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Abstract:
The study of humanoid robots is still a challenge for the
scientific community, although there are several related
works in this area, several limitations have been found in
the literature that drive the need to develop an inverse
kinematic modeling of biped robots. This paper presents
a research proposal for the Bioloid Premium robot. The
objective is to propose a complete solution to the inverse
kinematics model for a 18 DOF (Degrees Of Freedom)
biped robot. This model will serve as a starting point to
obtain the dynamic model of the robot in a subsequent
work. The proposed methodology can be extended to
other biped robots.

Keywords: bioloid premium robot, forward kinematics,
inverse kinematic, kinematic chain.

1. Introduction
The problem of study related to the kinematics of

biped robots has been widely studied in the scienti ic
community; in the literature have been found several
limitations in the models of biped robot kinematics.
This drives the need to develop an inverse kinemat‐
ics model for the Bioloid robot of 18 DOF. Speci i‐
cally, the problem of the lack of study of the kinemat‐
ics of the upper train in biped robots arises [1–13,
19–26]. Due to the high number of degrees of free‐
dom and the complexity involved in the calculation of
the inverse and forward kinematics equations, most
authors have the objective of modeling only the lower
train of the robots, either using commercial robots
such as Nao with 12 DOF legs [1], HYDROïD which
has 8 active DOF per leg [2], Scout [3] and NWPUBR‐
1 [4] with 12 DOF legs, Ostrich Bionic with 13 DOF
legs [5], Cassie with 20 DOF legs [6], or robots wich
are author’s designwith 12DOF [7–9] 10DOF [10–12]
and 9 DOF [13]. All of these research papers calculate
the forward kinematics model by taking one of the
robot’s feet as supporting foot.

In other works, it is possible to obtain the for‐
ward and inverse kinematics solution for both legs and
arms, using the HRP‐2 robot with 12 DOF legs [14],
DARwIn‐OPwith 6DOFper leg [15], AXISwith 12DOF
legs [16], NAO with 21 DOF [17], Digit robot with 20
DOF [18], but thesemodels propose the torso or pelvis
of the robot as the initial frame.

The Bioloid robot has been used by the scien‐
ti ic community to perform several studies related to
kinematics, dynamics and control. Most of the works

obtain the kinematic model of the legs, taking into
account only one foot as the initial frame [19–24];
proposing two different cases where the supporting
foot is either the right or the left foot [25], in [26] the
torso is taken as the initial frame. In [27] the kinematic
model of the robot legs and arms is obtained but uses
the torso and pelvis as initial frames.

All the works mentioned previously calculate
the kinematic modeling considering the Denavit–
Hartenberg method to represent the position and ori‐
entation of the end‐effector.

On the other hand, the authors have not estab‐
lished a complete inverse kinematic model for a 18
DOF bipedal robot. Therefore, the Bioloid Premium
robot with 18 DOF is proposed as a study target. The
main motivation in this paper is to develop a method‐
ology based on the Denavit‐Hartenberg method to
obtain the forward and inverse kinematic model for a
18 DOF Bioloid Premium robot.

In the present workwe propose to obtain the com‐
plete kinematic model of the Bioloid robot, consid‐
ering four open kinematic chains, where the initial
frames are the support feet, and we have the left and
right pelvis as end‐effector frames; the pelvis is also
proposed as another initial frame to have the left and
right hand as the other end‐effector frames.

The paper is organized as follows. In Section 2
theDenavit‐Hartenbergmethod is applied to calculate
the geometric parameters of the robot. In Section 3,
forwardkinematicmodel is obtained. The equations of
inverse kinematics of the robot are computed in Sec‐
tion 4. Finally, the conclusions are given in Section 5.

2. Denavit‐Hartenberg Parameters
The key idea is to generate four open kinematic

chains to describe the position and orientation of each
link of the Bioloid Premium robot. Using the Denavit‐
Hartenberg method, the frames and parameters of
each link, as well as the position and orientation of
each joint of the robot are presented in Figure 1.

We can observe that the supporting right
and left feet are proposed as the initial frames
Σd0(xd0, yd0, zd0) and Σd0(xd0, yd0, zd0), then the irst
two kinematic chains goes up to the pelvis frame,
from this point three open kinematic chains can be
considered, one of them has the left foot end‐effector
frame ∑

12 (x12, y12, z12), while the second chain
takes into account the right hand end‐effector frame
Σd3(xd3, yd3, zd3) and inally, the third chain considers
the left hand end‐effector frame Σi3(xi3, yi3, zi3).
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Figure 1. Frames assigned to the joints of the Bioloid
robot

Table 1. Denavit‐Hartenberg parameters of the legs

Link αi li θi di

1 π/2 0 0 d1
2 −π/2 0 θ1 0
3 0 l1 θ2 0
4 0 l2 θ3 0
5 π/2 0 θ4 0
6 π/2 0 θ5 0

7 0 0 θ6 0

Table 2. Denavit‐Hartenberg parameters of the right arm

Link αi li θi di

1 π/2 0 −π/2 d2
2 −π/2 l3 θb1 d3
3 0 l4 θb2 0
4 0 l5 θb3 0

Table 1 presents the Denavit‐Hartenberg param‐
eters for the kinematic chain corresponding to the
robot legs, which relates the frame∑1 (x1, y1, z1) and
frame∑12 (x12, y12, z12).

Table 2 shows the Denavit‐Hartenberg parame‐
ters for the kinematic chain corresponding to the
right arm of the robot, which relates the frame∑

d1 (xd1, yd1, zd1) and frame∑d3 (xd3, yd3, zd3).
Table 3 has the Denavit‐Hartenberg parameters

for the kinematic chain corresponding to the left arm
of the robot, which relates the frame∑i1 (xi1, yi1, zi1)
and frame∑i3 (xi3, yi3, zi3).

The robot’s home position is given by the angles
shown in Tables 4 and 5.

To de ine the value of the variables corresponding
to the leg links, the real measurements of the Bioloid
Premium robot leg joints were used:

Table 3. Denavit‐Hartenberg parameters of the left arm

Link αi li θi di

1 −π/2 0 −π/2 d2
2 π/2 l3 θb4 d3
3 0 l4 θb5 0
4 0 l5 θb6 0

Table 4. Value of the joints corresponding to the home
position of the robot legs

θ1 θ2 θ3 θ4 θ5 θ6

π/2 0 0 0 −π/2 0

Table 5. Value of the joints corresponding to the home
position of the robot arms

θb1 θb2 θb3 θb4 θb5 θb6

−π/2 0 0 π/2 0 0

d1 = 33mm, d2 = 118mm, d3 = 73mm,

l1 = l2 = 76mm, l3 = 16mm,

l4 = 66mm, l5 = 108mm.

3. Forward Kinematics
To calculate the forward kinematics of the robot,

the transformationmatrix de ined in Equation (1)was
used.

Hi
i−1 =

(
cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) licos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) lisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

)
(1)

Where the superscript i represents the number
of the current joint and the subscript i − 1 indi‐
cates the number of the previous joint. Therefore,
Hi

i−1 is the homogeneous transformation matrix rep‐
resenting the rotation and translation of joint i with
respect to joint i− 1.

To simplify the results obtained, the following
compact notation is used:

sin(θi) = Si, cos(θi) = Ci,

sin(θi + θj) = Si,j , cos(θi + θj) = Ci,j

where i, j denote the joint number.
The transformation matrix H1

0 relating the frame∑
0 (x0, y0, z0) to frame∑1 (x1, y1, z1) corresponding

to the robot’s foot is shown in (2), whereα = π/2, θ =
l = 0.

H1
0 =


1 0 0 0
0 0 −1 0
0 1 0 d1
0 0 0 1

 (2)

The homogeneous transformation matrices
corresponding to the leg joints from the frame∑

1 (x1, y1, z1) to frame∑6 (x6, y6, z6) are as follows:

H2
1 =


C1 0 −S1 0
S1 0 C1 0
0 −1 0 0
0 0 0 1
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H3
2 =


C2 −S2 0 l1C2

S2 C2 0 l1S2

0 0 1 0
0 0 0 1



H4
3 =


C3 −S3 0 L2C3

S3 C3 0 L2S3

0 0 1 0
0 0 0 1



H5
4 =


C4 0 S4 0
S4 0 −C4 0
0 1 0 0
0 0 0 1



H6
5 =


C5 0 S5 0
S5 0 −C5 0
0 1 0 0
0 0 0 1



H7
6 =


C6 −S6 0 0
S6 C6 0 0
0 0 1 0
0 0 0 1


The transformation matrix Hb1

b relating the
frame ∑

b (xb, yb, zb) to frame ∑
b1 (xb1, yb1, zb1)

corresponding to the right shoulder of the robot is
shown in (3). The transformation matrixHb5

b relating
the frame ∑b (xb, yb, zb) to frame ∑b4 (xb4, yb4, zb4)
corresponding to the left shoulder of the robot is
shown in (4).

Hb1
b =


0 0 −1 0
−1 0 0 0
0 1 0 d2
0 0 0 1

 (3)

Hb5
b =


0 0 1 0
−1 0 0 0
0 −1 0 d2
0 0 0 1

 (4)

The homogeneous transformation matrices cor‐
responding to the joints of the right arm, from the
frame∑b (xb, yb, zb) to frame∑b3 (xb3, yb3, zb3) are as
follows:

Hb2
b1 =


Cb1 0 −Sb1 l3Cb1

Sb1 0 Cb1 l3Sb1

0 −1 0 d3
0 0 0 1



Hb3
b2 =


Cb2 Sb2 0 l4Cb2

Sb2 Cb2 0 l4Sb2

0 0 1 0
0 0 0 1



Hb4
b3 =


Cb3 −Sb3 0 l5Cb3

Sb3 Cb3 0 l5Sb3

0 0 1 0
0 0 0 1


The homogeneous transformation matrices corre‐

sponding to the joints of the left arm, from the frame

∑
b (xb, yb, zb) to frame ∑b6 (xb6, yb6, zb6) are as fol‐

lows:

Hb6
b5 =


Cb4 0 Sb4 l3Cb4

Sb4 0 −Cb4 l3Sb4

0 1 0 d3
0 0 0 1



Hb7
b6 =


Cb5 −Sb5 0 l4Cb5

Sb5 Cb5 0 l4Sb5

0 0 1 0
0 0 0 1



Hb8
b7 =


Cb6 −Sb6 0 l5Cb6

Sb6 Cb6 0 l5Sb6

0 0 1 0
0 0 0 1


Therefore, the forward kinematics relating the

right foot frame ∑0 (x0, y0, z0) and the right pelvis
end‐effector frame ∑

6 (x6, y6, z6), is calculated
employing Eq. (5).

H6
0 = H1

0H
2
1H

3
2H

4
3H

5
4H

6
5H

7
6 (5)

The forward kinematics relating the pelvis frame∑
b (xb,yb, zb) and the right hand end‐effector frame∑
b3 (xb3, yb3, zb3), is calculated employing Eq. (6).

Hb4
b = Hb1

b Hb2
b1H

b3
b2H

b4
b3 (6)

The forward kinematics relating the right foot
frame ∑b (xb, yb, zb) and the left arm end‐effector
frame∑b6 (xb6, yb6, zb6), is calculated using Eq. (7).

Hb8
b = Hb5

b Hb6
b5H

b7
b6H

b8
b7 (7)

4. Inverse Kinematics
The matrixH7

0 can be computed using de forward
kinematic model. Then, by successively multiplying
H7

0 by the inverse matrix ofHi
i−1, seven matrixes can

be obtained:
H7

0 = H1
0H

2
1H

3
2H

4
3H

5
4H

6
5H

7
6

(H1
0 )

−1
H7

0 = H2
1H

3
2H

4
3H

5
4H

6
5H

7
6

(H2
1 )

−1
(H1

0 )
−1

H7
0 = H3

2H
4
3H

5
4H

6
5H

7
6

(H3
2 )

−1
(H2

1 )
−1

(H1
0 )

−1
H7

0 = H4
3H

5
4H

6
5H

7
6

(H4
3 )

−1
(H3

2 )
−1

(H2
1 )

−1
(H1

0 )
−1

H7
0 = H5

4H
6
5H

7
6

(H5
4 )

−1
(H4

3 )
−1

(H3
2 )

−1
(H2

1 )
−1

(H1
0 )

−1
H7

0 = H6
5H

7
6

(H6
5 )

−1
(H5

4 )
−1

(H4
3 )

−1
(H3

2 )
−1

(H2
1 )

−1
(H1

0 )
−1

H7
0 = H7

6

The elements of matrixHi
i−1 are as follows:

Hi
i−1 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1


Where the matrix noa can be de ined as follows:

noa =

nx ox ax
ny oy ay
nz oz az


24



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N◦ 1 2023

4.1. Inverse Kinematics of Legs

The kinematic decoupling method presented
in [28, 29] is used to simplify the robot’s legs inverse
kinematic model, which consists of the separation
of orientation and position in robots with 6 degrees
of freedom; Robots usually have three additional
degrees of freedom, located at the endof the kinematic
chain, and those axes generally intersect at a point
informally called the robot’s wrist. Thus, given a
desired inal position and orientation, the position
of the cutting point (robot wrist) is established by
calculating the values of θ1, θ2 and θ3, and then from
the orientation data and those already calculated, the
values of the rest of the joint variables θ4, θ5 and θ6
are obtained. Similarly, the three hip axes of the robot
are considered as the wrist of a robot manipulator,
for which reason the position of the cutting point of
the three axes of the hip, at this point, the origins of
the reference systems of the three coincide. degrees
of freedom of the hip.

Then, the irst three joints of the leg can
be calculated taking into account the matrixes
H1

0 ,H
2
1 ,H

3
2 ,H

4
3 , which were obtained in the direct

kinematicsmodel. Therefore, using the inversematrix,
the following matrix equation can be determined:

(H3
2 )

−1
(H2

1 )
−1

(H1
0 )

−1
H4

0 = H4
3

C2 S2 0 −l1
−S2 C2 0 0
0 0 1 0
0 0 0 1




C1 S1 0 0
0 0 −1 0

−S1 C1 0 0
0 0 0 1



1 0 0 0
0 0 1 −d1
0 −1 0 0
0 0 0 1



nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1



=


C3 −S3 0 l2C3

S3 C3 0 l2S3

0 0 1 0
0 0 0 1

 (8)


r1,1 oyS2 + oxC1C2 + ozC2S1

r2,1 oyC2 − oxC1S2 − ozS1S2

r3,1 ozC1 − oxS1

0 0

ayS2 + axC1C2 + azC2S1

ayC2 − axC1S2 − azS1S2

azC1 − axS1

0

PyS2 − l1 + PxC1C2 + PzC2S1 − d1C2S1

PyC2 − PxC1C2 − PzS1S2 + d1S1S2

PzC1 − PxS1 − d1C1

1



=


C3 −S3 0 l2C3

S3 C3 0 l2S3

0 0 1 0
0 0 0 1

 (9)

where
r1,1 = nyS2 + nxC1C2 + nzC2S1

r2,1 = nyC2 − nxC1S2 − nzS1S2

r3,1 = nzC1 − nxS1

Analyzing Eq. (9) it is possible to match the 16
terms that a matrix contains, in other words, 16 equa‐
tions can be proposed and the one that ismost friendly
to clear the joint variable can be chosen. Therefore,
from (9) the angles θ1, θ2, θ3 can be calculated. First,
θ3 is calculated using the (3,4) term on both sides of
the equation, as follows:

Pzcos(θ1)− Pxsin(θ1)− d1cos(θ1) = 0

θ1 = arctan

(
Pz − d1

Px

)
(10)

Then θ2 is calculated using the (2,4) term on both
sides of the equation:

oysin(θ2) + oxcos(θ1)cos(θ2) + ozcos(θ2)sin(θ1) = 0

θ2 = arctan

(
oxcos(θ1) + ozsin(θ1)

−oy

)
(11)

Subsequently, θ1 is calculated using the term (3,3)
on both sides of the equation:

A = Pycos(θ2)− Pxcos(θ1)sin(θ2)
− Pzsin(θ1)sin(θ2) + d1sin(θ1)sin(θ2)

B = Pysin(θ2)− l1 + Pxcos(θ1)cos(θ2)
+ Pzcos(θ2)sin(θ1)− d1cos(θ2)sin(θ1)

l2sin(θ3)
l2cos(θ3)

=
A

B

θ3 = arctan

(
A

B

)
(12)

The next step is to ind the joint variables θ4, θ5
and θ6, using the matrix equation (8), in which it is
not necessary to use the homogeneous transforma‐
tion matrices because there are no translations, only
rotations, for this reason reason you can use only the
rotation submatrices.

The rotation matrix from 0 to 6 can be written
in a generic way through the noa matrix, which is
nothing more than the total rotation matrix that has
been carried out with the last coordinate system that
corresponds to the hip on the transversal axis.

Using the Denavit‐Hartenberg parameters from
Table 3 it is possible to de ine the rotation matrix R7

4

as observed in
R7

4 = R5
4R

6
5R

7
6 (13)

where:

R5
4 =

C4 0 S4

S4 0 −C4

0 1 0

 R6
5 =

C5 0 S5

S5 0 −C5

0 1 0


R7

6 =

C6 −S6 0
S6 C6 0
0 0 1
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Thus:

R7
4 =

S4S6 + C4C5C6 C6S4 − C4C5S6 C4S5

C5C6S4 − C4S6 −C4C6 − C5S4S6 S4S5

C6S5 −S5S6 −C5


(14)

The rotation matrix from 0 to 3 is found with the
parameters α, θ and l from Table 2.

R4
0 = R1

0R
2
1R

3
2R

4
3 (15)

R1
0 =

1 0 0
0 0 −1
0 1 0

 R2
1 =

C1 0 −S1

S1 0 C1

0 −1 0


R3

2 =

C2 −S2 0
S2 C2 0
0 0 1

 R4
3 =

C3 −S3 0
S3 C3 0
0 0 1


Thus:

R4
0 =

C2,3C1 −S2,3C1 −S1

S2,3 C2,3 0
C2,3S1 −S2,3S1 C1


(R4

0)
−1

= (R4
0)

T
=

 C2,3C1 S2,3 C2,3S1

−S2,3C1 C2,3 −S2,3S1

−S1 0 C1


(16)

Substituting Eqs. (15) and (16) and thematrix noa
in the equation we have:

R7
4 = (R3

0)
T
R7

0 (17)S4S6 + C4C5C6 C6S4 − C4C5S6 C4S5

C5C6S4 − C4S6 −C4C6 − C5S4S6 S4S5

C6S5 −S5S6 −C5


=

 C2,3C1 S2,3 C2,3S1

−S2,3C1 C2,3 −S2,3S1

−S1 0 C1

nx ox ax
ny oy ay
nz oz az


(18)

From Eq. (18) the terms that generate a friendly
equation are chosen to clear the joint variables θ4, θ5
and θ6. First, θ4 is calculated using the term (3,3) on
both sides of Eq. (18), as follows:

C = aycos(θ2 + θ3)− axsin(θ2 + θ3)cos(θ1)
− azsin(θ2 + θ3)sin(θ1)

D = aysin(θ2 + θ3) + axcos(θ2 + θ3)cos(θ1)
+ azcos(θ2 + θ3)sin(θ1)

sin(θ4)sin(θ5)
cos(θ4)sin(θ5)

=
C

D

θ4 = arctan

(
C

D

)
(19)

Then θ5 is calculated using the term (2,2) as
follows:

cos(θ4)sin(θ5)
−cos(θ5)

=
D

azcos(θ1)− axsin(θ1)

Table 6. Inverse kinematics equations of the robot’s legs

Link Equation

1 θ1 = arctan
(

Pz−d1
Px

)
2 θ2 = arctan

(
oxcos(θ1)+ozsin(θ1)

−oy

)
3 θ3 = arctan

(
A
B

)
4 θ4 = arctan

(
C
D

)
5 θ5 = arctan

(
D

−(cos(θ4)(azcos(θ1)−axsin(θ1)))

)
6 θ6 = arctan

(
−(ozcos(θ1)−oxsin(θ1))
nzcos(θ1)−nxsin(θ1)

)

θ5 = arctan

(
D

−(cos(θ4)(azcos(θ1)− axsin(θ1)))

)
(20)

Then, θ6 is calculated using the term (1,2), as fol‐
lows:

− sin(θ5)sin(θ6)
cos(θ6)sin(θ5)

=
ozcos(θ1)− oxsin(θ1)
nzcos(θ1)− nxsin(θ1)

θ6 = arctan

(
−(ozcos(θ1)− oxsin(θ1))
nzcos(θ1)− nxsin(θ1)

)
(21)

The equations to ind the angles of legs are shown
in Table 6.

It is important to mention that the previous pro‐
cess is the same to calculate the value of joint positions
θ1, θ2, θ3, θ4, θ5 and θ6 of both legs.

4.2. Inverse Kinematics of Arms

To obtain the inverse kinematics of the left arm,
consider the elements of matrix Hd4

d , which is shown
in Eq. (6):

Hd4
d =


nbx obx abx px
nby oby aby py
nbz obz abz pz
0 0 0 1

 (22)

Then, from (6) the following matrix equation is
de ined:

(Hb3
b2 )

−1
(Hb2

b1 )
−1

(Hb1
b0 )

−1
Hb4

b = Hb4
b3

Cb2 Sb2 0 −l4
−Sb2 Cb2 0 0
0 0 1 0
0 0 0 1




Cb1 Sb1 0 −l3
0 0 −1 d3

−Sb1 Cb1 0 0
0 0 0 1




0 −1 0 0
0 0 1 −d2
−1 0 0 0
0 0 0 1



nbx obx abx pbx
nby oby aby pby
nbz obz abz pbz
0 0 0 1



=


Cb3 −Sb3 0 l5Cb3

Sb3 Cb3 0 l5Sb3

0 0 1 0
0 0 0 1



nbxSb2 − nbyCb1Cb2 + nbzCb2Sb1

nbxCb2 + nbyCb1Sb2 − nbzSb1Sb2

nbzCb1 + nbySb1

0
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obxSb2 − obyCb1Cb2 + obzCb2Sb1

obxCb2 + obyCb1Sb2 − obzSb2Sb2

obzCb1 + obySb1

0

abxSb2 − abyCb1Cb2 + abzCb2Sb1 r1,4
abxCb2 + abyCb1Sb2 − abzSb2Sb2 r2,4

abzCb1 + abySb1 r3,4
0 1



=


Cb3 −Sb3 0 l5Cb3

Sb3 Cb3 0 l5Sb3

0 0 1 0
0 0 0 1

 (23)

where,

r1,4 = PxSb2 − l4 − l3Cb2 + d3Sb2 − PyCb1Cb2

+ PzCb2Sb1 − d2Cb2Sb1

r2,4 = PxCb2 + d3Cb2 + l3Sb2 + PyCb1Sb2

− PzSb1Sb2 + d2Sb1Sb2

r3,4 = PzCb1 + PySb1 − d2Cb1

Taking the quotient of the elements (3,4) of both
sides of Eq. (23) the angle θb1 is calculated as follows:

Pzcos(θb1) + Pysin(θb1)− d2cos(θb1) = 0

θb1 = arctan

(
Pz − d2
−Py

)
(24)

Considering the element (1,3) of both sides of
Eq. (23) the angle θb2 is calculated as follows:

axsin(θb2)− aycos(θb1)cos(θb2) + azcos(θb2)sin(θb1) = 0

θb2 = arctan

(
aycos(θb1)− azsin(θb1)

ax

)
(25)

Using the element (2,4) and (1,4) of both sides of
the equation, the angle θb3 is calculated:

E = Pxcos(θb2) + d3cos(θb2) + l3sin(θb2)
+ Pycos(θb1)sin(θb2)− Pzsin(θb1)sin(θb2)
+ d2sin(θb1)sin(θb2)

F = Pxsin(θb2)− l4 − l3cos(θb2) + d3sin(θb2)
− Pycos(θb1)cos(θb2) + Pzcos(θb2)sin(θb1)
− d2cos(θb2)sin(θb1)

l5sin(θb3)
l5cos(θb3)

=
E

F

θb3 = arctan(E,F ) (26)

The equations to ind the angles of right arm are
shown in Table 7.

To obtain the inverse kinematics of the right arm,
consider the equation shown in Eq. (27).

The following matrix equation is de ined:

(Hb7
b6 )

−1
(Hb6

b5 )
−1

(Hb5
b )

−1
Hb8

b = Hb8
b7

Table 7. Inverse kinematics equations of the robot’s
right arm

Link Equation

1 θb1 = arctan
(

Pz−d2
−Py

)
2 θb2 = arctan

(
aycos(θb1)−azsin(θb1)

ax

)
3 θb3 = arctan(E,F )


Cb5 Sb5 0 −l4
−Sb5 Cb5 0 0
0 0 1 0
0 0 0 1



Cb4 Sb4 0 −l3
0 0 1 −d3
Sb4 −Cb4 0 0
0 0 0 1



0 −1 0 0
0 0 −1 d2
1 0 0 0
0 0 0 1



nbx obx abx pbx
nby oby aby pby
nbz obz abz pbz
0 0 0 1



=


Cb6 −Sb6 0 l5Cb6

Sb6 Cb6 0 l5Sb6

0 0 1 0
0 0 0 1



nbxSb5 − nbyCb4Cb5 − nbzCb5Sb4

nbxCb5 + nbyCb4Sb5 + nbzSb4Sb5

nbzCb4 − nbySb4

0

obxSb5 − obyCb4Cb5 − obzCb5Sb4

obxCb5 + obyCb4Sb5 + obzSb4Sb5

obzCb4 + obySb4

0

abxSb5 − abyCb4Cb5 − abzCb5Sb4 u1,4

abxCb5 + abyCb4Sb5 + abzSb4Sb5 u2,4

abzCb4 − abySb4 u3,4

0 1



=


Cb6 −Sb6 0 l5Cb6

Sb6 Cb6 0 l5Sb6

0 0 1 0
0 0 0 1

 (27)

where,

u1,4 = PxSb5 − l4 − l3Cb5 − d3Sb5 − PyCb5Cb5

− PzCb5Sb4 + d2Cb5Sb4

u2,4 = PxCb5 − d3Cb5 + l3Sb5 + PyCb4Sb5

+ PzSb4Sb5 − d2Sb4Sb5

r3,4 = PzCb4 − PySb4 − d2Cb4

Taking the quotient of the elements (3,4) of both
sides of Eq. (27) the angle θb4 is calculated as follows:

Pzcos(θb4)− Pysin(θb4)− d2cos(θb4) = 0

θb4 = arctan

(
Pz − d2

Py

)
(28)

Considering the element (1,3) of both sides of
Eq. (27) the angle θb5 is calculated as follows:

axsin(θb5)− aycos(θb4)cos(θb5)− azcos(θb5)sin(θb4) = 0

27
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Table 8. Inverse kinematics equations of the robot’s
right arm

Link Equation

1 θb4 = arctan
(

Pz−d2
Py

)
2 θb5 = arctan

(
aycos(θb1)+azsin(θb1)

ax

)
3 θb6 = arctan(G,H)

θb5 = arctan

(
aycos(θb1) + azsin(θb1)

ax

)
(29)

Using the element (2,4) and (1,4) of both sides of
the equation, the angle θb6 is calculated:

G = Pxcos(θb5)− d3cos(θb5) + l3sin(θb5)
+ Pycos(θb4)sin(θb5) + Pzsin(θb4)sin(θb5)
− d2sin(θb4)sin(θb5)

H = Pxsin(θb5)− l4 − l3cos(θb5)− d3sin(θb5)
− Pycos(θb4)cos(θb5)− Pzcos(θb5)sin(θb4)
+ d2cos(θb5)sin(θb4)

l5sin(θb6)
l5cos(θb6)

=
G

H

θb6 = arctan(G,H) (30)
The equations to ind the angles that correspond

to the joints of the left arm are shown in Table 8.

5. Conclusion
This paper presents a complete solution of

the inverse kinematics model using the Denavit‐
Hartenberg methodology for a 18 DOF robot. The
forward kinematics model allowed to represent the
Bioloid Premium robot.

Unlike the other geometric methods, our research
proposal considers the decoupling kinematic method,
taking the feet and the pelvis as points of origin, gen‐
erating 4 open kinematic chains to calculate the joint
positions of both arms and legs of the robot in a three‐
dimensional space (x, y, z), consequently it is possible
to determine the inal position of each end‐effector of
the robot, taking the supporting feet as ixed reference
frame.

This methodology is an important step forward
to obtaining the differential kinematics and subse‐
quently calculating the dynamic model of the robot in
a later work.

On the other hand, the proposed methodology can
be extended to other biped robots.
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