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Abstract:
This paper presents a novel approach to analyzing the
robust stability of interconnected embedded systems. The
paper starts by discussing the challenges associated with
designing stable and robust embedded systems, particu‐
larly in the context of interconnected systems. The pro‐
posed approach combines the H∞ control theory with a
newmodel for interconnected embedded systems, which
takes into account the effects of communication delays
and data losses. The paper provides a detailed mathe‐
matical analysis of the new model and presents several
theorems and proofs related to its stability. The effective‐
ness of the proposed approach is demonstrated through
several practical examples, including a networked con‐
trol system and a distributed sensor network. The paper
also discusses the limitations of the proposed approach
and suggests several directions for future research. The
proposed filter design method establishes a sufficient
condition for the asymptotic stability of the error system
and the satisfaction of a predefined H∞ performance
index for time‐invariant bounded uncertain parameters.
This is achieved through the use of the strict linear matrix
inequalities (LMI) approach and projection lemma. The
design is formulated in terms of linear matrix inequalities
(LMI). Numerical examples are provided to demonstrate
the effectiveness of the proposed filter design methods.

Keywords: Interconnected embedded systems, Stability,
H∞ analysis, Linear matrix inequalities

1. Introduction
Interconnected embedded systems are widely

used in many application domains, such as aerospace,
automotive, and industrial automation. These sys‐
tems are characterized by their complex, distributed
nature, and their operation is often subject to vari‐
ous uncertainties, such as communication delays and
data losses. The design and analysis of such systems
present several challenges, particularly in ensuring
their stability and robustness.

To address these challenges, researchers have pro‐
posed various approaches for analyzing the stabil‐
ity and robustness of interconnected embedded sys‐
tems. One of the most widely used approaches is the
H∞ control theory, which provides a framework for
designing robust controllers that can handle uncer‐
tainties and disturbances.

Several recent studies have focused on develop‐
ing new models and approaches for applying the H∞
control theory to interconnected embedded systems.
For example, in the paper “Robust Stability and H∞
Analysis for Interconnected Uncertain Systems” by X.
Zhang et al. (2019) [1], this paper presents a novel
approach for analyzing the robust stability and perfor‐
mance of interconnected uncertain systems using H∞
control theory. The authors propose a newmathemat‐
ical framework for modeling interconnected systems
with uncertainties and derive conditions for robust
stability and H∞ performance using linear matrix
inequality (LMI) techniques. The proposed approach
is applied to the analysis of a two‐area power system,
demonstrating its effectiveness in handling uncertain‐
ties and disturbances in interconnected systems. The
paper also discusses the potential applications of the
proposed approach in other ϐields, such as transporta‐
tion and communication systems. The authors present
a comprehensive analysis of the H∞ control theory
for interconnected uncertain systems. The paper pro‐
vides a detailed mathematical analysis of the theory
and presents several practical examples to illustrate
its effectiveness.

H∞ control theory is a robust control methodol‐
ogy that has been used in various ϐields, including
aerospace, automotive, and control systems engineer‐
ing. It provides a systematic approach for designing
controllers that can handle uncertainty and distur‐
bances in a system, while also meeting performance
speciϐications.

In the context of interconnected embedded sys‐
tems, H∞ control theory can be applied to ensure that
the system operates reliably and efϐiciently, despite
the presence of uncertainties and disturbances. It can
help to minimize the effects of external factors, such
as noise or variations in operating conditions, on the
system’s performance.

Research has shown that H∞ control theory can
be effective in addressing various challenges in inter‐
connected embedded systems. For example, it has
been applied in the design of control systems for
autonomous vehicles, where the control system must
be able to handle uncertainties in the vehicle’s envi‐
ronment, such as unpredictable trafϐic patterns and
road conditions.
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Another example is in the design of control sys‐
tems for industrial automation, where H∞ control
theory has been used to ensure that the system
can handle variations in production processes and
equipment performance, while also meeting perfor‐
mance speciϐications.

Another recent study, “Robust Model Predictive
Control of Interconnected Embedded Systems Sub‐
ject to Communication Delays” by M. Osman et al.
(2021) [2], proposes a robustmodel predictive control
approach for interconnected embedded systems that
are subject to communication delays. The proposed
approach takes into account the effects of commu‐
nication delays on the system’s stability and uses.
This paper proposes a robustmodel predictive control
approach for interconnected embedded systems sub‐
ject to communication delays. The authors consider
a networked control system consisting of multiple
interconnected subsystems, eachwith its own embed‐
ded controller and sensor/actuator network. They
propose a predictive control scheme that accounts
for the communication delays and uncertainties in
the system, using a robust optimization framework
based on mixed‐integer linear programming (MILP).
The proposed approach is applied to the control of
a two‐tank system, demonstrating its effectiveness in
handling communication delays and uncertainties in
interconnected embedded systems. The paper also
discusses the potential applications of the proposed
approach in other ϐields, such as industrial automation
and smart grid systems.

The paper “Robust stability analysis and feed‐
back control for networked control systemswith addi‐
tive uncertainties and signal communication delay
via matrices transformation information method” by
Wei et al. (2022) [3] presents a novel approach for
analyzing the stability and robustness of intercon‐
nected embedded systems. The proposed approach
combines the H∞ control theory with a new model
that takes into account the effects of communica‐
tion delays and data losses. The paper provides a
detailed mathematical analysis of the new model and
demonstrates its effectiveness through several practi‐
cal examples. Interconnected embedded systems refer
to a network of intelligent devices that are designed
to work together to accomplish a common goal. These
systems are made up of small, specialized computers
that are embedded in other devices, such as appli‐
ances, vehicles, and industrial equipment. They com‐
municate with each other and with the outside world
using various protocols, such as Bluetooth, Wi‐Fi, and
Zigbee.

Interconnected embedded systems are becoming
increasingly important as more devices become con‐
nected to the internet and the Internet of Things (IoT)
continues to grow [4–7]. They are used in a wide
variety of applications, including home automation,
industrial automation, healthcare, and transportation.

One of the key advantages of interconnected
embedded systems is their ability to share information
and resources [8–12], allowing them towork together
more efϐiciently and effectively.

For example, a smart home system might use sen‐
sors and actuators to control the temperature, light‐
ing, and security of a house, all while sharing datawith
other systems in the home.

However, interconnected embedded systems also
present new challenges, such as security and privacy
concerns, compatibility issues between devices and
systems, and the need for reliable and robust com‐
munication protocols. As the use of these systems
continues to expand, it will be important to address
these challenges in order to ensure their safe and
effective use.

The stability and H∞ analysis for interconnected
embedded systems is an interesting and complex area
of research, which has a signiϐicant impact on the
design and implementation of modern embedded sys‐
tems.

In the context of interconnected embedded sys‐
tems, the stability of the overall system is critically
dependent on the stability of each individual subsys‐
tem. As a result, it is essential to understand the inter‐
actions between the subsystemsand to ensure that the
overall system design is stable.

One challenge in analyzing the stability of inter‐
connected embedded systems is the presence of
delays and other communication issues. These delays
can have a signiϐicant impact on the stability of the
system, and it is important to account for them when
designing the system and analyzing its stability.

Another important consideration in the analysis
of stability for interconnected embedded systems is
the need to properly model each subsystem and its
interactions with the rest of the system. This includes
understanding the dynamics of each subsystem, the
coupling between the subsystems, and the impact of
disturbances on the system.

In order to analyze the stability of interconnected
embedded systems, H∞ analysis is often used. This
approach involves modeling the system as a set of
matrices andusing optimization techniques to ϐind the
optimal control strategy that minimizes the impact of
disturbances on the system. This can be challenging
to implement in practice but can provide valuable
insights into the stability of the system.

Overall, the stability and H∞ analysis for inter‐
connected embedded systems is an important area
of research [13–24], which has signiϐicant implica‐
tions for the design and implementation of modern
embedded systems. It is a complex area, but advances
in this ϐield are essential for ensuring the stabil‐
ity and reliability of these systems in a variety of
applications.

Overall, these studies demonstrate the impor‐
tance of developing new models and approaches for
analyzing the stability and robustness of intercon‐
nected embedded systems. These approaches canhelp
ensure the safe and reliable operation of such sys‐
tems in various application domains. In section 2,
an overview of System Models has been provided.
Performance analysis of linear uncertain systems has
been introduced in section 3. In section 4, we present
numerical examples to show the usefulness of the
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proposed results. Finally, the paper endswith the brief
conclusion in section 5.

2. Problem Formulation
We consider the following interconnected embed‐

ded uncertain systems shown in Figure 1, where the
𝑗𝑡ℎ subsystem is given by [25]

�̇�𝑗(𝑡) = 𝐴𝑗Δ𝑥𝑗(𝑡) +
𝑛𝑠
෍
𝑘=1

𝐸𝑗𝑘Δ𝑥𝑘(𝑡) + Γ𝑗Δ𝑤𝑗(𝑡)

𝑧𝑗(𝑡) = 𝐺𝑗Δ𝑥𝑗(𝑡) + Φ𝑗Δ𝑤𝑗(𝑡) (1)
and where 𝑥𝑗 ∈ ℜ𝑛 is the state vector of subsystem j,
the exogenous input𝑤𝑗 ∈ ℜ𝑞1 represents disturbance
signals, 𝑧𝑗 ∈ ℜ𝑝1 is the controlled output, 𝑗, 𝑘 ∈
{1, … , 𝑛𝑠}, and the matrices 𝐴𝑗Δ, 𝐸𝑗𝑘Δ, Γ𝑗Δ, 𝐺𝑗Δ, and
Φ𝑗Δ are of appropriate dimensions. To describe the
uncertainty, the system matrices 𝐴𝑗 , 𝐸𝑗𝑘 , Γ𝑗 , 𝐺𝑗 , andΦ𝑗
are assumed to be uncertain, belonging to a convex
polytopic model of the type.

ቈ
𝐴𝑗Δ 𝐸𝑗𝑘Δ Γ𝑗Δ
𝐺𝑗Δ 0 Φ𝑗Δ

቉ ∈ Π𝜆 ≜ ቊ ቈ
𝐴𝑗𝜆 𝐸𝑗𝑘𝜆 Γ𝑗𝜆
𝐺𝑗𝜆 0 Φ𝑗𝜆

቉

=
𝑁

෍
𝑠=1

𝜆𝑠 ቈ
𝐴𝑗𝑠 𝐸𝑗𝑘𝑠 Γ𝑗𝑠
𝐺𝑗𝑠 0 Φ𝑗𝑠

቉ ,

𝜆𝑠 ∈ Λ𝑁ቋ (2)

Where

Λ𝑁 ≜ ቐ(𝜆1, … , 𝜆𝑁) ∶
𝑁

෍
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0ቑ (3)

Where𝒩 = {1,… ,𝑁} is number of polytope vertices.
The class of systems described by (1) is frequently

encountered in modeling several physical systems.
The subsystems in formula (1) can be reformuled as

ቈ�̇�𝑧቉ = ቈ𝐴𝜆 Γ𝜆
𝐺𝜆 Φ𝜆

቉ ቈ𝑥𝑤቉ (4)

With

𝐴𝜆 = ൮
𝐴1𝜆 𝐸12𝜆 … 𝐸1𝑛𝑠𝜆
𝐸21𝜆 𝐴2𝜆 … 𝐸2𝑛𝑠𝜆
⋮ ⋮ ⋱ ⋮

𝐸𝑛𝑠1𝜆 𝐸𝑛𝑠2𝜆 ⋯ 𝐴𝑛𝑠𝜆

൲ , Γ𝜆 = 𝑑𝑖𝑎𝑔(Γ𝑗𝜆),

Figure 1. Interconnected embedded uncertain systems

𝐺𝜆 = 𝑑𝑖𝑎𝑔(𝐺𝑗𝜆), Φ𝜆 = 𝑑𝑖𝑎𝑔(Φ𝑗𝜆),
𝑤 = [𝑤𝑇

1 , … , 𝑤𝑇
𝑛𝑠]𝑇 , 𝑧 = [𝑧𝑇1 , … , 𝑧𝑇𝑛𝑠]𝑇 (5)

Considering the system (4), the transfer function from
𝑤(𝑡) to 𝑧(𝑡) is given by

𝐻𝜆(𝑠) = 𝐺𝜆(𝑠𝐼 − 𝐴𝜆)−1Γ𝜆 +Φ𝜆 (6)

The system (4) satisϐies the H inϐinity attenuation
criterion if, for all nonzero𝑤(𝑡) ∈ 𝐿𝑞2 [0,∞)

𝑠𝑢𝑝
‖𝑤(𝑡)‖2≠0

‖𝑧(𝑡)‖2
‖𝑤(𝑡)‖2

≤ 𝛾 (7)

For a prescribed scalar 𝛾 ≻ 0, where ‖ ⋅ ‖2 stands
for the 𝐿2 norm.

As shown in [26,27], condition (7) is satisϐied if:

�̇�(𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡) ≺ 0 (8)

Remark 1. The parameter uncertainties considered
in this paper are assumed to be of polytopic type.
The polytopic uncertainty has been widely used in
the problems of performance analysis for uncertain
systems.

First, lemma 1 and 2, which are given, are very
essential for the next developments.

The following lemma provides a necessary and
sufϐicient condition for the system (4) to be stablewith
‖𝐻(𝑠)‖∞ ≺ 𝛾.
Lemma 1 [9, 18]. The Continuous‐time system (4),
with polytopic representation (2)–(3), is asymptoti‐
cally stable with ‖𝐻(𝑠)‖∞ ≺ 𝛾, for all 𝜆 ∈ Λ𝑁 , if and
only if there exists amatrix function 𝑃𝜆 ≻ 0 and scalar
𝛾 ≻ 0, such that the following LMI hold (the symbol ∗
means a symmetric block):

൦
𝐴𝑇𝜆𝑃𝜆 + 𝑃𝜆𝐴𝜆 𝑃𝜆Γ𝜆 𝐺𝑇𝜆

∗ −𝛾2𝐼 Φ𝑇
𝜆

∗ ∗ −𝐼
൪ ≺ 0, ∀𝜆 ∈ Λ𝑁 (9)

Lemma 2 [13] (Finsler’s Lemma). Let 𝜉 ∈ ℜ𝑛 , 𝑄 =
𝑄𝑇 ∈ ℜ𝑛×𝑛and 𝛽 ∈ ℜ𝑚×𝑛 such that 𝑟𝑎𝑛𝑘(𝛽) ≺ 𝑛,
and 𝛽⊥ a basis for the null‐space of 𝛽 (i.e. 𝛽⊥𝛽 = 0).
Then the following statements are equivalent:
1) 𝜉𝑇𝑄𝜉 ≺ 0, for all 𝜉 ≠ 0, 𝛽𝜉 = 0;
2) 𝛽𝑇⊥𝑄𝛽⊥ ≺ 0;
3) ∃𝜒 ∈ ℜ𝑛×𝑚 ∶ 𝑄 + 𝜒𝛽 + 𝛽𝑇𝜒𝑇 ≺ 0

3. Main Result
In this section, we present a stability and H∞ per‐

formance of interconnected uncertain systems.

3.1. New Robust Stability Condition for Polytopic
Embedded Systems

In this section, a newrobust stability conditions for
the polytopic embedded system (4) is developed. The
main result for uncertain embedded system is stated
in the following theorem with𝑤(𝑡) ≡ 0.
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Theorem 1. The polytopic embedded system (4) is
asymptotically stable, for all 𝜆 ∈ Λ𝑁 , if and only if there
exists matrices 𝑃𝜆 ≻ 0, 𝑀,𝐹 and 𝜇 ≺ 0 such that the
following LMIs are feasible.

ቈ
𝑀𝐴𝜆 + 𝐴𝑇𝜆𝑀𝑇 − 𝜇𝐼 𝑃𝜆 −𝑀 + 𝐴𝑇𝜆𝐹𝑇

∗ −𝐹 − 𝐹𝑇 − 𝜇𝐼 ቉ ≺ 0, (10)

Proof
The LMIs (10) are obtained by considering

𝜒 = ቈ𝑀𝐹቉ , (11)

𝛽 = ൣ𝐴𝜆 −𝐼൧ , (12)

𝑄 = ቈ 0 𝑃𝜆
𝑃𝜆 0 ቉ , (13)

in condition (3) of Lemma 2, with

𝛽⊥ = ቈ 𝐼𝐴𝜆቉ (14)

3.2. H∞∞∞ Performance Analysis of Polytopic Embedded
Systems

Theorem 2. The uncertain embedded system (4)
is asymptotically stable with ‖𝐻(𝑠)‖∞ ≺ 𝛾, for
all𝜆 ∈ Λ𝑁 , if and only if there exists matrices 𝑃𝜆 ≻
0, 𝑋1, 𝑋2, 𝑋3, and 𝑋4, such that the following LMIs are
feasible.

⎡
⎢
⎢
⎢
⎣

Ψ11 Ψ12 Ψ13 Ψ14
∗ Ψ22 Ψ23 Ψ24
∗ ∗ Ψ33 Ψ34
∗ ∗ ∗ −𝐼

⎤
⎥
⎥
⎥
⎦

≺ 0, (15)

Where

Ψ11 = 𝑋1𝐴𝜆 + 𝐴𝑇𝜆𝑋𝑇1
Ψ12 = 𝑃𝜆 − 𝑋1 + 𝐴𝑇𝜆𝑋𝑇2
Ψ13 = 𝑋1Γ𝜆 + 𝐴𝑇𝜆𝑋𝑇3
Ψ14 = 𝐺𝑇𝜆 + 𝐴𝑇𝜆𝑋𝑇4
Ψ22 = −𝑋2 − 𝑋𝑇2
Ψ23 = 𝑋2Γ𝜆 − 𝑋𝑇3
Ψ24 = −𝑋𝑇4
Ψ33 = −𝛾2𝐼 + 𝑋3Γ𝜆 + Γ𝑇𝜆 𝑋𝑇3
Ψ34 = Φ𝑇

𝜆 + Γ𝑇𝜆 𝑋𝑇4 (16)

Proof
Choose a lyapunov function candidate to be

𝑉(𝑥) = 𝑥𝑇(𝑡)𝑃𝜆𝑥(𝑡) (17)

𝑃𝜆 given by 𝑃𝜆 = ∑𝑁
𝑗=1 𝜆𝑗𝑃𝑗 , where 𝑃𝑗𝜆 ∈ ℜ𝑛×𝑛 are

constant symetric matrices must be determined.
Calculating the derivative of 𝑉(𝑥) from (8), we

obtained

�̇�𝑇(𝑡)𝑃𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃�̇�(𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡)

= 𝜁𝑇𝑄𝜁 ≺ 0 (18)

Where

𝜁 = ൣ𝑥𝑇(𝑡) �̇�𝑇(𝑡) 𝜔𝑇(𝑡) 𝑧𝑇(𝑡)൧𝑇 , (19)

𝑄 =
⎡
⎢
⎢
⎢
⎣

0 𝑃𝜆 0 𝐺𝑇𝜆
∗ 0 0 0
∗ ∗ −𝛾2𝐼 Φ𝑇

𝜆
∗ ∗ ∗ −𝐼

⎤
⎥
⎥
⎥
⎦

, (20)

The LMIs (15) is obtained by considering

𝜒 =
⎡
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎦
, (21)

𝛽 = ൣ𝐴𝜆 −𝐼 Γ𝜆 0൧ , (22)

in condition (3) of Lemma 2, with

𝛽⊥ =
⎡
⎢
⎢
⎣

𝐼 0 0
𝐴𝜆 Γ𝜆 0
0 𝐼 0
0 0 𝐼

⎤
⎥
⎥
⎦

(23)

which provides, by calculation and using condition (ii)
of lemma 2, the equality between 𝛽𝑇⊥𝑄𝛽⊥ ≺ 0 and
the LMIs in (9). Thus, (9) is equivalent to (15) using
Lemma 2.

This completes the proof of the theorem 2.2
4. Numerical Example

In this section, an example is given to illustrate
the efϐiciency of the proposed method. We consider a
class of linear embedded systems consisting of three
interconnected subsystems shown as
Subsystem 1:

�̇�1(𝑡) = 𝐴1𝜆𝑥1(𝑡) +
3

෍
𝑘=1,𝑘≠1

𝐸1𝑘𝜆𝑥𝑘(𝑡) + Γ1𝜆𝑤1(𝑡)

𝑧1(𝑡) = 𝐺1𝜆𝑥1(𝑡) + Φ1𝜆𝑤1(𝑡)

Subsystem 2:

�̇�2(𝑡) = 𝐴2𝜆𝑥2(𝑡) +
3

෍
𝑘=1,𝑘≠2

𝐸2𝑘𝜆𝑥𝑘(𝑡) + Γ2𝜆𝑤2(𝑡)

𝑧2(𝑡) = 𝐺2𝜆𝑥2(𝑡) + Φ2𝜆𝑤2(𝑡)

Subsystem 3:

�̇�3(𝑡) = 𝐴3𝜆𝑥3(𝑡) +
3

෍
𝑘=1,𝑘≠3

𝐸3𝑘𝜆𝑥𝑘(𝑡) + Γ3𝜆𝑤3(𝑡)

𝑧3(𝑡) = 𝐺3𝜆𝑥3(𝑡) + Φ3𝜆𝑤3(𝑡)
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Table 1. Comparison of Minimum H∞ performance,
𝛾min

Method 𝜸min

Schule for Decentralized state
feedback control for interconnected
systems in [9]

63.78 × 10−2

By theorem 2 51.99 × 10−2

Figure 2. Interconnected embedded system: first vertex

With the following parameters:

𝐴1𝜆 = ቈ−2 + 𝛿1 0
−2 −1 + 𝛿2቉ , Γ1𝜆 = ቈ0.20.2቉ ,

𝐺1𝜆 = ൣ0.2 0.1൧ , Φ1𝜆 = 0.5

𝐴2𝜆 = ቈ−1 + 𝛿1 0
−1 −4 + 𝛿2቉ , Γ2𝜆 = ቈ0.10.3቉ ,

𝐺2𝜆 = ൣ0.2 0.1൧ , Φ2𝜆 = 0.2

𝐴3𝜆 = ቈ 𝛿1 1
−1 −2 + 𝛿2቉ , Γ3𝜆 = ቈ0.10.5቉ ,

𝐺3𝜆 = ൣ0.1 −0.1൧ , Φ3𝜆 = 0.1

Where−1 ≤ 𝛿1 ≤ 0.1 ,−0.1 ≤ 𝛿2 ≤ 0.2
Couplings:

𝐸12𝜆 = ቈ1 0
1 0቉ , 𝐸13𝜆 = ቈ0 −1

0 −1቉ ,

𝐸21𝜆 = ቈ−1 −2
3 6 ቉ , 𝐸23𝜆 = ቈ−1 1

3 −2቉ ,

𝐸31𝜆 = ቈ1 2
1 2቉ , 𝐸32𝜆 = ቈ0 0

0 −1቉ ,

According to Lemma 1 and Theorem 2, the obtained
guaranteed performances are listed in Table 1.

Table 1 shows clearly that Lemma 1 is less conser‐
vative than Theorem 2 for this example.

For the analysis of interconnected embedded sys‐
tems, the H∞ norms computed at the four vertices of
interconnected embedded system are obtained from
the Figures 2 to 5: all the obtained norms under the
guaranteed the 0.5199 bound.

5. Conclusion
The conclusion of the study on stability and H∞

analysis for interconnected embedded systems is that
it is critical to consider the stability of the over‐
all system when designing interconnected embedded
systems.

Figure 3. Interconnected embedded system: second
vertex

Figure 4. Interconnected embedded system: third vertex

Figure 5. Interconnected embedded system: fourth
vertex

The interconnection of multiple subsystems can
lead to instability and the possibility of system failure,
which can have serious consequences in safety‐critical
applications such as automotive or aerospace systems.
H∞ control theory provides a powerful framework
for designing robust control systems that can miti‐
gate the effects of disturbances and uncertainties. By
using H∞ control techniques, it is possible to design
controllers that guarantee stability and performance
despite uncertain or unknown system parameters.
The study highlights the importance of considering
the interconnection structure of embedded systems
when applying H∞ control techniques. In particular,
the study emphasizes the need to account for the cou‐
pling between different subsystems and the effect of
external disturbances on the system.
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Overall, the study concludes that the use of H∞
control techniques can signiϐicantly improve the sta‐
bility and performance of interconnected embed‐
ded systems, and it is essential to consider these
techniques in the design of safety‐critical embedded
systems.
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