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Abstract:
Often, operators of machines, including unmanned
ground vehicles (UGVs) or working machines, are forced
to work in unfavorable conditions, such as high tem‐
peratures, continuously for a long period of time. This
has a huge impact on their concentration, which usu‐
ally determines the success of many tasks entrusted to
them. Electroencephalography (EEG) allows the study
of the electrical activity of the brain. It allows the
determination, for example, of whether the operator
is able to focus on the realization of his tasks. The
main goal of this article was to develop an algorithm
for determining the state of brain activity by analyzing
the EEG signal. For this purpose, methods of EEG sig‐
nal acquisition and processing were described, including
EEG equipment and types and location of electrodes.
Particular attention was paid to EEG signal acquisition,
EEG signal artifacts, and disturbances, and elements
of the adult’s correct EEG recording were described in
detail. In order to develop the algorithm mentioned,
basic types of brain waves were discussed, and exem‐
plary states of brain activity were recorded. The influ‐
ence of technical aspects on the recording of EEG sig‐
nals was also emphasized. Additionally, a block diagram
was created which is the basis for the operation of
the said algorithm. The LabVIEW environment was used
to implement the created algorithm. The results of the
research showing the operation of the developed EEG
signal analyzer were also presented. Based on the results
of the study, the EEG analyzer was able to accurately
determine the condition of the examined person and
could be used to study the concentration of machine
operators.

Keywords: Electroencephalography, EEG, signal process‐
ing, Fourier analysis, LabVIEW, biofeedback, operator
concentration, UGV

1. Introduction
The method of studying the electrical activity of

the brain is called electroencephalography (EEG). The
complex electrical activity of thebrainproduceshighly
irregular EEG signals. Attempting to record the elec‐
trical representation of brain activity is a technically
difϐicult activity. The main problem in this type of
measurement is the need to amplify the human brain
potentials about a million times and convert them
into a waveform. The extra‐cerebral potentials, which
mainly consist of the movements of the examined
person, are also ampliϐied, while their amplitude

often exceeds the amplitude of the cortical poten‐
tials. The lack of consideration and correction of
this phenomenon, similar artifacts, and the interfer‐
ence itself make the recording of mentioned signals
unreadable [1].

In recent years, progress has been made in the
ϐield of electroencephalography, which has resulted
in many new applications [1, 2]. Advances in tech‐
nology have signiϐicantly improved EEG machines. As
a result, the availability and the number of users
of these devices have increased signiϐicantly. For
many years, EEG has been the basic research in
medicine—for example, in the diagnosis and treat‐
ment of epilepsy. It is often the only possible alter‐
native to imaging examination, such as computed
tomography.

Electroencephalography is also used in psychia‐
try and psychology. Moreover, neurofeedback enables
people to improve their health by using signals
from their bodies. Using the phenomenon of bio‐
logical feedback (biofeedback) of the EEG signal,
children suffering from concentration disorders are
successfully treated. Biological feedback is used to
regain movement for people with muscle paralysis
[1–4].

Biofeedback can also beused innon‐medical areas,
which is the subject of scientiϐic research [5–12]. It
could be used to study the concentration of opera‐
tors of unmanned ground vehicles (UGVs) or working
machines. It is known that such employees often have
a huge responsibility resulting from the work they
perform. The use of, for example, heavy equipment
requires enormous concentration and carries a con‐
siderable risk of a large amount of damage in the
event of a potential operator error. UGV operators are
also exposed to enormous stress during the execution
of tasks (especially in the case of remote control or
teleoperation), which can contribute to the failure of
the mission. Therefore, it is necessary to maintain
concentration at a high level and possibly check this
factor every timeperiod,which is possiblewith theuse
of EEG.

The main purpose of the article is to develop an
algorithm with an implementation that would enable
the determination of the state of brain activity. In
the implementation of the mentioned goal, particu‐
lar attention was paid to the selection of the pro‐
gramming environment with the help of which the
algorithm was developed and the possibility of its
subsequent application to study the concentration of
machine operators.
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2. Methods of Signal Acquisition and
Processing
Complex brain activity produces highly irregu‐

lar EEG signals and the aforementioned irregularity
makes it very interesting because of its importance in
modern technology and medicine [1,13,14].

2.1. Source of EEG Signals

Most likely, the main sources of the EEG sig‐
nal are neurons, and more precisely, they may be
action potentials, inhibitory postsynaptic potentials
(IPSP), and long‐term depolarization of neurons.
Action potentials induce short (up to 10ms) local cur‐
rents in the axon with a limited electric ϐield. In turn,
the postsynaptic potentials are longer (50–200 ms)
and have a larger electric ϐield [1,13,14].

2.2. EEG Electrodes

The electrodes are transmitters throughwhich the
electrical potentials of the cortex are transferred to the
ampliϐication device. Due to the shape and hairiness
of the skin of the head, the requirements for EEG
electrodes should meet two conditions: they should
have a relatively small contact surface and provide
comfort to the examined person. Standard EEG elec‐
trodes are small disks made of non‐reactive metals
(Fig. 1). For this purpose, several types of metals are
used, including gold, silver, or silver chloride. The
electrode must be in close contact with the skin to
ensure low impedance and thus minimize environ‐
mental and electrode artifacts. There are also other
types of electrodes, the so‐called needle electrodes,
but due to their invasiveness and high resistance, they
are used rarely [1].

In the research carried out as part of this study,
contact electrodes were used (Fig. 1), which are a
combination of a contact surface (diameter of about
5 mm) and a plastic holder mounted in a cap covering
the entire head. The most commonly used electrodes
are Ag/AgCl [13].

Figure 1. EEG cap used in the measurements

Figure 2. Standard electrode positions. Own elaboration
based on [1]

2.3. Electrode Location

The arrangement of the electrodes is standardized.
Themost commonly used electrode placement system
is the International System10–20 [1]. This systemcor‐
responds approximately to the anatomical structure
of the brain and is based on precise measurements of
the skull with the use of several characteristic points.
Figure 2 shows the locations of the electrodes in the
mentioned system.

The use of specialized caps as in Fig. 1 allows for
omitting each measurement, which greatly facilitates
the examination. Each of the electrodes corresponds
to a large anatomical region of the brain. Moreover,
odd numbers refer to the left hemisphere of the brain,
and even numbers refer to the right hemisphere. The
symbols of the electrodes correspond to the Latin
names of the regions: F – frontal area, Fp – prefrontal
area, P – parietal area, O – occipital area, T – temporal
area, A – ear electrodes, C – central area, Sp1/Sp2 –
wedge electrode [1,13,14].

2.4. Types of Electrode Leads

The summation of the inhibitory postsynaptic
(IPSP) and excitatory (EPSP) potentials in the neural
network causes the generation of electric currents
ϐlowing in the cells. The phenomenon of the current
ϐlow creates ϐields that move centrifugally away from
the place where the electric phenomenon occurs. The
ϐield impact decreases with increasing distance from
the source. This necessitates the most accurate place‐
ment of the electrodes so that the recorded signals
best reϐlect the phenomena under study. Therefore,
two types of leads are used: unipolar and bipolar
[1,13,14].

Measurement with the unipolar leads (used in
measurements) records changes in voltage between
one electrode and the point representing the refer‐
ence potential. This method, however, is not free from
artifacts, such as an artifact from an alternating cur‐
rent network with a frequency of 50 Hz. The bipolar
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leads, on the other hand, extend the number of elec‐
trode combinations. In this solution, both electrodes
represent the bioelectric activity of the brain, and the
resulting record is a representation of the potential
difference between the two measuring points used.
In this case, a signal that has an equal effect on both
sources will not cause a potential difference. Said
method of connecting the electrodes offers a greater
number of possible connections depending on the
diagnostic need [1].

2.5. EEG Equipment

Electroencephalographic recorders are digital
devices in which the analog signal is converted into
digital and the following technical parameters are
associated with their operation: sampling frequency,
recording speed, and sensitivity. In addition, all
EEG devices must also include resistance‐capacitive
circuits, which are both low‐pass and high‐pass ϐilters.
Low‐pass ϐilters attenuate unwanted high frequencies,
such as muscle action potentials. Usually, they are set
at 60 Hz to cut the 50 Hz artifact disturbance. In turn,
high‐pass ϐilters similarly attenuate low‐frequency
signals [15].

The average characteristics of the analyzed EEG
recorder are a large number of channels (8‐32) and
the use of a program switch at the input of the
device,which enables the connectionof eachmeasure‐
ment path with each electrode (unipolar system) or
with a pair of electrodes (bipolar system). The ALIEN
recorder with 32 channels was used in the research
(Fig. 3) [16].

Another characteristic feature of the device is the
built‐in electrode impedance measurement system.
A small value of impedance allows one to obtain
a good electrical contact, and thus obtain a better
measurement, with a smaller distance from noise.
The correct value of the impedance between the elec‐
trode and the scalp should not exceed 5 kΩ, although
in some measurements even 20 kΩ is allowed [16].

 

Figure 3. EEG module used in the measurements

 

Figure 4. Graphical representation of the electrode
resistances

3. EEG Signal Acquisition
TruScan software was used to acquire the EEG

signal. Thedefault sampling frequency is set to128Hz;
it is also necessary to set the values of other param‐
eters, such as sensitivity (70 µV), and the band‐
pass ϐilter, which will determine the recorded fre‐
quency band, which is interesting for the analy‐
sis [16].

Single electrodes can be connected or the above‐
mentioned cap can be used (contains 32 optimally
positioned electrodes). Examples of the resistance val‐
ues of individual electrodes are shown in Fig. 4.

The red color means an unacceptable resistance
value, which makes the measurement impossible. Yel‐
low indicates resistance at the limit of admissibility,
while the minimum transient resistance is described
by two colors: blue and green. In the case of red color,
the position of the corresponding electrode should be
corrected.

3.1. EEG Signal Artifacts and Disturbances

The phenomenon of artifacts, or undesirable phe‐
nomena that distort the analyzed signal, is associated
with the measurements of all signals, especially those
with such a small amplitude. Depending on their ori‐
gin, artifacts are divided into:
‐ physiological: their cause is the functioning of
human organs that are not the subject of research
in the electrodiagnostic examination carried out at
a given moment,

‐ technical: their cause is primarily the measurement
method itself, imperfection of the equipment used,
and the occurrence of physical phenomena com‐
pletely unrelated to a given electrodiagnostic mea‐
surement in the measuring space [1,13].
Physiological artifacts cannot be eliminated by

usingmore precise equipment, but it is possible to sig‐
niϐicantly reduce their impact by trying to create the
best possible conditions [1, 13]. The most important
EEG signal artifacts are [1]:
‐ “crackling” of the electrode: caused by the leaky
contact of the electrode with the human skin.
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This causes a very sudden, but short‐term increase
in the impedance of the electrode.

‐ action muscle potentials: the most common artifact,
which, when present in large numbers, completely
interferes with EEG measurements.

‐ 50 Hz artifact (from AC network): an artifact arising
as a result of high impedance or often bad grounding
related to the proximity of an electrical apparatus,
which appears as a rhythmic frequency of 50 Hz in
Europe.

‐ tremor artifacts: caused by repetitive limb move‐
ments, which also cause head movements. The arti‐
fact causes small oscillations that affect the occipital
electrodes.

‐ chewing artifacts: muscle action potentials charac‐
terized by a frequency consistent with the move‐
ment of the jaws (Fig. 5).

‐ artifacts related to tongue movements: they are
characterized by slow, chaotic potentials indicating
delta waves in the analysis (Fig. 6).

‐ motion artifacts: common, characterized by high
amplitudes and the rapid decay of value. They coex‐
ist with body and head movements and are directly
related to muscle artifacts (Fig. 7).

‐ blinking artifact: it is characterized by high ampli‐
tude potentials, the deviations of which are syn‐
chronous with the huge downward inclinations of
the curve (Fig. 8).

 

 

Figure 5. Laboratory‐recorded adult EEG signals
containing chewing artifacts

Figure 6. Laboratory‐recorded adult EEG signals
containing artifacts related to tongue movements

 

Figure 7. Laboratory‐recorded adult EEG signals
containing motion artifacts

Figure 8. Laboratory‐recorded adult EEG signals
containing blink artifacts

Figure 9. Laboratory‐recorded adult EEG signals
containing artifacts related to the sideways movement
of the eyeballs

‐ artifacts related to sideways movements of the eye‐
balls: characteristic, sharply delimited out‐of‐phase
potentials. This phenomenon is directly caused by
the action of the lateral straight muscles (Fig. 9).
If physiological artifacts are found in the EEG

signals, then their inϐluence can be largely reduced
by proper description. Some artifacts, such as eyelid
blinking or eye movements, can be identiϐied because
their presence is characterized by a characteristic dis‐
tinctness of the measurement itself. A very difϐicult
issue is also the problem of automatic identiϐication
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of the disturbances generated as a result of these
artifacts [1].

On the other hand, technical artifacts are usually
the result of improper electrode placement, poor skin
contact, and the actual conduct of tests in an envi‐
ronment that may be electromagnetically disturbed
(cables, transformers, etc.). However, a lot of EEG lab‐
oratories are currently equippedwith shielded rooms,
which eliminates the risk of this type of interfer‐
ence [1].

3.2. Elements of the Correct EEG Recording of an Adult

The recording of the bioelectrical activity of the
brain consists of brain wave rhythms of different
frequencies and amplitude, and their number and
distribution determine the regularity or possible
pathologies. Among the brain waves, there are the
following waves: delta, theta, alpha, beta, and gamma,
and each of them is responsible for a speciϐic type of
brain activity: sleep, concentration, tension, and so on
[1,13,14].

Delta waves (0.5–4 Hz) are an indicator of focal
brain damage. Delta wave is the slowest of all brain
waves. It appears during deep sleep. On the other
hand, they do not appear in the normal EEG recording
of an adult in the waking state, because their presence
always indicates brain dysfunction [1,13,14].

Theta waves (4–8 Hz) are customary in the EEG of
adult wakefulness, but their absence does not neces‐
sarily mean any dysfunction. These waves are asso‐
ciated with states of concentration, intense thinking,
and visualization [1,13,14].

The alpha rhythm (8–12 Hz) is the main basic
rhythm of an adult normal EEG. The alpha rhythm is
deϐined as a rhythmic frequency between 8 Hz and
13 Hz (sometimes 12 Hz), which is usually the highest
in the occipital region. Alpha wave is the axis of the
bioelectrical activity of the brain. Moreover, this wave
is directly related to the state of concentration. Excess
alpha may indicate problems in learning processes.
The basic characteristic of these waves is that they
show best when the person is relaxed and awake with
their eyes closed [1,13,14].

Betawaves (12–40Hz) are the backgroundofmost
people’s brain waves. The rhythm occurs and domi‐
nates in the state of consciousness when a person is
awake and receives signals from the environmentwith
all senses. Beta waves are divided into:
‐ Low waves, the so‐called SMR (12–15 Hz),
‐ Medium waves, the so‐called Beta 1 (15–20 Hz),
‐ High waves, the so‐called Beta 2 (20–32 Hz)

[1,13,14].
Gamma waves (32–200 Hz) are responsible for

experiencing strong emotions and associative pro‐
cesses. The frequencies in the range: 32–50 Hz are the
only frequency group found in any part of the brain.
This is why it is assumed that when the brain has to
process information in different parts simultaneously,
it uses the 40 Hz frequency to process information
simultaneously [1,13,14].

3.3. Sample EEG Signals of an Adult

During the EEG measurements, in addition to
recordingnumerous examples of artifacts described in
Section 3.2, the following states were recorded:
‐ State of relaxation
The record of the state of relaxation shown in Fig. 10
was recorded during the examination of the author
of the article, who was awake during the measure‐
ments with his eyes closed. Small deviations and a
relatively uniformsignal ϐlow in all leads indicate the
dominant alpha rhythm.

‐ Hand movement
The recording shown in Fig. 11was recorded during
the examination of the author of the article, who
moved his hands during the measurements. Visible
signiϐicant sudden changes in amplitudes indicate
artifacts related to the functional muscle potential.
The artifact interferes with the results, especially on
the frontal, parietal and temporal electrodes, but the
signals from the rest of the electrode pairs are only
minimally disturbed.

‐ Blinking and moving the head
The record shown in Fig. 12was recordedduring the
examination of the author of the article, who moved
his head and blinked his eyelids during the mea‐
surements. The visible signiϐicant sudden changes
in amplitudes, especially in the Fp1‐F3 pair, indicate
the dominant nature of the blink artifact. On the
other hand, the artifact related to the head move‐
ment is visible in the form of “waving” also on the
pair of Fp1‐F3 electrodes.

 

Figure 10. Record of the relaxed state of a healthy adult

a d ove e t

Figure 11. Record of muscle artifacts: hand movement
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Figure 12. Record of muscle artifacts: blinking eyelids
and moving the head

4. Development of the EEG Signal Analysis
Algorithm
The main goal of the developed algorithm is to

analyze the recorded EEG signals in order to obtain
information about the present frequency bands. Con‐
ϐidence that the detected frequencies are the brain‐
waves being searched is obtained by examining the
amplitude of the ϐiltered band and the mean square
value of the signal band. The scope of the aforemen‐
tioned indicators that meet the problem under con‐
sideration is presented in Table 1. In turn, the ϐirst
and second columns of the table lists the names of the
brainwave alongwith the considered frequency band.

However, there are numerous exceptions to the
accepted norms for brain waves. In such cases, a very
helpful indicator in the assessment of the human con‐
dition is the percentage of Fourier transform ampli‐
tude values of speciϐic frequency bands in a noise‐free
signal. It is especially usefulwhen the analysis is based
on the limitations of the amplitude, and root mean
square (RMS) values described in Table 1 do not give
satisfactory results. By calculating what percentage of
the entire frequency spectrum is a given frequency
band occupying the area assigned to brain waves, it is
easy to determine what the real state of the examined
person is. Real‐time observation of changes in the
content of individual phases in the signal is the basis
of biofeedback training.

Figure 13 shows an algorithm for analyzing the
recorded EEG signal. To work properly, it needs infor‐
mation about the frequency value with which the EEG
signal was sampled. This information is necessary to
determine the Nyquist limit (half the value of the

Table 1. Division of brain waves according to frequency
bands [1, 13,14]

Brain Frequency Amplitude RMS
wave range [Hz] [µV] [µV]
Delta (0.5–4) approx. 50 <20
Theta (4–7.5) <30 10 (max. 15)
Alpha (7.5–13) 20–100 6–10
SMR (12–15) <20 4
Beta 1 (12–30) <20 3
Beta 2 (20–30) <20 <6–8
Gamma (31–45) ND ND

Figure 13. Block diagram of the algorithm

sampling frequency). The algorithm assumes that it
is enough to narrow the frequency range to (0.5–45)
Hz in order to analyze the basic brain wave bands.
Of course, it is possible to examine the signal in a
broader spectrum, but it does not add any additional
information about the condition of the examined per‐
son. Moreover, measurements with frequencies close
to 50 Hz should be done carefully due to the presence
of an artifact from the electrical network with the
aforementioned frequency [17–20].

After the initial ϐiltering of the signal, a series of
7 band‐pass ϐilters are performed. The main band of
the analyzed signal should be divided into smaller
bands corresponding to their physiological counter‐
parts (frequency ranges shown in Table 1). Then, cal‐
culation operations (RMS, amplitudes) are performed,
as well as a parallel Fourier transform along with the
calculation of the partial sum of the amplitudes of a
given band. The above algorithm provides important
information about the individual frequency bands of
the signal through the mentioned mathematical oper‐
ations. These data can be used to build a system sup‐
porting the interpretation of the EEG signal itself.

The basic parameter that should be taken into
account when interpreting the EEG signal is the so‐
called theta/beta ratio, which represents the share of
slow waves in the work of the brain. For an adult, the
factor is 1–2,while for children it is usually 2–3. On the
other hand, people who have problems with concen‐
tration usually show the value of the discussed coef‐
ϐicient above 3. An important parameter in assessing
the correctness of the EEG signal is the content of
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the Beta 2 band. This parameter is compared with
the content of the SMR and Alpha bands. The Beta
2 band content parameter should be lower than the
SMR. If not, high Beta 2 levels may be due to muscle
artifacts (tight neck muscles, etc.). Moreover, Beta 2
often increases its value locally as a result of strongly
experienced emotions [1,13].

Observing the percentage of individual bands may
also help in the interpretation of the results, thanks to
theuse of thephysiological consequences of the occur‐
rence of subsequent bands described in Section 3.1,
including:
‐ the high percentage of gamma waves may indicate
that the tested person is moving,

‐ the high percentage of thetawavesmay indicate that
the examined person is in a state of sleep [1,13,14].
This information is not decisive in the process of

EEG analysis but is a great help because it highlights
some deviations from the norm and signals some
negative phenomena. Often the signal from individual
electrodes is tested to obtain conϐidence in the results
of the EEG signal analysis. This approach is usually
more efϐicient than the simultaneous analysis of the
EEG signal from several probes.

4.1. Implementation of the Algorithm in the LabVIEW
Environment

The LABVIEW environment was chosen to imple‐
ment the algorithm. Figure 14 shows the appearance
of the front panel of the EEG analyzer.

The user has to enter the ϐile path, input the sam‐
pling rate, and set how many electrodes are to be
taken into account during the signal analysis. To aid
in the selection of leads, a map of the person’s head
was created, showing the position and arrangement of
the electrodes. Each time an electrode is selected, the
appropriate electrode indicator lights up on the map
and thus indicates the region of the brain that is taken
into account during the examination. After specifying
the electrodes, the user has to input the size of the data
packet. It speciϐies the number of samples analyzed
per second and is displayed in the graphs.

 

Figure 14. The appearance of the front panel of the EEG
analyser

 

Figure 15. Signals from all electrodes in the time domain
and their Fourier transform in the case of person’s state
of concentration

4.2. EEG Measurements

The results of the analysis of selected EEG sig‐
nals are presented in the following section. The ϐirst
two sections concern the analysis of the two signals
recorded in the laboratory. The person whose brain‐
waveswere recordedwas an adult male (author of the
article). The ϐirst section (4.2.1) shows the recorded
brain waves while solving a crossword puzzle, while
the second section (4.2.2) shows the EEG signals dur‐
ing everyday activity.

4.2.1. Adult’s state of concentration

Figure 15 shows the obtained graphs of the anal‐
ysed signals together with their Fourier transforms.

As can be seen in Fig. 15, time domain signal wave‐
forms are in the range (−80 µV, 80 µV). The occurring
sudden increases in the signal amplitude are related
to the presence of muscle artifacts, which in this case
means that the examined person made movements
with the eyeballs and eyelids. It should be mentioned
that the examined person sat on a chair during the
examination and was supposed to focus on solving
the crossword puzzle while trying not to make any
movements with the limbs, torso, and head. In turn,
in the frequency domain, the signal has the highest
values for low frequencies up to about 10 Hz. The
visible sudden jump in the amplitude value recorded
for the frequency of 50 Hz is related to the occurrence
of the previously presented “50 Hz” artifact from the
alternating current network.

As can be seen in Fig. 16, the most numerous fre‐
quency band are delta waves, which are present in
the analyzed signal: about 33%. The theta wave band
turned out to be also very numerous in this respect,
the content of which in the signal is: about 14%. High
values of this indicator for waves with such low fre‐
quencies are also due to the factory settings of the
EEG adapter (hardware delay). The Theta / Beta ratio
is in the optimal range: (1.2), which means that the
patient has no problems with concentration. In turn,
relatively high contents of Beta1 and Alpha waves,
around 11%, testify to the very fast work of the brain,
which is dominant in solving intellectual problems.
The content of the Beta 1 wave is the lowest among
the entire frequency band of Beta waves, which is a
normal phenomenon.
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Figure 16. Visualization of the results by the EEG
analyser in the case of person’s state of concentration

 

Figure 17. Signals from all electrodes in the time domain
and their Fourier transform in the case of person’s
movement

As can be seen in Fig. 16, brain waves achieve very
low mean square mean values (values on the right in
Fig. 16), which are not consistent with those shown in
Table 1. It is for this reason that none of the bands has
met all the amplitude limits (left LED in Fig. 16).

4.2.2. Movement of an adult

Figure 17 shows the obtained graphs of the ana‐
lyzed signal together with their Fourier transforms.

As can be seen in Fig. 17, the time domain signal is
much more complex than that shown in the previous
section in Fig. 15. In this case, the examined person
made a large number of different movements: eye
movements, eyelid blinking, to more complex hand
or head movements. It should be mentioned that the
examined person sat on a chair during the examina‐
tion. The sensitivity of the equipment and the rela‐
tively short wiring made it impossible to move with
the whole body. Thus, all the mentioned artifacts con‐
tribute to signal irregularity and huge amplitude val‐
ues in the timedomain: amaximumof about 200µV. In
the frequency domain, on the other hand, most of the
signal lies in the low frequency range down to about
10 Hz. The “50 Hz” artifact is hardly noticeable here
due to the domination of other artifacts in the signal
under consideration.

As can be seen in Fig. 17, the most numerous
frequency band are delta waves, which account for

Figure 18. Visualization of the results by the EEG
analyzer in the case of person’s movement

approximately 47% of the analyzed signal. This is the
result of numerous artifacts overlapping the signal.
Some of the artifacts, such as blinking and eye move‐
ments, cause sudden spikes in the signal amplitude
and, through their almost immediate action, introduce
additional high frequencies into the signal spectrum.
On the other hand, someother artifacts,mainly related
to movement, such as movements of the limbs and
head, grow freely coexisting with the movements of
the body and head. As already mentioned, the move‐
ments of the examined person during the recording of
the signal could not be too dynamic, mainly due to the
sensitivity of the equipment used to record the EEG
signal. It is for this reason that the discussed move‐
ments were slow, which was expressed in the form
of such a huge percentage of the Fourier transform
amplitude in the entire EEG signal.

Relatively low content of alpha waves and the
entire betawaveband results from thedominant inϐlu‐
ence of artifacts on the EEG signal. Gamma waves at a
relatively high level of 12% indicate the presence of
these motion artifacts. The Theta Beta ratio is around
2.14 and it is not in the optimal range: (1, 2), but only
slightly beyond its limit. As can be seen in Fig. 18 all
brain waves except for the delta wave reach very low
mean square mean values (values on the right side of
Fig. 18),which arenot consistentwith thosepresented
previously in Table 1.

4.3. Discussion

In order to present the results of the EEG analyzer
performance, two characteristic measurements of the
EEG signal were selected: the state of concentration
and movement. In all cases, the measurements were
taken from an adult. Due to the fact that the discussed
cases were quite easy to register, the registration of
muscle artifacts (presented in subsection 3.3) is not
an easy activity.

The created analyzer enables a more accurate
assessment of the tested person’s condition than
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the TruScan software dedicated by the manufacturer,
used to acquire measurements. The program created
in the LabVIEWpackage allows one to view the results
of themeasurements in real time. In addition, the user
can observe a series of waveforms and the Fourier
transforms of the signal (before and after the pre‐
ϐiltering process). It also has the ability to ϐilter the sig‐
nal in the user‐speciϐied band. A number of indicators
provide ongoing information about the parameters of
the EEG signal.

The created analyzer works correctly based on the
presented results, but the limited number of recorded
EEG signals and the lack of information on the direct
inϐluence of age on the parameters of brain waves
contributed to the fact that some of the analyzer’s
operating parameters were adopted intuitively. It can
lead to an inaccurate mapping of the results of the
signal analysis when, for example, the operator is an
elderly or very young person.

5. Conclusion
In order to present how the implemented EEG sig‐

nal analyzer works, two characteristic measurements
of the EEG signal of an adult person were selected:
the state of concentration and the daily activity of
the brain. Based on the results of the implemented
solution, it should be emphasized that in each of the
cases itwas able to accurately determine the condition
of the examined person. On this basis, it was assumed
that the developed methodology for conducting the
analysis and the adopted algorithm is correct.

The implemented solution enables an accurate
assessment of the condition of the examined per‐
son and could be used to study the concentration of
machine operators. The user can preview the results
of the analysis and can observe the Fourier transform
of the signal. It also has the ability to ϐilter the signal
in the user‐speciϐied band. A number of indicators
provide ongoing information about the parameters of
the brainwave signal.

The algorithm has several “rigidly” adopted
parameters in the analysis of brain waves. Moreover,
they are not met for every person, which can lead
to errors in the results. Attempting to change the
current algorithm to an algorithm using fuzzy logic
would provide an opportunity to develop the work in
the future. In the signal analysis process itself, there
is also a wide range of tools that could improve the
properties of the implemented algorithm, such as
wavelet analysis and neural networks.
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