the following state form:

ቊ
�̇�𝑖1 = 𝑥𝑖2 + 𝑣𝑖

�̇�𝑖2 = ̇𝜂𝑖
𝑖 = 1, 2 (17)

The proposed nonlinear extended states observers
(NLESO) are deϐined as given in [41]:

൝
̇�̂�𝑖 = 𝐴.�̂�𝑖 + 𝐵.𝑣𝑖 + 𝐿𝑖 .𝑔𝑖(�̂�𝑖)

�̂�𝑖 = �̂�𝑖1
(18)

where:

𝐴 = ቈ0 1
0 0 , 𝐵 = ቈb0 , �̂�𝑖 = ቈ�̂�𝑖1�̂�𝑖2 , 𝐿𝑖 = ቈ𝐿𝑖1𝐿𝑖2 (19)

The nonlinear 𝑔(𝑒𝑖) function is deϐined as:

𝑔𝑖(ෝ𝑒𝑖) = ൞
|�̂�𝑖|𝛼𝑖 .𝑠𝑖𝑔𝑛(�̂�𝑖) , 𝑖𝑓 |�̂�𝑖| > 𝛿𝑖
�̂�𝑖

𝛿1−𝛼𝑖i
, 𝑒𝑙𝑠𝑒

𝑖 = 1, 2

(20)
where:

0 < 𝛼𝑖 < 1, 𝛿𝑖 > 0, �̂�𝑖 = 𝑦𝑖 − �̂�𝑖 (21)

when |�̂�𝑖| < 𝛿𝑖 , the nonlinear state observer (18)
takes the form of the well known linear Luenberger
observer (LESO):

൝
̇�̂�𝑖1 = �̂�𝑖2 + 𝛽𝑖1�̂�𝑖 + 𝑣𝑖

̇�̂�𝑖2 = 𝛽𝑖2�̂�𝑖
, 𝛽𝑖𝑗 =

𝐿𝑖𝑗
𝛿1−𝛼𝑖 𝑖, 𝑗 = 1, 2 (22)

Therefore, 𝛽𝑖 are calculated to ensure an observer
dynamic faster than the close loop tracking dynamic
as described by the given below condition:

𝑃𝐿𝐸𝑆𝑂(𝑠) = 𝑠2 + 𝛽𝑖2𝑠 + 𝛽𝑖1 = (𝑠 + 𝜔𝑖0)2 (23)

𝑃𝐿𝐸𝑆𝑂(𝑠): The observer’s characteristic polynomial.
𝜔𝑖0: The desired observer band‐width frequency.
𝜔𝑖0: Is chosen as given in [52] to ensure the best com‐
promise between the observing convergence speed
and the sensors noise insensitivity:

𝜔𝑖0 = (3 to 5)𝜔𝑖 , 𝑖 = 1, 2 (24)

The small value 𝛿𝑖 represents the set point limiting the
NLESO (18) high gain.

By redeϐining the outer loop control (11) as fol‐
lows:

൝
𝑣𝑅𝑜𝑏1 = 𝑣1 + Δ𝑣1
𝑣𝑅𝑜𝑏2 = 𝑣2 + Δ𝑣2

(25)

where:

ቊ
Δ𝑣1 = −�̂�12
Δ𝑣2 = −�̂�22

(26)

the controlled outputs in presence of modeling errors
computed in the Laplace domain become:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝐶𝐴(s) =
𝜔2
1

𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔2
1
𝐶𝑟𝑒𝑓𝐴 (s)

+ 1
𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔2

1
(𝜂1(𝑠) − �̂�12(𝑠))

𝑇𝑅(s) =
𝜔2
2

𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2
𝑇𝑟𝑒𝑓𝑅 (s)

+ 1
𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2

2
(𝜂2(𝑠) − �̂�22(𝑠))

(27)

It is obvious that when the estimated states converge
to the system states:

ቊ𝜂1(𝑠) → �̂�12(𝑠)
𝜂2(𝑠) → �̂�22(𝑠)

(28)

the controlled outputs dynamics converge to the given
below expressions:

⎧⎪
⎨⎪
⎩

𝐶𝐴(s) ≅
𝜔2
1

𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔2
1
𝐶𝑟𝑒𝑓𝐴 (s)

𝑇𝑅(s) ≅
𝜔2
2

𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2
𝑇𝑟𝑒𝑓𝑅 (s)

(29)

It is clear from (29) that the closed loop dynamic and
static desired performances are guaranteed. However,
we shall emphasize that the analytical convergence
proof of the NLESO (18) is out of the scope of this
paper, and we are limited just to suppose the assump‐
tions given in [42, p. 421] are satisϐied and the valid‐
ity of the proposed control is demonstrated through
numerical simulations.
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4. Simulation Results and Discussion
The proposed control method is validated using

numerical simulations by comparing it objectively to
the conventional PI controller designed basing on a
locally valid linear model developed around a pre‐
selected operating point. The conventional PI syn‐
thesis method is given bellow choosing the following
operating state:

𝑥0 = ൣ2.88 297൧𝑇 𝑢0 = ൣ244.96 212.56൧𝑇

Hence, the linear state model is given by the following
matrices:

𝐴0 = ቈ−35.44 −61.80
−22.08 −7.25  ; 𝐵0 = ቈ0.30 0

0 0.38

𝐶0 = ቈ1 0
0 1 ; 𝐷0 = ቈ0 0

0 0

Notice that the local behavior of the given abovemodel
is unstable at the chosen operating point. The calcula‐
tion of the matrix 𝐴0 eigenvalues yields:

𝜆(𝐴0) = ൣ−60.88 18.19൧𝑇

To introduce the integral action in the control law
using state feedback closed loop pole placement
method, let us consider the following augmented sys‐
tem: where the augmented state is deϐined as:

𝑥 = ቂ𝐶𝐴 𝑇𝑅 𝑒1 = 𝐶𝐴 − 𝐶𝑟𝑒𝑓𝐴 𝑒2 = 𝑇𝑅 − 𝑇𝑟𝑒𝑓𝑅 ቃ
𝑇

Choosing the closed loop poles as follows:

𝜆(𝐴𝐶) = ൣ−61 −20 −61 −20൧𝑇

the closed loop PI controller is described by the fol‐
lowing equations:

𝑢 = 𝑢0 + Δ𝑢

where:

Δ𝑢 = 𝐾𝑃 ቈ
𝐶𝐴
𝑇𝑅 + 𝐾𝐼නቈ(𝐶𝐴 − 𝐶𝑟𝑒𝑓𝐴 )

(𝑇𝑅 − 𝑇𝑟𝑒𝑓𝑅 ) 𝑑𝑡

𝐾𝑃 = 103 ቈ 0.15 −0.21
−0.06 0.20  𝐾𝐼 = 103 ቈ4.11 0

0 3.25

The comparative study that follows is based on two
scenarios:
Scenario 1: Both proposed controls are applied to the
nominal nonlinear model of which the parameters are
given in Table 1.

The proposed ESO based robust controller param‐
eters are deϐined as given in Table 2.
Scenario 2: The compared controllers are applied to
the uncertain model in order to test their perfor‐
mance robustness against parameter’s, uncertainties,
and variations of parameters are given in table below:

The proposed ESO based robust feedback lin‐
earization control bloc scheme and the obtained sim‐
ulation results for each proposed scenario are pre‐
sented in Figures 2–16.

Table 2. ESO based controllers’ parameters

Loop Controller/ESO parameters
𝑪𝒂 𝜁1 = 1; 𝜔1 = 61;

𝜔10 = 183; 𝛿1 = 0.1; 𝛼11 = 0.5; 𝛼12 = 0.05
𝑻𝑹 𝜁2 = 1; 𝜔2 = 20;

𝜔20 = 100; 𝛿2 = 10−5; 𝛼21 = 0.495; 𝛼21 = 0.005

Table 3. Parameters uncertainties or variations

Uncertainties/
variations

Absolute value Relative
value (%)

ΔV(t) 0,25x24.sin(t) [−25 +25]
ΔA(t) 0,25x24.sin(t) [−25 +25]
ΔC𝐴𝑖(t) 0,2x10.sin(t) [−20 +20]
ΔT𝑖(t) 0,02x306.sin(t) [−2 +2]
Δ(ΔH) −0,01.2100 −1
Δk0 −0,05x59,063 −5
Δ𝜌 +0,05x800 +5
ΔU −0,1x4300 −10
ΔC +0,01.3 +1
ΔE𝑎 −0,1x2100 −10

̂

’

̂

̂

Figure 2. The proposed ESO based robust feedback
linearization control scheme

Figure 3. Desired and actual product’s concentration
curves for scenario 1

Figure 4. Desired and actual product’s temperature
curves for scenario 1
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Figure 5. Reactant fluid flow rate control input curves
for scenario 1

Figure 6. Coolant fluid flow rate control input curves for
scenario 1

Figure 7.Measured and observed product’s
concentration curves for scenario 1

Figure 8.Measured and observed product’s
temperature curves for scenario 1

Figure 9. Calculated and observed product’s
concentration dynamics uncertainties curves for
scenario 1

Figure 10. Calculated and observed product’s
temperature dynamics uncertainties curves for
scenario 1

Figure 11. Desired and actual product’s concentration
curves for scenario 2

Figure 12. Desired and actual product’s temperature
curves for scenario 2
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Figure 13. Reactant fluid flow rate control input curves
for scenario 2

Figure 14. Coolant fluid flow rate control input curves
for scenario 2

Figure 15. Calculated and observed product’s
concentration dynamics uncertainties curves for
scenario 2

Figure 16. Calculated and observed product’s
temperature dynamics uncertainties curves for
scenario 2

4.1. Results Discussion When the Process is Operating
in Nominal Conditions

When the parameters’ uncertainties and varia‐
tions are equal to zero, the responses of the CSTR
under the both proposed controllers, shown in the
Figures 3 and 4, remain very close to the desired set
point after the transient phases. It is also clear in Fig‐
ure 3 that the ESO based robust feedback linearizing
controller ensures a better decoupling between the
controlled outputs and a faster convergence of the
product concentration to its desired value. The strong
inertia of the process against the conventional PI con‐
troller disappears after a certain elapsed period of
time. Concerning the temperature responses, it clearly
illustrated in Figure 4 that the conventional PI con‐
trol exhibits a slightly superior convergence speed
although the chosen closed loop poles were the same.
This result is due to the fact that for the conventional
PI control, the closed loop temperature dynamics are
regulated as a ϐirst order subsystem, whereas it is
chosen as a second order critically damped subsystem
for the ESO based robust controller.

The control signals depicted inFigures5and6 con‐
ϐirm the high inertia of the controlled process against
the conventional PI controller by illustrating the high
control effort needed to achieve the desired values
when the process is started or when the set point
changes suddenly, this remark is more evident for the
supply control ϐlow FL.

From Figures 9 and 10, it is seen clearly that
convergence of the proposed ESO is very satisfac‐
tory. The estimate of the total modeling errors sup‐
posed unknown and considered as an additional state
remain near zero. This expected result is logical
since in this scenario the model’s uncertainties were
neglected by setting their values to zero.
4.2. Results Discussion When the Process is Operating

in Presence of Parameters’, Uncertainties, or
Variations

In scenario 2, our aimwas to compare the transient
and steady performances of the proposed controllers
under the suppositions of the existence of uncertain
or time varying parameters. The results presented in
Figures 11 and 12 show that even the nominal per‐
formances were relatively degraded compared to the
nominal case; both proposed controllers were able
to achieve sufϐiciently good control performance in
the sense that the system responses were maintained
around the desired set points within a narrow band.
Also, it is clear that the proposed ESO based robust
feedback controller robustness exceeds that obtained
with the conventional PI since it was capable of ensur‐
ing a better static precision by rejecting actively the
real‐time observedmodeling errors as depicted in Fig‐
ures 15 and 16.

74



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 4 2023

Table 4. Rooted mean squared error and mean control power criterions for each scenario

ESO based F-L controller PI controller
CA TR CA TR

RMS 1 0,103 13,64 1,565 10,87
2 0,144 19,00 1,721 15,40

FL FC FL FC

Mean control power 1 2,68×104 1,88×104 54,35×106 2,60×104
2 2,34×104 2,86×104 48,27×106 2,99×104

In term of control energy, the Figures 13 and
14 highlight the main future of the proposed ESO
based robust feedback control, which lies in the fact
that it needs a net inferior energetic consumption to
achieve the desired set points when these desired val‐
ues change instantaneously and especially when the
process starts functioning. This major feature, clearly
visible in Table 4, is due to the potential of the pro‐
posed method to decouple the whole process dynam‐
ics into two independent dynamics and thus control
them separately, dispensing less energy compared to
the PI controller.

The above presented comparative study is sum‐
marized based on the rooted mean square error and
the mean control power criterions for each scenario
in Table 4.

The error RMS and the mean control power crite‐
rions are deϐined as:

⎧
⎪

⎨
⎪
⎩

RMS(𝑒(𝑡)) = ඨ1
𝑇 න

𝑇

0
𝑒2(𝑡)𝑑𝑡

Mean power(𝑢(𝑡)) = 1
𝑇 න

𝑇

0
𝑢2(𝑡)𝑑𝑡

(30)

where:
T: is the simulation time.
u(t): represents the control input.

5. Conclusion
The main objective of this article was to propose

a viable extended state observer based robust feed‐
back linearization controller applied to the control of
an industrial CSTR. The idea behind this particular
choice was to associate the decoupling capacity of
the exact feedback linearization control, and therefore
guaranteeing high tracking performance, and the high
potential of the nonlinear extended state observer to
estimate the modeling errors and the external distur‐
bances in order to reject actively their undesirable
effects. The obtained results via numerical simula‐
tions have objectively demonstrated the effectiveness
of the proposed control strategy compared to the con‐
ventional PI in terms of:
1) Providing a better tracking performance by ensur‐

ing a better decoupling between the two controlled
dynamics.

2) Presenting a remarkable energetic efϐiciency
improvement by diminishing the power
consumption.

3) Showing a strong robustness against the nominal
model’s uncertainties by decreasing the necessity
to get a highly accurate mathematical model in the
controller design by adopting an extended state
observer charged to compensate the model/plant
mismatch.
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