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Abstract:
Minimally‐supervised home rehabilitation has become
an arising technological trend due to the shortages
in medical staff. Implementing such requires providing
advanced tools for automatic real‐time safety moni‐
toring. The paper presents an approach to designing
the mentioned safety system based on measurements
and modelling the interface between a patient’s muscu‐
loskeletal system and a rehabilitation device. The con‐
tent covers the segmentation of patients regarding their
health conditions and assigns them suitable measure‐
ment techniques. The defined groups are described by
the hazards with which they are most endangered and
their causes. Each case is correlated with the appropriate
data type that may be used to detect potential risk.
Moreover, a concept of using presented knowledge for
tracking the safety of bones and soft tissues according to
the biomechanical standards is included. The paper forms
a set of guidelines for designing safety systems based on
measurements for robot‐aided home kinesiotherapy. It
can be used to select an appropriate approach regarding
a specific case; whichwill decrease costs and increase the
accuracy of the designed tools.

Keywords: Biosignals, Biomechanics, Home rehabilita‐
tion, Kinesiotherapy, Minimally‐supervised treatment,
Rehabilitation robotics

1. Introduction
Kinesiotherapy is treatment withmotion designed

to restore maximum functionality of patients. Its pur‐
pose is to recover from diseases of the musculoskele‐
tal system. During kinesiotherapy of extremities, a
physiotherapist interacts physically with the patient’s
limbs in a speciϐic way to regain their mobility [61].

Bringing back maximum functionality is essen‐
tial for basic daily activities (ADL). The motor treat‐
ment often requires a lot of professional physical
engagement, which may be overtaken by rehabili‐
tation robots. Moreover, working with people who
do not have the ability to sit or stand themselves
often requires upright standing with the help of up
to three physiotherapists [21]. In addition, the ageing
society requires more intensive and frequent treat‐
ment while the number of medical personnel ongo‐
ingly decreases. Hence, themost signiϐicant problem is

an insufϐicient number of physiotherapists and care‐
givers in nursing homes [50]. It is possible to reduce
the participation of professionals in the therapy even
while being dependent on family members. However,
this requires the devices to support performed exer‐
cises in a precise and controlled way [53]. Research
indicates advantages of providing stroke patients and
people with paresis, who require permanent rehabili‐
tation, with transportable, lightweight, and wearable
devices. Such may be involved in the post‐discharge
home rehabilitation [60].

Due to the COVID‐19 pandemic, patients needing
constant therapy were severely disadvantaged. This
was caused by pandemic restrictions in human meet‐
ings [25], overcrowding of hospitals, and the shortage
of health care members. To avoid such situations, it
is crucial to develop well‐validated tools for remote
home rehabilitation [26].

Considering the mentioned conditions, adapting
rehabilitation devices to home self‐use is an arising
need and challenge for medical robotics. As the ther‐
apist may be not provided with haptic feedback dur‐
ing remote home rehabilitation, developing a robust
safety system is critical [80]. Such should analyse
dynamics of the rehabilitated body segment and addi‐
tional measurements to assess the safe operation of
a user without involving a physiotherapist [23]. The
following paper presents an approach to modelling
patients’ physical loads to detect potential pain or
discomfort automatically. This is possible for partic‐
ular cases by measuring and interpreting biosignals
or dynamic parameters. The paper classiϐies patients
according to their disorders level. Based on these lev‐
els, potential hazards during kinesiotherapy are listed
and matched with the corresponding measurements.
These may be used to build a model enabling continu‐
ous human‐less safety monitoring.

2. Methodology

Based on a literature overview, the paper consists
of a systematic analysis of the potential automatic
detection of hazardous situations during remotehome
treatment. This includes disease case segmentation,
possible causes of injuries, and measurement meth‐
ods. With these, a multibody model may be created
and used to assess the safety of the treatment.
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The Scopus, Research Gate, Google Scholar, and
PubMed databases were analysed to create this
paper. The following keywords were used: home
telerehabilitation, kinesitherapy, stroke, paresis,
spasticity, extremity exoskeleton, pain detection,
measurable biological signals, ROM measurement,
OpenSim. 92 articles were reviewed with the
limitation of being published in 2016 or later, of
which 37 were considered not to contribute much
to this paper. Papers describing the exact concept
of speciϐic rehabilitation devices were rejected.
However, it is worth noticing that most of them
assume the constant presence of a physiotherapist
next to the patient or prior limiting joints range of
motion (ROM), which affects the device’s working
area. Papers mainly dealing with the pharmacological
treatment of strokes, spasticity, or paresis were also
rejected, as this is not relevant for the uptaken topic.

3. Results and Discussion
3.1. Segmentation of Cases

The patients were segmented into ϐive groups to
assign them corresponding potential risks. Thanks to
this, the number of measurement techniques needed
for safety monitoring is limited for every case. The
deϐined groups are :
1) Patients with sensation after mechanical trauma

(e.g., fractures) or light musculoskeletal disor‐
ders (e.g., joint calciϐication) and post‐surgical
patients – with a possible complete return to pre‐
injury performance

2) Patients with ϐlaccid muscles, deprived of sensa‐
tion

3) Patients with ϐlaccid muscles, with sensation
4) Spastic patients, deprived of sensation
5) Spastic patients, with sensation
The patients with muscle ϐlaccidity are understood
as the ones with missing connections between the
brain and spinal cord circuits essential for volun‐
tary movement [22]. Spasticity is a motor disorder
characterized by a velocity‐dependent exaggeration of
stretch reϐlexes resulting from abnormal intraspinal
processing of primary afferent input. Such malfunc‐
tioning implies increased muscle tone, enhanced ten‐
don reϐlexes, and extended reϐlex zones [14] and is
usually the result of stroke [8]. To correctly refer to
individual cases in the paper, they are assigned with
the numbers of the above‐proposed segments.

The division above includes cases of patients eli‐
gible for robotic home rehabilitation and refers to the
part of the body rehabilitated (e.g., while performing
kinesiotherapy of the lower limb of a patient with the
ϐlaccid lower half of the body and sensation, they are
treated as the group 3 – even though their upper half
of the body may be not affected by any disorder). For
every group, the signals which can be measured for
pain detection purposes were selected. The proposed
approach to detect risk prior to patients’ injuries by
the robotic rehabilitation systems is presented below.

3.2. Methodology of Measurements

Selection of the appropriate approach to
measurements prior to and during kinesitherapeutic
robot‐aided sessions is critical to automating the
process. The methods may be combined and used
along with each other to improve the reliability of
the safety system of the device. Currently, the most
common sensors for rehabilitation devices are IMU,
encoders, pressure gauges, and EMG sensors. The ϐirst
two are used to obtain information on the device’s
kinematics conϐiguration, while the others are for
biofeedback [19, 72]. This subsection presents an
overview of the considered techniques and correlates
them with the segments presented before.

Measurement of the patient’s range of motion
Measurement of the patient’s range of motion (ROM)
is connected with actively exercised joints. The
resulted values describe the operational space of the
individual body segment, where the exercise may
be performed without pain or any risk of trauma.
Such measurement may be realised manually with
goniometers or with a rehabilitation device itself,
e.g., by the SFTR method [31]. Before starting the
actual treatment session, the device should launch a
measuring module to determine the patient’s ROM
and adjust the exercise space.

There is no certainty that staying within
single joint limits will ensure the patient’s safety
during complex movements. In other words,
the decomposition of a complex motion into the
appropriate components in the fundamental planes:
sagittal, frontal and transverse, does not have
to correspond to the sum of these movements
in terms of the muscle loads . Moreover, such a
measurement should take place several times the
during rehabilitation process to consider potential
ROM increase related to the convalescenceprocess [2].
However, this time‐consuming process does not fully
safeguard further automatic kinesiotherapy. If such a
calibration is to be performed without an additional
operator of the system, either intelligent algorithms
have to sense motion limits or the device must
receive equivalent information from a patient. The
ϐirst approach is difϐicult to implement for patients
with severe neural diseases. On the other hand,
conϐirming the end of possible motion requires the
user’s capability of physical interaction with the
human‐machine interface (HMI) or implementation
of vocal commands. This implies the need for an
excellent command and sound recognition system,
potentially with an advanced neural network [37].
These requirements also affect the number of patients
who may use the device.

Pulse and ECGmeasurement
To measure pulse or ECG, the device has to be
equipped with the dedicated sensors. As the severe
stress related to pain sensations causes the change
in readings [71], this technique can be used to
detect emergency states of the rehabilitation

18



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 4 2023

system. However, the values of resting heart rate
and the measurements during exercising vary for
individuals [78]. Additionally, the abnormalities may
be registered too late for the robot to react before
harming the patient. Moreover, the expected accuracy
of around 60–80% and no distinction between pain
levels may not be enough real‐time pain recognition
for robot‐aided kinesiotherapy [56].

Estimating the strength parameters of tissues
The safety algorithms can be based on the multibody
model of the cooperating device and musculoskeletal
system. However, this approach requires comparing
computed results of loads within individual tissues
with their strength parameters different for every per‐
son.

The most vulnerable to injuries are tendons and
ligaments [42]. For this reason, machines should not
exceed the strength limits of these tissues. It is partic‐
ularly challenging to obtain data on their parameters,
such as Young’s modulus. The corresponding exper‐
imental trials are usually carried out on animals [7]
or tissues from the deceased [34], which do not fully
correspond to the tissues of alive humans. Moreover,
tissue properties change with age, gender, and experi‐
enced illnesses [59].

To prevent hazardous situations, estimating the
tensile strength is most critical for individual soft
tissues, as they are most vulnerable to damage in
this direction [3]. Before the treatment, their values
may be obtained with a speciϐic device such as
MyotonPRO [5]. The measurement method consists
of registering the damped natural vibrations of soft
biological tissue in the form of an acceleration signal
and then calculating the desired parameters. Such
technology enables measuring the tone, stiffness,
ϐlexibility, relaxation, and creep of tissues [5]. The
proposed solution could also be transferred to
the rehabilitation robot by equipping it with a
dedicated sensory system. Nevertheless, there are
also limitations to this measurement technique, e.g.,
the results are less accurate for obese patients as well
as the deeply located and too thin tissues are difϐicult
to work with [1].

EDAmeasurement
EDA is electrodermal activity, demonstrated to be
effective in arousal estimation [73]. As a patient’s
sweating changes at times of severe stress [32],
analysing correlated EDA signals can contribute to
detecting increasing pain. This technology is being
continuously developed, and it does not have many
validated applications yet [4]. There are serious
doubts whether emotions such as joy or stress caused
by providing treatment by a robot, not a human, will
not cause excessive sweating [64]. Such an effect can
lead to confusion of hazard situations with a regular
operation of the device by the automatic safety
monitoring system. For this reason, implementing
EDA within a real‐time system for detecting risks in
home robot‐aided treatment is not suggested.

EEGmeasurement
EEG, electroencephalography, is a non‐invasive
method of analysing brain electrical activity based
on the recordings from the scalp. As a patient’s
intentions are detectable with this measurement [46],
a rehabilitation robot can use EEG signals for
predictive control to interact with a user and not
exceed their range of motion [80]. However, not
every intention of motion results in the movement –
its image may be enough for the corresponding
area of the brain to become active [49]. On the
other hand, researchers proved that physical pain,
particularly acute [70], can be detected based on
EEG with an accuracy of almost 95% and used for
real‐time reϐlex in prostheses [75]. This implies
the applicability of the technique for robot‐aided
rehabilitation. Nevertheless, using advanced EEG
systems is relatively expensive and requires precise
placement of the electrodes on a patient’s scalp to
provide repetitive results [12]. These might be the
main barriers to using such for home therapy.

EMGmeasurement
EMG, electromyography, may be either an invasive
or non‐invasive investigation of the electrical
activity of muscle units or whole groups. Registered
signals provide information regarding the temporal
behaviour and morphological layout of active motor
units during muscle contraction [68]. This may be
used to estimate internal stress in these tissues
and compare them with their biomechanical limits.
The safety system must react to sudden peaks in
the registered signals. These may either be related
to the nociceptive ϐlexion reϐlex caused by pain
stimuli or the spastic reϐlex caused by a sudden
noise, unexpected touch, or stress [13]. The two
mentioned have to be distincted. Hence, the EMG
may be useless for detecting hazardous situations
for spastic patients in spasticity‐related situations.
The researchers also present the method of detecting
pain based on EMG‐registered facial expressions.
However, this requires non‐affected facial muscles
and generates similar problems as for EEG, including
precise placement of the electrodes [39]. The
values registered with EMG can be used to estimate
temporary muscle tension [58]. However, the surface
EMG, the only applicable within robot‐assisted home
kinesiotherapy, is vulnerable to noises from electrical
devices, other muscle groups, and fat layers [77].

Selection of methods for cases
In order to propose the solution tailored to the capa‐
bilities of a speciϐic group of patients, a decision tree
for measurement selection is presented in Figure 1.
The ϐirst step is to assess whether a patient has physi‐
cal sensations. It is assumed that post‐trauma patients
meet this requirement – if not, they are assigned to
groups 2 or 4.
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Figure 1. Segmentation of cases with corresponding
measurement techniques

Moreover, patients with spasticity have to be med‐
ically qualiϐied for robot‐aided exercising. This deci‐
sion depends on the severity of the problem according
to one of the scales such as Ashworth score, modiϐied
Ashworth score, Tardieu scale, or modiϐied Tardieu
scale [74]. The ones with the degree of spasticity
exceeding a certain threshold cannot workout by
themselves due to their spastic, uncontrolled, intense
muscle contractions [14]. Such a pre‐treatment med‐
ical assessment should be based on several doctors’
independent, expert opinions [35].

On the other hand, patients deprived of sensation
often suffer from excessive sweating [33]. They are
unable to identify their own pain ailments [33], and
thus, their available range of joint mobility.

As may be observed in Figure 1, patients from
group number 1 are suitable for all the measurement
methods. The most challenging task is to measure
biological signals for group 2 because it is not possible
to gather data related to their muscle tension or their
sense of motion limits.

Moreover, there is a difference in the applicability
of EMGmeasurements between non‐spastic and spas‐
tic patients. For the ϐirst group, the sensed electrical
signals may be correlated with the muscular forces
and then analysed regarding biomechanical limits for
safeguarding purposes. When it comes to the second
group, their uncontrolled, rapid, and severe muscle
contractions may turn EMG signals unable to be used
as described above. However, signiϐicant changes in
the measured signals can be assigned to the emer‐
gency stop of the rehabilitation device (marked in
Figure 1 as EMG*). This may counteract the hazard
of muscle ripping during the involuntary, disease‐
related contraction. Furthermore, for patientswithout
sensation, the ROM range cannot be measured as they
cannot feel their physical limits.

Besides the mentioned above, it is necessary to be
aware that for individual cases falling into one of the
proposed segments, assigned measurements may not
give expected results. Therefore, the patient should be
treated as ϐitting another group, even though they do
not meet its criteria.
3.3. Harmful Situation Types

Apart from avoiding a user’s discomfort, the auto‐
matic safety system for rehabilitation robots should
prevent situations causing physical damage to tissues.
This may be realised by modelling the causes of par‐
ticular hazards and comparing their real‐time values
with estimated thresholds. Table 1 contains segmen‐
tation of these. If the risk of a particular cause occuring
is typically neglectable during robot‐aided treatment,
the “high‐risk groups” cell is labelled as “low risk”.

The bone‐related traumas are typically hazardous
for the patients rehabilitated after similar traumas.
Regarding segment 1 of patients, it is similar for the
injuries ofmuscles, ligaments, and tendons. Therefore,
high‐risk group 1* refers to the person after similar
fractures or damage to the soft tissues. On the con‐
trary, B4 trauma may only appear during long‐time
force applied to the extremity’s segment, which is
noticeable as a pain stimulus by patients with unaf‐
fected sensation. The device may be stopped imme‐
diately in such a situation and not cause any harm.
Only groups 2 and 4 are not able to notice such a
case themselves. Therefore, an additional safety sys‐
temmonitoring continuous loads has to be provided.
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Table 1. Segmentation of tissues damages

Trauma Symbol Cause High-risk groups
Measurement technique (other than
tracking device’s dynamic parameters)

Transverse bone fracture B1 Impact transverse force [81] 1* –
Spiral bone fracture B2 Impact twisting moments [54] 1* –

Greenstick bone fracture B3 Impact transverse force [10] 1* ROM
Stress bone fracture B4 Continuous force [30] 2, 4 ROM
Oblique bone fracture B5 Impact force at an angle [29] 1* –
Impacted bone fracture B6 Impact longitudinal force [28] Low risk –
Segmental bone fracture B7 Impact transverse force [69] 1* (low risk) ROM

Comminuted bone fracture B8 Impact transverse force [45] 1* (low risk) ROM
Muscle Strain M1 Impact longitudinal force [82] 1*, 4,5 EMG + pulse + ECG + EEG + ROM
Muscle Tear M2 Continuous longitudinal force [76] 1*,4,5 EMG + ROM

Muscle Contusion M3 Impact transverse force [18] 1*, 4,5 EMG + pulse + ECG + EEG + ROM
Ligament strain L1 Impact longitudinal force [67] 1*, 2,3,4,5 EMG + pulse + ECG + EEG + ROM
Ligament rupture L2 Impact longitudinal force [67] 1*, 2,3,4,5 ROM
Tendon strain T1 Impact longitudinal force [57] 1*,4,5 EMG + pulse + ECG + EEG + ROM
Tendon rupture T2 Impact longitudinal force [67] 1*,4,5 EMG + ROM

The device has to react to the risk of bone fractures
before an actual dangerous situation appears. There‐
fore, no pain‐based measurements will be helpful.
Instead, the overall system should bemonitored based
on its multibody model supplied with the measured
dynamic parameters. Moreover, greenstick fractures
and similar, more complex variants (B4, B7, B8) may
appear while exceeding natural ROM. Therefore, this
should also be implemented for safeguarding such
cases.

As the strains and contusions are less severe than
other types of trauma related to soft tissues, they may
be detected with pain‐based methods. Moreover, they
typically appear preceded by noticeable physical dis‐
comfort. Therefore, the device may be stopped before
harming the user. For muscle tears and ligament or
tendon ruptures, the system has to react prior to the
contusion. Hence, a prediction based on the multi‐
bodymodel andmeasured dynamic parameters of the
device is suggested.

Moreover, as the majority of muscles’ and liga‐
ments’ traumas (not M3) are related to the force gen‐
erated in the correspondingmuscles, they are relevant
only for non‐ϐlaccid patients. Furthermore, their risk
may be tracked with EMG. For the patients with no
sensation, an additional system based on the multi‐
bodymodel and the device’s dynamics parameters has
to be provided.

The damage to soft tissues may also be caused by
exceeding the individual’s anatomical limits. There‐
fore, constantmonitoring of the device’s conϐiguration
related to the measured ROM should be realised.

A person assigned to one of the segments pre‐
sented beforehand should be assigned to the poten‐
tial risks based on the “high‐risk” column in Table 1.
Subsequently, a sensory system and a mathematical
model should be built to detect and react to hazardous
situations. Thanks to such an approach, a rehabilita‐
tion device may implement its emergency routines
when risk appears to prevent harm to a user. As may
be observed, detecting every possible trauma requires
tracking the device’s dynamics parameters and build‐
ing at least a simple multibody model of a physical
interface between a machine and a human.

3.4. Applicability of Results

The measurements proposed in the previous
section, along with the dynamics parameters of the
device (drives’ torques and encoders’ positions), can
be used to build a multibody model of the system.
Such can be used to estimate internal forces, torques
and stresses occurring in the body segments during
a treatment session. These values should remain
below the acceptable thresholds, which may vary
for individual cases. Assuming correct estimations
regarding anatomy, comorbidities, and a patient’s
medical history regarding available bibliography
sources enables the building a reliable safety system.
The following section presents the individual tissue
strength parameters for various cases.

Methodology of testing
Generally, in material engineering, the leading test
carried out to identify the strength properties of a
material is the uniaxial static tensile test. The major
challenge is to select the testing sample shape. This
is due to the fact that soft tissues are prepared post‐
mortem (tissues of blood vessels and skin tissues,
among others) and, hence, they are pre‐tensioned.
Therefore, their susceptibility to deformation makes
it challenging to prepare the appropriate ϐitting of
a sample. For this reason, soft tissues are usually
examined in the form of a bar [47].

Bones
There is a strong correlation between an individual’s
gender, age, or bone type and the tissue’s strength. For
example, loading a woman’s radius or humerus with a
torque of approximately 61 Nm will cause a fracture
with a 50% probability [63]. The differences in the
critical values may be as signiϐicant as 100 Nm for the
critical bending moment of the humerus, depending
on the gender. Analysing shear force in this bone,
its critical value is 1.7 kN for women and 2.5 kN for
men [63].
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It is muchmore difϐicult to damage the lower limb.
The probability of an injury increases outstandingly
when the force of 5 kN is exceeded [63]. Within the
lower limbs, the ϐibula is the most vulnerable bone.
Its tensile strength is up to ten times less than the
femur’s [63]. For many applications, the critical bone
resultant stress can be taken as 150 MPa [20] and
should be scaled according to the individual case.
Moreover, extraordinary attention should be given to
the weakest bone of the exercised body part.

Muscles
There is a correlation between the direction of muscle
tension and its force. Moreover, harm to these tissues
is typically caused by the tendons’ force, or excessive
strain [11]. For this reason, muscles are often
analysed with tendons as uniform bodies of average
strength properties [41]. Correlated stress‐strain
curves present that a strain over 0.4 leads to a rapid
increase in stress as high as 200 kPa [63]. Moreover,
the maximum force applied to the muscle may be
calculatedas themultiplicationof PCSA, andestimated
tetanic tension, e.g., 22.5 N/cm2 for mammalian
muscles [51]. This requires measurement of the
initial muscle lengths and monitoring kinematics
of the extremity during exercises. Home treatment
should be realised with a lower effort for the patient’s
safety. As presented in the literature, monitoring
of force occurring in this soft tissue can be realised
by building a computational multibody model or
analysing their measured excitation [15]. Hence,
a potentially dangerous situation resulting from
exceptional muscle tension could be detected as
the rapid increase of the EMG signal, which leads to
reaching biomechanical thresholds.

Tendons and ligaments
The strength and stiffness of ligaments and tendons
depend on a patient’s age and level of physical activity.
The maximum force that can load these tissues for a
young, athletic person is estimated as 6.1 kN, while
for an older person with a static lifestyle – only 4.6
kN [16]. About 10% – 15% extension of the tendon
causes stress beyond the elastic limit [63]. This cre‐
ates stress of approximately 50 kPa and results in
a deformation of 4 mm on average [52]. The force
generated in the tissue is then close to 200 N [20].
For elderly people, Young’s modulus of ligaments and
tendons increases. They are more difϐicult to stretch
and become less ϐlexible. Nevertheless, the elastic‐
ity of these tissues guarantees their proper function‐
ing [20].

Moreover, thework state of the tissue is also a criti‐
cal factor for estimating safety thresholds. Contracting
tissues generate more stress and are more exposed to
the damage than the extensing ones [20]. In general,
Young’s modulus of the tendon may be estimated as
0.9 – 1.4 GPa [20].
3.5. Model Proposal

As mentioned before, the properties of tissues dif‐
fer among individuals. The solution to predict the
effects of a given exercise for a speciϐic person is to

create a digital twin of the patient and a rehabili‐
tation device [27, 80]. It is possible to build such a
mathematical model in open software, e.g., OpenSim.
The geometrical parameters of the free models may
be modiϐied, as well as the strength parameters of the
tissues [65].

Modelling the physical interface between a reha‐
bilitation device and a user enables the prediction of
the system dynamics in real‐time. Hence, hazardous
situations may be mitigated before they occur [25].
Moreover, this may contribute to optimising therapy
effects.

Internal forces in the tissues may be analysed
regarding the external loads applied [62], also in an
external environment as the exported time series [44].
Thanks to this, it is possible to simulate the results of
themost dangerousmovements for patients with par‐
ticular diseases and a certain age. Based on these sim‐
ulations, the patient may be qualiϐied only for limited
access to the device’s functionality. Thus, the home
treatment remains safe. Moreover, the registered EMG
signals can be included in the model as additional
validation of the simulations [55]. However, in EMG‐
based control, themajor challenge is signiϐicant signal
noise [66]. Due to the need to ϐilter this out, almost
real‐time processing is hindered. In addition, themea‐
sured parameters vary between individuals. More‐
over, this type of control can only be used by people
capable of generating an electrical activity exceeding
a certain threshold [48]. Therefore, the EMGmeasure‐
ments should not be considered a stand‐alone tool for
automatic pain monitoring.

Within the presented methodology, building an
accurate model of the patient and the device is critical
for providing the safe operation of the rehabilitation
robot. The model’s geometry should reϐlect a real‐life
patient’s anatomy, while the simulated tissues have to
be provided with adequate material parameters. The
researchers prove that the ready‐made open human
body models may be effectively enhanced by adding
rigid multibody models of the rehabilitation devices
and used as proposed in the papers [40,62,65].

4. Conclusion
Most of the existing robot‐aided rehabilitation sys‐

tems need the physical presence of a physiothera‐
pist [79]. For this reason, ϐinding a validated context
for the presented problem is difϐicult. Moreover, the
methods of real‐time safetymonitoring based onmea‐
surements are not the same for all patients.

During the treatment, physiotherapists manu‐
ally recognise soft (muscular)and hard (bone) resis‐
tance [9]. They know how much to exceed the soft
resistance to improve a patient’s condition while
not exposing them to injury. This haptic feedback
with a professional’s experience needs to be trans‐
ferred into machine algorithms. Existing pain scales
such as the Visual Analogue Scale (VAS), the Verbal
Rating Scale (VRS), and the Numerical Rating Scale
(NRS) [38] are subjective. Moreover, they are mainly
based on a patient’s previous experience compared to
the present [43].
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On the contrary, the proposed segmentation
allows focusing on individual disease entities and
developing detection models suitable for speciϐic
cases. In the beginning, the robot’s aim should be
deϐined. This can either support people after lighter
injuries [17] or serve for a gradual recovery of motor
activities for people with severe impairment [6].

For the second case, the device may not even cor‐
rect inaccurate movements initially to regain basic
mobility without the pain. Such should be included in
the rules for hazards detection algorithms.

Artiϐicial intelligence can be used for these pur‐
poses, as it increases the accuracy of therapists’ and
doctors’ decisions. Moreover, the neural networks can
contribute to optimal search among the possible ail‐
ments causes and treatment options. In addition, this
approach is easily scalable. Therefore, it can be used to
thoroughly analyse large datasets on the course of the
disease and the patient’s treatment [19].

Furthermore, rehabilitation devices can be bet‐
ter suited to spastic patients by providing them with
a warming‐up module involving simple, low‐speed
motions. This will not only mentally familiarise a
patient with the robot but also restrain muscle con‐
tractions within the main session [14].

The current challenges in the safety monitoring of
robot‐aided kinesiotherapy depend on both software
and hardware. The former includes the speed of real‐
time data and the automatic selection of accurately
restrained ROM. The systems enabling these have not
been implemented in any device yet. The latter con‐
sists of the mechanical design requirements to suit
people of different anatomy and physically limit the
excluded ROM [24,36].

Therefore, while designing the system for real‐
time hazardsmonitoring during the home robot‐aided
therapy, the following should be validated experimen‐
tally:
‐ how can amuscle tension increased to the pain limit
affect the measured signals;

‐ is the change in the signal related to the hazard
confusable with other safe situations;

‐ how big is the signal‐registration and device‐
processing delay;

‐ what are the typical values of the measured signal
for the individual.

Only selecting the measuring technique, which pro‐
vides detection of potential risks with high accu‐
racy and low delay, enables real‐time monitoring
safety during home robot‐aided kinesiotherapy. As
described in the paper, themethodsmay be combined,
also with a multibody model of the device and the
user. Such an approach may become the base for the
computing prediction of emergencies and preventing
them.
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