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Abstract:
Solar energy is an essential factor in Moroccan sustain‐
able development, especially in solar pumping in the
agricultural sector. It is therefore difficult to dissociate
the energy systemof a society from its economic develop‐
ment and social development. Solar radiation prediction
is useful in giving us a global overview on maintaining
the integrity of solar systems. Access to database use
makes this process more flexible. Solar forecasts can be
generated using various available data sources. There
are two major pillars of this data: the exploitation of his‐
torical solar radiation data, and the exploitation of other
meteorological factors. On the other hand, the choice of
data can have an impact on the choice of the model and
the approach employed. In this paper we suggest an idea
that aims to monitor in real time the situation of solar
radiation in Morocco, using Long Short‐Term Memory
for deep learning models compared with Artificial Neural
Networks and Deep Neural Networks to predict the solar
radiation with regard to solar pumping in the Moroccan
agricultural sector.

Keywords: Morocco sustainable development, Solar
pumping, Deep Learning, Renewable energies, Solar
radiation.

1. Introduction
Morocco has been making great strides in

renewable energy, and green process in sustainable
development, and especially in solar pumping for
its agricultural sector [1]. Recently, in the literature
several intelligent algorithms have been used in
renewable energy, and for solar pumping prediction
for sustainable development [2–5]; Indeed, some
Artiϐicial Neural Networks models have been studied
for predictions of solar radiation [6–9]. These have
the advantage of giving a fast and accurate tracking of
the MPP [10–16]. The controller in renewable energy
effectiveness depends on the algorithm used and the
neural network trained. Articles over the last years
were studied renewable energy, and green process
in sustainable development using Machine, and deep
learning [16–18]. Some authors discuss in different
papers the renewable energy using ANN for MPPT
control is presented [19,20].

The algorithms are based on Deep Learning and
Machine Learning Approaches or in Empirical and
machine learning models for predicting daily global
solar radiation from sunshine duration [21–23]. In
general, countries are making great strides towards
cleaner energy that is more environmentally friendly.

The agricultural sector consumes a large share
of energy in Morocco, contributes the most to gross
domestic product, and is one of the sectors that
employs the most people, especially in rural areas.
In recent years, agriculture has made great strides in
incorporating renewable energy into its businesses.

In 2010, Morocco’s Solar Energy Agency (MASEN)
was established, with the goal of providing the coun‐
try with a clean energy source that replaces 90% of
imported energy [24]. Renewable energy is expected
to exceed 52% of the country’s total energy consump‐
tion and production by 2030. The country invests in
both solar and wind energy, especially the Noor Solar
Station. The investment is estimated at 2 billion euros,
all built over the last ϐive years with a total area of 300
hectares [25].

For Morocco, solar energy is an important eco‐
nomic issue in line with the choice of sustain‐
able development. The unchecked cost of traditional
energy, which has a negative impact on the environ‐
ment, doubles the stake. Solar energy is clean, inex‐
haustible, and beneϐicial alternative energy consistent
with sustainable development. Morocco’s determina‐
tion to be a ϐlag bearer is an advantage in pursu‐
ing energy autonomy, not only for our brothers in
Africa, but also for other partners in the world who
want to provide services and products and share their
experiences.

As part of its strategy to promote renewable ener‐
gies, Morocco prioritizes the expansion and sustain‐
able development of these energies. With abundant
solar resources, “potential of 2,600 kWh/m2/year”,
and a strategic location in the center of the energy
hub (connected to the Spanish power network via
two 400 kV/700 MW lines), Morocco offers several
investment opportunities in the ϐield of solar energy
in thermodynamics and photovoltaics. The Moroc‐
can solar energy project aims to build a total of
2000MWof solar power capacity in 2020 at ϐive sites:
Ouarzazate, AinBni Mathar, Foum Al Oued, Boujdour
and Sebkhat Tah.
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Solar radiation is the radiation or energy we
receive from the sun. For energy systems, a thorough
understanding of the availability and variability of
solar radiation intensity is fundamental and crucial.
This is the fuel of any solar energy system. Due to the
growing demand for electricity, several countries have
been targeting the renewable energy productionmar‐
ket. Morocco is launching a range of projects that will
hit about 2000 MW of electricity and plans to make
42% of its energy renewable by 2020 and bring it to
52% by 2030. The kingdom has a high sunshine rate:
around 3000 hours of sunshine per year. All projects
implemented or under construction offer the country
the chance to be the leader in the MENA region in this
ϐield.

One of themost well‐known projects inMorocco is
inNoor, Ouarzazate, which currently has four factories
at different stages of development: Noor I is a 160MW
cylindrical‐parabolic mirror with 3 hours of ther‐
mal storage and an annual production of 520 GWh;
Noor II is a 200 MW cylindrical‐parabolic mirror with
7 hours of thermal storage and an annual produc‐
tion of 699 GWh; Noor III is a 150 MW tower with
8 hours of thermal storage with an annual production
of 515 GWh and Noor IV of 72 MW with an annual
production of 125 GWh [25]. Noor has other proposed
projects such as Noor Midelt, Noor Taϐilalet, Noor PV
II, Noor Atlas , Outat El Haj, Ain Beni Mathar, Boud‐
nib, Bouanane and Boulemane) and Noor Argana. A
study and analysis of previous solar radiation studies
in Morocco are presented in this article. Section 2
presents the solar pumping in the agricultural sector.
Next, Section 3 deals with methods for the acquisition
of the necessary data for AI models and with artiϐicial
intelligence and its axes. Section 4 deals with model‐
ing precise assessment methods. Section 5 provides
presentations and algorithms used in solar radiation
publications in Morocco. Finally, Section 6 shows the
results and discussion.

2. Solar Pumping in the Agricultural Sector

In Figures 1 and 2, the requested sample concerns
500 farmers, 277 of whom use photovoltaic power
(PPV) for irrigation and 223 who use other conven‐
tional sources of energy. To constitute a representative
sample is to ensure that the essential components

Figure 1. Spire of solar pumping

Figure 2. Inventory of the solar pumping in the
agricultural sector

Table 1. Reference population distribution without PPV

Without PPV
Parent population 1,710,000 ha
Sample 2,800 ha
Conϐidence threshold 95%
Expected proportion of a response 0.5
Margin of error 2%

Table 2. Reference population distribution with PPV

With PPV
Parent population 1,710,600 ha
Sample 3,300 ha
Conϐidence threshold 95%
Expected proportion of a response 0.5
Margin of error 1.7%

of its reference population appear in the sample, in
identical proportions.

Under this condition, the results observed in the
sample can be extrapolated to its entire reference pop‐
ulation (see Tables 1 and 2).

The margin of error is:

𝑦 = ඨ𝑡2𝑝 × 𝑃 × (1 − 𝑃) × (𝑁 − 𝑛)
(𝑁 − 1) × 𝑛

n: sampling size.
N: size of the target population, actual or estimated.
P: expected proportion of a response from the
population or actual proportion.

In the case of a multi‐criteria study (our case), it
can be set at 0.5 by default.
tp: Sampling conϐidence coefϐicient. The values are
associated with conϐidence intervals.
y: margin of sampling error

Three teams of investigators were trained before
the surveys began. The training focused on the opera‐
tion of a solar installation and on how to address the
different questions to the farmers.
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Table 3. PPV in the different regions of Morocco

Region With Without Sum
PPV PPV

1. Tanger‐Tetouan‐Al Hoceïma 0 13 13
2. L’Oriental 58 5 63
3. Fez‐Meknes 23 15 38
4. Rabat‐Salé‐Kenitra 8 38 46
5. Béni Mellal‐Khénifra 25 16 41
6. Casablanca‐Settat 14 36 50
7. Marrakech‐Saϐi 66 46 112
8. Darâa‐Taϐilalet 29 20 49
9. Souss‐Massa et le Sud 54 34 88
Sum 277 223 500

The three teams visited the 500 farmers in a
random manner, respecting randomness while also
respecting the distribution of the sample by region
and by category (with and without PPV). Some difϐi‐
culties were encountered in the ϐield:
‐ The difϐiculty of convincing farmers with PPV to
participate in this study;

‐ The difϐiculty of estimating energy andwater energy
and water consumption among farmers;

‐ Lack of reliability of farmers’ statements about
lower costs and/or the increase in their income fol‐
lowing the installation of PPV systems (Table 3);
The number of farmers visited in each region was

chosen according to two criteria (Figure 3):
‐ The irrigated area of the region (Data sources:
MADRPM 2015/2016)

‐ The presence of the PPV in the region (Data source:
ϐield experience)
Due to the rapid rise in implementation and high

penetration of solar power in electricity grids world‐
wide, forecasting of solar radiation production has
become a crucial need [1]. We show here the different
types of solar radiation forecastingmethods available:
‐ Stochastic Learning techniques: In order to fore‐
cast shifts in sun angles, these methods are based
on recent data from photovoltaic power plants or
radiometer outputs.

‐ Artiϐicial Neural Network: ANN deals with meteo‐
rological variables taken as inputs to forecast vari‐
ous time scales of solar radiation.

‐ Numerical Weather Prediction Method: This
method used the Autoregressive Moving Aver‐
age (ARMA) and Autoregressive Integrated Mov‐
ing Average (ARIMA) techniques with numerical
weather data to forecast the solar radiation.

‐ Satellite Image techniques: This technique is
based on the reϐlection of correctly measured light
from the cloud to satellites.

‐ Ground based image techniques: The strategy
used the total sky imager (TSI) to present a clear
view of cloud shadows for forecasting the solar
radiation.

3. Artificial Intelligence Models
In our research, we would concentrate on Artiϐi‐

cial Neural Network forecasting, generally in the tech‐
niques of Artiϐicial Intelligence, but what are those
methods? And what are their effects on predicting
solar radiation?

Artiϐicial Intelligence (AI) is a branch of com‐
puter science that deals with the development of
smart machines capable of executing tasks that usu‐
ally require human intelligence. With strong predic‐
tion and automation capabilities, AI can operate with
excellence in several areas.

Machine Learning (ML) goes deeper, as AI tries
to emulate human thought. Machine Learning as a
branchof AI enablesmachines to learnwithout relying
on instruction. In fact, in order to recognize patterns,
the “machine” is an algorithm that analyzes a volume
of data which would be unmanageable for a human
being. Machine learning, in other words, allows the
machine to be educated to automate tasks that are dif‐
ϐicult for a human being, and it can make predictions
with this learning.

Deep Learning (DL)may be viewed as a form but
more complex of Machine Learning. Deep Learning is
a series of algorithms that simulate the human brain’s
neural networks. The computer learns by itself, but in

Distribution of the sample offer (distributors/installers) by type of sector (Formal/Informal)

Installer: 51%

Installer/Distri
butors: 27%

Distributors: 
10%

Financial 
ins�tu�ons:

9%

Manufacturer:
3%

Entity Number
Installer 51
Installer/Distributors 27
Distributors 10
Financial institutions 9
Manufacturer 3
Total 100

Figure 3. The number of farmers with and without financial institutions
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phases or layers, in this technology. Themodel’s depth
would depend on the number of layers in the model.

4. DataSET
There are numerous approaches for source data

methods that can be used to forecast solar radiation,
some of which are:
‐ The Prediction of Worldwide Energy Resources
(POWER) is a NASA project with the goal of observ‐
ing, understanding, and modeling the Earth system
to discover how it is changing, to better predict
change, and to understand the consequences for
life on Earth. The project was initiated to improve
upon the current renewable energy data set and
to create new data sets from new satellite systems.
The POWERproject targets three user communities:
renewable energy, sustainable buildings, and agro‐
climatology. They provide two different datasets:
meteorology (starting from January 1, 1981, to now)
and the solar radiation data (from July 1, 1983, to
now).

‐ The Copernicus Atmosphere Monitoring Service
(CAMS) provides consistent and quality‐controlled
information related to air pollution and health,
solar energy, greenhouse gases, and climate forcing,
everywhere in the world. CAMS offer information
services based on satellite Earth observation, in situ
(non‐satellite) data, and modeling.

‐ METEONORM software is a unique combination
of reliable data sources and sophisticated calcula‐
tion tools. It provides access to typical years and
historical time series when we can choose from
more than 30 different weather parameters. The
database consists of more than 8 000 weather sta‐
tions, ϐive geostationary satellites, and a globally
calibrated aerosol climatology. On this basis, sophis‐
ticated interpolation models, based on more than
30 years of experience, provide results with high
accuracy worldwide.

‐ Local laboratory: Many universities around
the world have already established local
laboratories where various sensors (pyrometers,
anemometers, pluviometers, radiometers, and
thermo‐hygrometers) are mounted to capture
different meteorological and solar parameters.

5. Model Accuracy Evaluation
Typically, most research papers using methods of

Artiϐicial Intelligence use an evaluation algorithm to
measure how effective the model is. In this section
we will present some of the most used evaluations of
model accuracy:
‐ Root Mean Square Error (RMSE) is the standard
deviation of the residuals (prediction errors), it is
widely used to validate experimental ϐindings in
climatology, forecasting, and regression analysis. It
detects how oriented the data is around the best
ϐit line. Where Xobs observes values, Xmodelmodels
values at time/place i.

‐ R-Squared (R2, or the decision coefϐicient) is a
statistical measure which speciϐies the proportion
of variance in the dependent variable that can be
explained by the independent variable. R‐squared,
in otherwords, showshowwell thedatamatches the
regression model (the goodness of ϐit).

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)

2

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2

wheren is thenumberofmeasurements,𝑦𝑖 the value
of themeasurement, �̂�𝑖 the corresponding predicted
value and 𝑦 the mean of the measurements.

‐ Mean Absolute Error (MAE)measures the average
magnitude of the errors in a set of forecasts, without
considering their direction. Itmeasures accuracy for
continuous variables.

MAE =
∑𝒏
𝒊=1 |𝒚𝒊 − 𝒙𝒊|

𝒏
Where 𝑦𝑖 is the prediction and 𝑥𝑖 is the true value.

‐ The mean square error (MSE) uses the squared
difference between measured and forecast values.

MSE =
∑𝒏
𝒊=1(𝒀𝒊 − ෝ𝒀𝒊)2

𝒏
Where 𝑌𝑖 is the vector of observed values and ෝ𝑌𝑖 is
the predicted values.
The authors used various instruments and sensors

to gather meteorological parameters (Humidity, Tem‐
perature, and Wind Speed). As a result, the authors
found that the NARX model with ϐive inputs provides
the best efϐiciency after 10 tested models (Table 4).

In the Benguerir region, some authors [25–29]
used multilayer perception (MLP) to forecast global
horizontal irradiance for a hot semi‐arid atmosphere.
For this reason, the authors used data obtained
from the weather station located in Green Energy
Park, Benguerir, Morocco, formed by different
meteorological data (temperature, relative humidity,
barometric pressure, wind speed, wind direction,
precipitation, and others). Using the correlation
coefϐicient, they ϐind that the global irradiance at the
top of the atmosphere and the solar zenithal angle are
the most correlated astronomy parameters, and the
temperature is the most correlated meteorological
parameter with solar irradiance. Author researchers
developed an artiϐicial neural network (ANN) model
with a multilayer perceptron (MLP) technique to
measure the monthly average global solar irradiation
on the horizontal surfaces of the Souss‐Massa region
in Morocco. To train the model, the authors used data
from 175 locations spread across the Souss‐Massa
region for 10 years (1996–2005) provided by the
NASA geo‐satellite database and Google Maps. The
authors have chosen a set of 24 different climate
locations to achieve a stable design of the ANN model
and validate it for the remaining 151 sites. As a result,
the optimal model has 25 nodes in the hidden layer
with an RMSE of 0.234 and a correlation coefϐicient of
R 0.988.
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Table 4. List of reference papers on solar radiation in
some laboratories

Reference Models Year Performance
Indicator

3 Artiϐicial
neural network
optimization
for monthly
average daily
global solar
radiation
prediction

2016 Mean Absolute
Percentage
Error (MAPE),
range between
1.67% and
4.25%

2 Recurrent
neural network
model

2017 Training ratio
90; Validation
ratio 5; Testing
ratio 5, MSE
(3.29 10‐3) R
0.983
MSETEST (5.27
10‐3
)RTEST0.961

6 Solar radiation
estimation
methods using
ANN and
empirical
models

2019 RMSE values of
many other
similar models
range from
2.05 to 4.70 MJ
m‐2 day‐1

7 solar radiation
with using
ensemble
learning
algorithm

2019 RMSE between
4.6 and 14.6%
in average

23 LSTM 2020 R2: 91,6%
24 LSTM 2020 MSE/Autumn:

0.0019
MSE/Winter:
0.00301
MSE/Spring:
0.00322
MSE/Summer:
0.0015

Proposed
works

LSTM 2022 MSE/Autumn:
0.0005
MSE/Winter:
0.00401
MSE/Spring:
0.00110
MSE/Summer:
0.0040

The authors tested the models for clear and
unclear days, the results are very acceptable for clear
days with an NMBE of 0.015%, an NRMSE of 0.10%
and a correlation coefϐicient of 0.99, for unclear days
the accuracy was an NMBE of 0.14%, an NRMSE of
0.39% and a correlation coefϐicient of 0.96.
5.1. Random Forest (RF)

Random Forest is a machine learning method and
a tweaked algorithm based on a decision tree, includ‐
ing a variety of decision tree ϐittings for various sub‐
samples of the initial data set at the training level to
producedecision trees for computation and to arrange
trees for the ϐinal outcome.

Bounoua et al. [30] tested 22 empirical and 4
machine learning models to measure Global Solar
Radiation at ϐive locations in Morocco (Oujda, Mis‐
sour, Erfoud, Zagora, and Tan‐Tan). The models tested
were the Multilayer Perceptron Artiϐicial Neural Net‐
work Model (MLP) and three‐set methods (Boost‐
ing, Bagging, and Random Forest) with some mea‐
suredmeteorologicalvariablesandsomeastronomical
parameters (ambient air temperature, relative humid‐
ity, wind speed, etc.) were used to train these models.
The ϐindings achieved suggest that the temperature
and geographic factors model were the more accurate
with R: 72.38–93.46%; nMAE: 6.96–17.94%; nRMSE:
9.89–22.39%. The Random Forest (RF) method has
also proven to be the highest performing in all stations
between the four machine‐learning methods.

5.2. Back Propagation Neural Network (BPNN)

Back‐propagation is an integral aspect of Artiϐicial
Neural Network. It tries to adjust the networkweights
using the error rate of the past epoch. Proper tuning of
the weights helps to reduce the error rate and makes
the model accurate by increasing its generalization.

Aghmadi et al. [27] used BPNN with the Empirical
Mode Decomposition (EMD) to improve the accuracy
of solar radiation estimation and simplify the energy
management system. A one‐hour data for the year
2018 ofMeasuredDirect Normal Irradiance (DNI) col‐
lected from a meteorological ground station located
in Rabat, Morocco, is used. Three concept reliabil‐
ity and performance quality criteria are used: MAE,
MAPE, and RMSE. The tests of the EMD‐BPNN hybrid
approach revealed an RMSE of 28.13% and a MAE of
20.99%, much less than other traditional approaches
such as the conventional neural network or theARIMA
time series.

5.3. Deep Neural Network (DNN)

A Deep Neural Network is a neural network
with a certain degree of sophistication, a technol‐
ogy designed to simulate the behavior of the human
brain – speciϐically, the identiϐication of patterns and
the passing of inputs through different layers of simu‐
lated neural connections to predict performance using
advanced mathematical modeling to process data in
complex ways.

Jallal et al. [33] suggested a Deep Neural Network
capable of handling the non‐linearity and dynamic
behavior of meteorological data and providing accu‐
rate real‐time predictions of hourly global solar radi‐
ation. The neural network used hourly data on global
solar radiation and meteorological parameters based
on the METEONORM data sets of the city of El Kelaa
des Sraghna, Morocco. The writers used the Elman
neural network (ENN) with the Levenberg‐Marquardt
Optimizer. With a 99.38% correlation coefϐicient (R),
the Deep Neural Network when implemented proves
to be very effective and accurate.

5.4. Long Short‐Term Memory (LSTM)

Soufene et al. [34] suggested LSTM enables the
simulation of very long‐term dependencies. It is based
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on a memory cell and three gates (Forgotten Gate –
Input Gate – Output Gate). The complete activity of the
LSTM can be outlined in three steps:
‐ Detect knowledge from the past, drawn from the
memory cell via the forgotten gate;

‐ Choose, from the current entrance, the ones thatwill
be useful in the long term, via the input gate. These
would be applied to the memory cell;

‐ Collect valuable short‐term information from the
current cell state to produce the next hidden state
via the output gate [34].
Benamrou et al. [23] suggest a very short‐term

prediction of horizontal global solar irradiation
using the LSTM model, using two separate data
sources. The ϐirst was obtained from the Al‐Hoceima,
Morocco, Meteorological Station for the duration
(2015–2017) and the second was a set of satellite‐
derived data retrieved from the CAMS dataset around
the Al‐Hoceima Meteorological Station for the same
period. The authors used the RFE (Recursive Function
Elimination) approach to ϐind the desired features of
the model. Three scenarios were suggested to model
solar irradiation using various algorithms (XGBoost,
Random Forest, and SVR) to train the features. As a
result, XGBoost provided the best output model with
an R2 coefϐicient of 0.916.

Bendali et al. [26] propose a hybrid approach to
reϐine the forecasting of solar irradiance using a Deep
Neural Network with genetic algorithm. For this pur‐
pose, the authors evaluated Long Short‐TermMemory
(LSTM), Gate Recurrent Unit (GRU), and Recurrent
Neural Network (RNN)models. The genetic algorithm
was used to ϐind the most suitable number of window
sizes and the number of neurons in each layer. For
this work, the Global Horizontal Irradiance (GHI) time
series of Fes, Morocco, was used from 2016 to 2019
as a data set derived from the METEONORM Platform.
The combination of the genetic algorithm and the
LSTM showed the best results for the four seasons of
the year evaluated with the MSE and MAE.

6. Modeling a Photovoltaic Generator
6.1. Modeling a Cell

The model of photovoltaic cell equivalent as

I = Iph − Id − Ish (1)

The physics of the PV cell is very similar to the clas‐
sical p‐n junction diode. When the junction absorbs
light, the energy of the absorbed photons is trans‐
ferred to the electron system of thematerial, resulting
in the creation of charge carriers that are separated at
the junction. The charge carriers may be electron‐ion
pairs in a liquid electrolyte, or electron hole pairs in a
solid semiconducting material (Figure 4). The charge
carriers in the junction region create a potential gra‐
dient, get accelerated under the electric ϐield, and cir‐
culate as the current through an external circuit. The
current squared times the resistance of the circuit is
the power converted into electricity.

Figure 4. Photovoltaic panel

Figure 5.Model of a photovoltaic cell

Figure 6. Photovoltaic generator block diagram

The remaining power of the photon elevates the
temperature of the cell.

A number of modules make up a typical photo‐
voltaic panel that can be connected in a string conϐigu‐
ration in order to achieve desired current and voltage
at the inverter input. A number of photovoltaic panels
connected in a string conϐiguration is typically known
as a photovoltaic array.

Current versus voltage (I‐V) characteristics of the
PV module can be deϐined in sunlight and under dark
conditions. In the ϐirst quadrant, the top left of the
I‐V curve at zero voltage is called the short circuit
current. This is the current measured with the output
terminals shorted (zero voltage). The bottom right of
the curve at zero current is called the open‐circuit
voltage. This is the voltage measured with the output
terminals open (zero current).
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Figure 5 represents the model of a photovoltaic
cell, and the block diagram (Figure 6) comprising four
parameters can present the equivalent electrical dia‐
gram of the photovoltaic generator (GPV). Two input
variables, which are the insolation in the plane of the
panels E, the junction temperature of the cells Tj, and
two output variables: current supplied by the GPV Is,
voltage at the terminals of the GPV versus different
illuminations and temperatures, we use the following
model:

𝐼𝑐𝐶(𝑇) = 𝐼𝑐𝑐(𝑇𝑟𝑒𝑓) ⋅ [1 + 𝛼(𝑇 − 𝑇𝑟𝑒𝑓)]

𝐼𝑝ℎ = 𝐼𝑐𝑐 ቆ
𝐺

1000ቇ

𝐼𝑠𝑎𝑡(𝑇) = 𝐼𝑠𝑎𝑡(𝑇𝑟𝑒𝑓)

⋅ ቆ
𝑇𝑟𝑒𝑓
𝑇 ቇ

3
𝑛
ቈexpቆ𝑞.𝐸𝜃𝑛𝑘 ቇ ⋅ ቆ1𝑇 − 1

𝑇𝑟𝑒𝑓
ቇ቉

(2)

With:
n is the quality factor of the diode, normally between
1 and 2, k is the constant of Boltzmann k = 1,
𝛼 is the coefϐicient of variation of the current.

Standard illumination, G 1000W/m2
Standard temperature, T 25∘c
Maximum power Pmax 60W
Voltage at Pmax or optimal voltage
(Vopt)

17.1 V

Current at Pmax or Optimal current
(Iopt)

5.5 A

Short‐circuit current Isc 3.8 A
Open circuit voltage Vco 21.1 V
Number of cells in series 36
Forbidden band energy 1.12 ev
Temperature coefϐicient Isc 65 mA/∘c
Temperature coefϐicient Vco −80 mV/∘c
Power temperature coefϐicient (0.5+−0.05)%/∘C
Saturation current Isat 20 nA

6.2. Modeling a Module

An elementary cell does not generate enough volt‐
age: between 0.5 and 1.5, according to technology.
It usually takes several cells in series to generate a
usable voltage.

The module voltage is therefore: Vm = Ns ∗ V
Vm: the voltage of the module.
Ns: number of cells in series per module

6.3. Model of a Photovoltaic Chain

For modules mounted in series and in parallel one
can write:
Ichaine = I ∗ Np
Vchaine = Vm ∗ Ns−module
With: Ichaine: the current delivered by a module chain
Photovoltaic (A).
Np: number of modules in parallel.
Ns_module: number of modules in series.
Vchaine: the voltage at the terminal of the chain (V).

Figure 7. PV generator scheme in MATLAB‐SIMULINK
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Figure 8. Characteristic I‐V of the PV cell

6.4. Model of PV Solar

The photovoltaic generator scheme in the Matlab‐
Simulink environment represented by:

The simulation results of the photovoltaic genera‐
tor are represented by Figures 7 through 14. These ϐig‐
ures represent the current‐voltage and power‐voltage
characteristics for different illuminations.

Figures 7 and 8 show the inϐluence of illumination
on current‐voltage and power‐voltage characteristics.
At a constant temperature, it is found that the current
undergoes a signiϐicant variation, but against the volt‐
age varies slightly. Because the short circuit current is
a linear function of illumination while the open circuit
voltage is a logarithmic function.
6.5. Current‐Voltage Characteristic

Figure 8 shows the inϐluence of illumination on the
characteristic I = f(V). At a constant temperature, it
is found that the current undergoes a signiϐicant vari‐
ation, but against the voltage varies slightly. Because
the short‐circuit current is a linear function of illumi‐
nation while the open circuit voltage is a logarithmic
function.
6.6. Power‐Voltage Characteristic

Figure 9 shows the curve I = f(V) of a typical pho‐
tovoltaic module under constant conditions of irra‐
diation and temperature. The standard irradiation
adopted for measuring the response of photovoltaic
modules is a radiant intensity of 1000 W/m2 and a
temperature of 250∘C.

It is difϐicult to give a source of current or voltage
to a photovoltaic module over the full extent of the
current‐voltage characteristic. Therefore, the photo‐
voltaicmodule is considered as a source of powerwith
a point Pm. It is important to note that some solar
regulators realize an adaptation of impedance so that
at every moment one is close to this point P where the
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Figure 9. P‐V characteristic of the PV cell

Figure 10. Current‐voltage characteristic for different
temperature value 𝐼 = 𝑓(𝑉); 𝐸 = 1000W/m2

power is found to be maximal. It is therefore interest‐
ing toplace oneself on this point to get themost energy
and thus make the most of the peak power installed.

6.7. Influence of Temperature

The inϐluence of temperature on the characteristic
I = f(V). It is essential to understand the effect of
changing the temperature of a solar cell on the charac‐
teristic 𝐼 = 𝑓(𝑉) in Figure 9. The current depends on
the temperature since the current increases slightly as
the temperature increases, but the temperature has a
negative inϐluence on the open circuit voltage. When
the temperature increases the open circuit voltage
decreases. Therefore, the maximum power of the gen‐
erator is decreased.

Figures 10 and 11 illustrate the variation of the
power delivered by the generator as a function of the
voltage for different values of the temperature, which
allows us to deduce the inϐluence of the temperature
on the characteristic P= fct(V).

6.8. Influence of Solar Radiation

Figure 12 illustrates the variation of the power
delivered by the generator as a function of the voltage
for different values of the temperature, which allows
us to deduce the inϐluence of the temperature on the
characteristic P= fct(V).

Figures 13 and 14 represent the characteristic I‐
V of a module reϐlecting the inϐluence of different

Figure 11. Characteristic power‐voltage for different
values of the temperature 𝑃 = 𝑓(𝑉); 𝐸 = 1000W/m2
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Figure 12. Characteristic power‐current for different
values of the temperature 𝑃 = 𝑓(𝑉); 𝐸 = 1000W/m2
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Figure 13. Current‐voltage characteristic for different
radiation values 𝐼 = 𝑓(𝑉); 𝑇 = 25 CIn

radiation at a ϐixed temperature: the current of the
module is proportional to the radiation, while the
open circuit voltage changes slightly with the radia‐
tion. The optimum power is also proportional to the
radiation.

In Figure 14, we represent the variation of the
power delivered by the generator as a function of the
voltage for different illumination values, which allows
us to deduce the inϐluence of the illumination on the
characteristic P.

This paper provided an analysis of forecasting the
solar radiation using artiϐicial intelligence techniques
in Morocco.

As seen in Table 4, a number of machine learning
and deep learning methods have been used. The most
widely usedmethods aremachine learning algorithms
and, in particular, ANNs. The methods used vari‐
ous model precision performance for different data
sources; we can detect the best performance with a
decision coefϐicient R2 of 99.12%, using data obtained
from a local laboratory in the Marrakech region.
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Figure 14. Power‐voltage characteristic for different
radiation values 𝑃 = 𝑓(𝑉); 𝑇 = 25 C

We also note the rise in the use of deep learning
approaches in recent years, as can be seen in Table 4,
in particular Deep Neural Networks and Long Short‐
Term Memory. As well as the ANN case, the best
performance had a decision coefϐicient R2 of 99.38%
using the METEONORM datasets for the Elkelaa des
Sraghna region.

From our study, we have seen different choices of
geographical, meteorological, and solar input param‐
eters. This choice is themost critical consideration for
the reliable and accurate estimation of solar radiation.
Unless there are few studies working on this prob‐
lem, we may take, for example, the cross‐correlation
function CCF as used by Ettaybi et al. [35], to calcu‐
late the correlation between the clear‐sky index and
each meteorological parameter to determine which
one will be used to train the model. In the other
hand, Benamrou et al. [23], use the Recursive Fea‐
ture Elimination (RFE) approach with XGBoost algo‐
rithm to ϐind the best features to be used for model
learning.

7. Conclusion
Renewable energy has been highlighted as a cru‐

cial strategic source for green development in the
world.Moroccohas an immense solar energy capacity;
the Kingdom is implementing a number of policies
and initiatives to meet the optimistic goal of 2030 by
achieving 52% of overall electricity generation using
solar. In conclusion, efforts towards greener energy
will always be ongoing as technology doesn’t stop
advancing and evolving. Since the agricultural sector is
one of themost important contributors to our national
GDP, it is necessary to ϐind new ways to decrease
costs and increase efϐiciency, all thewhilemaking sure
to maintain eco‐friendly processes and make well‐
informed decisions.

In order to encourage potential studies in this area,
our paper provides an updated summary of predict‐
ing solar radiation papers in Morocco. Indeed, due to
advances in the AI methods, the efϐiciency and avail‐
ability of daily data, and the development of actual
solar energy projects, the example of Noor projects
as we’ve seen in the introduction involve more and
more studies and applications for solar radiation and
for energy systems in general.

AUTHORS
Amal Zouhri∗ – Sidi Mohamed Ben Abdellah Univer‐
sity, Faculty of Sciences, Department of Physics, Fez,
Morocco, e‐mail: amal.zouhri@usmba.ac.ma.
Mostafa El Mallahi – Sidi Mohamed Ben Abdellah
University, High Normal School, Fez, Morocco, e‐mail:
elmallahi@usmba.ac.ma.
∗Corresponding author

References
[1] M. Azerouia, A. El Makrini, H. El Moussaoui, and

H. El Markhi. “Renewable Energy Potential and
Available Capacity for Wind and Solar Power in
Morocco Towards 2030,” Journal of Engineering
Science and Technology Review, 2018.

[2] Y. A. Al‐Sbou, and K. M. Alawasa. “Nonlinear
autoregressive recurrent neural network model
for solar radiation prediction,” Int. J. Appl. Eng.
Res., vol. 12, 2017, 4518–4527.

[3] E. F. Alsina, M. Bortolini, M. Gamberi, and A.
Regattieri. “Artiϐicial neural network optimisa‐
tion for monthly average daily global solar radi‐
ation prediction,” Energy Convers. Manag. 120,
2016, 320–329.

[4] A. Angstrom. “Solar and terrestrial radiation.
Report to the international commission for solar
research on actinometric investigations of solar
and atmospheric radiation,”Q. J. R. Meteorol. Soc.,
50, 1924, 121–126.

[5] J. Annandale, N. Jovanovic, N. Benade, and
R. Allen. “Software for missing data error analy‐
sis of Penman‐Monteith reference evapotranspi‐
ration,” Irrig. Sci., 21, 2002, 57–67.

[6] V. Z. Antonopoulos, D. M. Papamichail, V. G.
Aschonitis, and A. V. Antonopoulos. “Solar radia‐
tion estimation methods using ANN and empir‐
ical models,” Comput. Electron. Agric., vol. 160,
2019, 160–167.

[7] K. Basaran, A. Özçift, and D. Kılınç. “A new
approach for prediction of solar radiation with
using ensemble learning algorithm,” Arab. J. Sci.
Eng., vol. 44, 2019, 7159–7171.

[8] M. Behrang, E. Assareh, A. Ghanbarzadeh,
A. Noghrehabadi. “The potential of different
artiϐicial neural network (ANN) techniques in
daily global solar radiation modeling based on
meteorological data,” Sol. Energ., vol. 84, 2010,
1468–1480.

[9] M. Benghanem, A. Mellit, S. Alamri. “ANN‐based
modelling and estimation of daily global solar
radiation data: a case study,” Energy Convers.
Manag., vol. 50, 2009, 1644–1655.

[10] F. Besharat, A. A. Dehghan, A. R. Faghih. “Empiri‐
cal models for estimating global solar radiation:
a review and case study,” Renew. Sust. Energ. Rev.,
vol. 21, 2013, 798–821.

82



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

[11] Z. Boussaada, O. Curea, A. Remaci, H. Camblong,
and N. Mrabet Bellaaj. “A nonlinear autoregres‐
sive exogenous (NARX) neural network model
for the prediction of the daily direct solar radi‐
ation,” Energies, vol. 11, 2018, 620.

[12] L. Breiman. “Random forests,” Mach. Learn.,
vol. 45, 2001, 5–32.

[13] L. Breiman. “Bagging predictors,” Mach. Learn.,
vol. 24, 1996, 123–140.

[14] M. V. C. Calça, M. R. Raniero, D. M. Z. Fernando,
S. A. Rodrigues, andA.Dal Pai. “Outliers detection
in a quality control procedure formeasurements
of solar radiation,” IEEE Lat. Am. Trans., vol. 17,
2019, 1815–1822.

[15] J. Chen, G. Li. “Estimation of monthly average
daily solar radiation frommeasuredmeteorolog‐
ical data in Yangtze River Basin in China,” Int. J.
Climatol., 33, 2013, 487–498.

[16] J. L. Chen, L. He, H. Yang, M. Ma, Q. Chen, S. J. Wu,
and Z. Xiao. “Empirical models for estimating
monthly global solar radiation: a most compre‐
hensive review and comparative case study in
China,” Renew. Sust. Energ. Rev., vol. 108, 2019,
91–111.

[17] R. Chen, E. Kang, S. Lu, J. Yang, X. Ji, Z. Zhang,
and J. Zhang. “New methods to estimate global
radiationbasedonmeteorological data in China,”
Energ. Convers. Manag., vol. 47, 2006, 2991–
2998.

[18] M. Despotovic, V. Nedic, D. Despotovic, S. Cve‐
tanovic. “Evaluation of empirical models for pre‐
dicting monthly mean horizontal diffuse solar
radiation,” Renew. Sust. Energ. Rev., vol. 56, 2016,
246–260.

[19] D. Elizondo, G. Hoogenboom, and R. McClendon.
“Development of a neural networkmodel to pre‐
dict daily solar radiation,” Agric. For. Meteorol.,
vol. 71, 1994, 115–132.

[20] P. N. Jyothy, and M. R. Sindhu. “An Artiϐicial Neu‐
ral Network based MPPT Algorithm For Solar
PV System,” 2018 4th International Conference on
Electrical Energy Systems (ICEES), Chennai, India,
2018, pp. 375–380, doi: 10.1109/ICEES.2018.
8443277.

[21] J. Fan, L. Wu, F. Zhang, H. Cai, W. Zeng, X. Wang,
and H. Zou. “Empirical and machine learning
models for predicting daily global solar radiation
from sunshine duration: a review and case study
in China,” Renew. Sust. Energ. Rev., vol. 100, 2019,
186–212.

[22] Y. Feng, N. Cui, Q. Zhang, L. Zhao, and D. Gong.
“Comparison of artiϐicial intelligence and empir‐
ical models for estimation of daily diffuse solar
radiation in North China Plain,” Int. J. Hydrog.
Energ., vol. 42, 2017, 14418–14428.

[23] B. Benamrou, M. Ouardouz, I. Allaouzi, and
M. B. Ahmed. “A Proposed Model to Forecast

Hourly Global Solar Irradiation Based on Satel‐
lite Derived Data, Deep Learning and Machine
Learning Approaches” Journal of Ecological Engi-
neering, vol. 21, no. 4, 2020, 26–38.

[24] W. Bendali, Y. Mourad, S. Ikram, and B. Moha‐
mmed. “Deep Learning Using Genetic Algorithm
Optimization for Short Term Solar Irradiance
Forecasting,” Conference: International Confer‐
ence on Intelligent Computing in Data Sciences
(ICDS) At: Fes, December 2020.

[25] Y. Stitou. “Case Study: Masen NOOR Ouarzazate
Solar Complex,” The Center for Mediterranean
Integration, 2017.

[26] W. Bendali, Y. Mourad, S. Ikram, and B. Moha‐
mmed. “Deep Learning Using Genetic Algorithm
Optimization for Short Term Solar Irradiance
Forecasting,” Conference: International Confer-
ence on Intelligent Computing in Data Sciences
(ICDS) At: Fes December 2020.

[27] A. Aghmadi, S. El Hani, H. Mediouni, N. Naseri,
and F. El Issaoui. “Hybrid Solar Forecasting
Method Based on Empirical Mode Decompo‐
sition and Back Propagation Neural Network,”
E3S Web of Conferences, 2020 2nd Interna-
tional Conference on Power, Energy and Electrical
Engineering (PEEE 2020), vol. 231, no. 02001,
2021.

[28] Y. Stitou. “Case Study: Masen NOOR Ouarzazate
Solar Complex,” The Center for Mediterranean
Integration, 2017.

[29] M. Azeroual, A. El Makrini, H. El Moussaoui, and
H. El Markhi. “Renewable Energy Potential and
Available Capacity for Wind and Solar Power in
Morocco Towards 2030,” Journal of Engineering
Science and Technology Review, vol. 11, no. 1,
2018, 189–198.

[30] Z. Bounoua, L. O. Chahidi, and A. Mechaqrane.
“Estimation of daily global solar radiation using
empirical and machine‐learning methods: A
case study of ϐive Moroccan locations,” Sustain-
able Materials and Technologies, vol. 28, 2021,
e00261.

[31] O. El Alani, H. Ghennioui, and A. Ghennioui.
“Short term solar irradiance forecasting using
artiϐicial neural network for a semi‐arid climate
in Morocco,” 2019 International Conference on
Wireless Networks and Mobile Communications
(WINCOM), 2019.

[32] O. Nait Mensour, S. Bouaddi, B. Abnay, B. Hlimi,
and A. Ihlal. “Mapping and estimation ofmonthly
global solar irradiation in different zones in
Souss‐Massa area, Morocco, using artiϐicial neu‐
ral networks,” International Journal of Photoen-
ergy, vol. 2017, no. 8547437, 2017.

[33] M. A. Jallal, A. El Yassini, S. Chabaa, A. Zeroual,
and S. Ibnyaich. “AI data driven approach‐
based endogenous inputs for global solar
radiation forecasting,” Ingénierie des systems

83



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 2 2023

d’Information, vol. 25, no. 1, 2020, 27–34. doi:
10.18280/isi.250104.

[34] S. Alouini, and S. Calcagno. “Les réseaux de neu‐
rones récurrents: des RNN simples aux LSTM,”
OCTO BLOG, 2019.

[35] H. Ettaybi, and K. El Himdi. “Artiϐicial neural
networks for forecasting the 24 hours ahead
of global solar irradiance,” AIP Conference Pro-
ceedings, vol. 2056, no. 1, 2018, 020010. doi:
10.1063/1.5084983.

84


	Introduction
	Solar Pumping in the Agricultural Sector
	Artificial Intelligence Models
	DataSET
	Model Accuracy Evaluation
	Random Forest (RF)
	Back Propagation Neural Network (BPNN)
	Deep Neural Network (DNN)
	Long Short-Term Memory (LSTM)

	Modeling a Photovoltaic Generator
	Modeling a Cell
	Modeling a Module
	Model of a Photovoltaic Chain
	Model of PV Solar
	Current-Voltage Characteristic
	Power-Voltage Characteristic
	Influence of Temperature
	Influence of Solar Radiation

	Conclusion

