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Abstract:
In this paper, a nonlinear balancing cube system is con-
sidered, the concept for which is based on an inverted 
pendulum. The main purpose of this work was the mod-
elling and construction of a balancing cube with the 
synthesis of the control system. The control objectives in-
cluded swing-up and stabilization of the cube on its ver-
tex at an unstable equilibrium. Execution of the intended 
purpose required, first, deriving a cognitive mathemati-
cal model. It was based on the Lagrange method. Next, 
a mathematical model for control purposes was derived. 
The project of the physical model of the balancing cube 
was presented. A stabilization system based on a linear 
quadratic regulator (LQR) was developed. Moreover,  
a swing-up mechanism was used to bring the cube close 
to the upper equilibrium point. The algorithm switching 
condition was important to enable the correct function-
ing of the system. The developed control system was 
verified in the Matlab environment. Finally, verifying ex-
periments and comparisons among models (mathemati-
cal and physical) were performed.

Keywords: balancing cube, control systems, linear qua-
dratic regulator, mathematical model, physical model

1. Introduction
A balancing cube is based on a system popular among 
control systems enthusiasts: the inverted pendulum. 
Construction-wise, the balancing cube resembles a 
three-dimensional pendulum. In this case, the vertex 
of the cube is the illusory pendulum arm. Controlling 
the movement of the cube is achieved by acting with 
an external force on the cube’s faces and therefore 
moving it in a controllable way. The aim of the control 
system is to stabilize the cube on the upper equilib-
rium point. From a control point of view, it is a dynam-
ic, non-linear system and has two equilibrium points: 
stable and unstable. A system like this is a good reflec-
tion of real-life systems such as: balancing robots [1], 
[2], [3], Segway vehicles [4] or rockets [5].

Balancing cube systems have a very long history 
and have been widely applied to test and as a bench-
mark for novel control algorithms. Different appro-
aches for controlling the movement of the cube are 
analyzed. In [6], the authors are pro-posing moving 

weights as control elements. The weights are atta-
ched to every face of the cube. The change in position 
of the weight causes the shift in the centre of mass 
of the construction and controllable movement of the 
cube. Other described control elements are flywheels 
which can be used in different ways. The velocity of 
the flywheels can be controlled [7], [8], which affects 
production of a specified amount of torque acting on 
the frame. This approach uses the principle of conse-
rvation of angular momentum. The second means of 
control is using the principle of conservation of ener-
gy and actively braking the flywheels to transfer the 
gathered kinetic energy from the flywheel to the fra-
me [9]. This approach is used in this paper. 

Depending on the selected way of controlling the 
movement of the cube, there are different approaches 
to modelling the balancing system. The system can be 
modelled as a three-dimensional system described 
with positions in X, Y, and Z axes and respective an-
gles: pitch, yaw, and roll [6], [7], [8]. The other way 
is taking into account that when using the principle 
of conservation of energy and modelling with Euler 
Lagrange equations, the movement of one face of the 
cube does not affect the other faces. This approach 
allows for modelling a simpler system of controlling 
only one of the faces with the flywheel and using an 
identical system for controlling every axis indepen-
dently [9]. This approach is applied in the paper.

The remainder of this paper is organized as fol-
lows. The derivation and implementation of the 
mathematical model of the balancing cube are de-
scribed in Section 2. The details of constructing the 
physical model of the cube are presented in Section 
3. The design and implementation of the control 
system are illustrated in Section 4. In Section 5, the 
conducted verification tests and comparison betwe-
en models are shown. The last section presents the 
conclusions.

2. Mathematical Model of a Balancing Cube 
The balancing cube consists of six faces. Three of 
them are equipped with drive systems with flywheels. 
These faces are used for controlling the movement of 
the cube in three axes. Each face of the cube with the 
flywheel is a separate control system. The scheme 
of the approach to modelling is presented in Figs. 1 
and 1b. Symbols used in the paper are presented in 
Table 1.
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where ⋅
∂

∂ k

R
q  models dissipative forces and τk  models 

external torques applied to the system.

The potential energy of the system can be repre-
sented as:

 θ= ⋅ ⋅ ⋅totV m g l cos  (3)

where = +tot wm m m .

Whereas kinetic energy is defined as the sum of ki-
netic energies of flywheel and face frame:

 
θ θ θ
⋅ ⋅ 

= ⋅ ⋅ + ⋅ ⋅ +  


2
21 1

2 2frame w wT I I  (4)

Thus, using (3) and (4), the Lagrangian of the system 
can be defined as:

θ θ θ θ
⋅⋅⋅  

= ⋅ ⋅ + ⋅ ⋅ + − ⋅ ⋅ ⋅  

2
21 1

2 2frame w w totL I I m g l cos  (5)

Solution of the defined Lagrangian is found using 
Euler-Lagrange equations:

 ( ) θ θ
θ
∂  = + ⋅ + ⋅  ∂

¨¨
frame w w w

d L I I I
dt

 (6)

 

 

θ θ
θ
⋅

 
∂  = ⋅ + ⋅

 ∂ 

¨¨
w w w

w

d L I I
dt

 (7)

 
θ

θ
∂

= ⋅ ⋅ ⋅
∂ tot

L m g l sin  (8)

 θ
∂

=
∂

0
w

L  (9)

Dissipative forces are defined as the sum of kinetic 
energies produced by the friction of face and flywheel 
movement:

 
θ θ

⋅⋅
= ⋅ ⋅ + ⋅ ⋅2 21 1

2 2tc tw wR F F  (10)

 
θ

θ
⋅∂

= ⋅
∂ tc

R F  (11)

 

θ
θ

⋅

⋅

∂
= ⋅

∂
tw w

w

R F

 

(12)

Then, adding external torque from the flywheel 
drive and disturbance torque on cube face, Euler- 
Lagrange equations are derived:

 

( ) θ θ

θ θ
⋅

= + ⋅ + ⋅

− ⋅ ⋅ ⋅ + ⋅

¨ ¨
z frame w w w

tot tc

M I I I

m g l sin F
 (13)

 

 θ θ θ
⋅⋅ ⋅⋅ ⋅

= ⋅ + ⋅ + ⋅motor w w w tw wT I I F  (14)

Fig. 1-(a). Scheme of the balancing cube – representation 
of cubeè  as angular position of the cube

Fig. 1-(b). Scheme of the balancing cube – representation 
of wheelθ  as angular position of the flywheel

Tab. 1. Symbols of variables and parameters.

No. Description Symbol Unit

1. Mass of the face m Kg

2. Mass of the flywheel mw Kg

3. Distance between vertex and 
center of mass

l m

4. Gravitational acceleration g −⋅ 2m s
5. Angular deviation of diagonal 

of the face from the upper 
equilibrium point

θ( )t rad

6. Angular deviation of the 
flywheel from the diagonal of 

the face

θ ( )w t rad

7. Frictional force of the cube Ftc 2 1kg m s −⋅ ⋅

8. Frictional force of the 
flywheel

Ftw 2 1kg m s −⋅ ⋅

9. Moment of inertia of the face Iframe ⋅ 2kg m

10. Moment of inertia of the 
flywheel

Iw ⋅ 2kg m

2.1. Model Derivation
The model was derived using the Euler-Lagrange 
method [10] with the following generalized coordi-
nates: = θ = θ1 2,  wq q . Lagrangian L is defined as the 
difference of kinetic ( )lT q  and potential energy 

( )iV q  of the system in defined coordinates:

 
( )⋅ 

=   
 – l iL T q V q  (1)

To solve the Lagrangian, the Euler-Lagrange equation 
is defined, from which the equations of motion are 
derived.

 

τ
⋅ ⋅

 
∂ ∂ ∂  − + =

  ∂
∂ ∂ 

k
k

k k

d L L R
dt qq q

 (2)
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Transferring the highest derivatives of angular 
positions on one side of the equations gives implicit 
equations of motion, describing dynamics of the mo-
delled system:

( ) θ θ θ

θ

θ θ θ
⋅


+ ⋅ = − ⋅ + ⋅ ⋅ ⋅


 + − ⋅

 = − ⋅ −⋅ + ⋅



¨ ¨

¨ ¨

frame w w w tot

z tc

w w motor tw ww

I I I m g l sin

M F

I I T F

 (15)

2.2. Implementation of Non-Linear Model
The model of the balancing cube is implemented in 
the Matlab environment, thus the model has to be  
explicit to avoid algebraic loops. After transformation, 
the explicit equations of motion are obtained:

( ) ( )

θ θ

θ
θ

θ

θ θ
θ

⋅

⋅

⋅


⋅ ⋅ ⋅ − + ⋅


− ⋅ + =




⋅ + − ⋅ ⋅ +



− ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅
= ⋅

¨

¨

tot motor tw w

tc z

frame

motor frame w tw w frame w

tot w tc w z w
w

frame w

m g l sin T F

F M
I

T I I F I I

m g l sin I F I M I
I I

 

(16)

The model (16) is implemented in Matlab with  
numerical values of the parameters (see Table 2) 
to conduct a series of experiments and simulations  
leading to the synthesis of the control system.

Tab. 2. Values of the parameters used in simulation

No. Parameter Value Unit

1.
wm 0.2 kg

2. m 0.4 kg

3. l 0.106 m

4. g 9.81 2m s −⋅

5.
frameI 0.57 · 10-3

2kg m⋅

6.
wI

3.34 · 10-3
2kg m⋅

7.
tcF 0.15 · 10-3

2 1kg m s −⋅ ⋅

8.
twF 0.5 · 10-3

2 1kg m s −⋅ ⋅

A series of experiments were conducted to prove 
that the mathematical model of the cube acts similar-
ly to the actual physical system.

Experiment 1. Impulse response
The first experiment checks the behavior of the model 
when the face of the cube resting in the unstable  

equilibrium point of the system (θ = 0) is disturbed. 
The expected result would be exiting from the unsta-
ble point and after the expiring of transitional states, 
resting in the stable equilibrium point which is πθ = ±  
and θ = 0. The results prove that the behavior of the 
mathematical model is similar to what is expected 
from the physical model (see Fig 2).

Fig. 2. Results of simulation of disturbing the cube’s 
frame resting at an unstable point of balance with the 
mathematical model

Experiment 2. Sinusoidal input
The second experiment checks if the input to the  
system is transferred linearly to the output. The base 
position of the face is in the lower equilibrium point  
( πθ = ). The result shows that the input is almost  
linearly transferred to the output of the system (see 
Fig. 3).

Fig. 3. Mathematical model response to a sinusoidal 
input.

2.3.  Derivation of the Linear Model for the 
Synthesis of Control System

The considered structure of the control system is LQR. 
To properly apply the structure, the linear space-state 
model of the system is needed. Hence, linearization 
of the non-linear model (16) is carried out. The non-
linear space-state model is derived from equations of 
motion and linearized around the unstable equilib-
rium point.

Considering state variables vector:

 
θ θ θ

⋅ ⋅ 
= =    

 
x 1 2 3, , , ,

T
T

wx x x  (17)
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Transfer matrix D:

 

∂ 
 ∂ 
 ∂

=  
∂ 

 ∂ 
∂ 

u

u

u

x

x

x

D

1

2

3

g
u
g
u
g
u

 (24)

Additionally, it is known that 
0

limsin 0
θ→

θ = , hence 

using the aforementioned equations and (21)-(24), 
space-state matrices are derived:

( )

 
 ⋅ ⋅ − 
 
 =
 − ⋅ + − ⋅ ⋅ 
  

A

0 1 0

tot tc tw

frame frame frame

tw frame wtc
tot

frame frame w
frame

m g l F F
I I I

F I IFm g l
I I II

 (25)

 

( )

 
 

− 
 

=  
 

⋅ + 
 

⋅ 

B

0

m

frame

m frame w

frame w

K
I

K I I

I I

 (26)

 

 
 

=  
 
 

C

1 0 0

0 1 0

0 0 1

 (27)

 

 
 

=  
 
 

D

0

0

0

 (28)

Using matrices (25)-(28), the linear state-space 
model can be described:

 

( ) ( )
( ) ( )

 = ⋅ + ⋅
 = ⋅ + ⋅

x A x t B u t
y C x t D u t

 (29)

3. Physical Model of a Balancing Cube
The considered system is a cube with a side length 
of 15cm. Three faces of the cube are equipped with 
drive systems and flywheels which allow for control-
ling the movement of the cube in all axes (see Fig. 4). 
Faces and flywheels are cut from an aluminum plate 
with 2mm thickness. Elements linking the faces are 
printed on the 3D printer.

and using (16), state equations are derived:

 

( )
( )

⋅

⋅

⋅


=

 ⋅ ⋅ ⋅ − + ⋅


− ⋅ + =

 ⋅ + − ⋅ ⋅


+ − ⋅ ⋅ ⋅

 ⋅ + ⋅ ⋅ − ⋅

= ⋅

1 2

1 3

2
2

3

1

2
3

tot motor tw

tc z

frame

motor frame w tw

frame w tot

w tc w z w

frame w

x x
m g l sinx T F x

F x M
x

I

T I I F x

I I m g l sinx

I F x I M I
x

I I

 (18)

along with controlled outputs equations:

 

=
 =
 =

1 1

2 2

3 3

y x
y x
y x

 

(19)

Using (18) and (19), the non-linear space-state 
model can be described:

 

( ) ( )( )
( )( )

 =


=

 ,x f x t u t

y g x t
 (20)

Linearization is carried out around unstable  equ-
ilibrium point 1 2 3[ , , ] [0,0,0]T T

u u u ux x x x= = . Space-

state matrices for the considered system are specified 
as [11]:

State matrix A:

 

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂  

A

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

u u u

u u u

u u u

x x x

x x x

x x x

f f f
x x x
f f f
x x x
f f f
x x x

 (21)

Control matrix B:

 

∂ 
 ∂ 
∂ =  ∂ 
∂ 
 ∂ 

u

u

u

x

x

x

B

1

2

3

f
u
f
u
f
u

 (22)

Output matrix C:

 

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂  

u u u

u u u

u u u

x x x

x x x

x x x

C

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

g g g
x x x
g g g
x x x
g g g
x x x

 (23)
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Fig. 6. Connection project in custom PCB board

4. Control System of a Balancing Cube
Controlling the movement of a balancing cube is 
achieved with two steps: getting the frame close to 
the upper equilibrium point (swing-up) and inter-
cepting it with an LQR to control the frame around 
this point.

4.1. Swing-up
One of the ways to swing the frame up is to increase 
the total energy of the system to the point where it 
would equalize the potential energy of the system 
resting in the upper equilibrium. It can be achieved by 
imposing an external torque with BLDC drive on the 
flywheel, thus increasing the kinetic energy of the sys-
tem. Then, the rapid breaking of the flywheel trans-
fers the kinetic energy of the flywheel to the frame of 
the cube which results in the cube “jumping up” close 
to the upper equilibrium point.

The total energy of the cube is described as: 

 = +E T V  (30)

where: Et – total energy of the system, T – kinetic  
energy, V – potential energy.

In resting condition, it is assumed that total 
energy is Eref = 0. In upper equilibrium point, total 
energy is:

 = ⋅ ⋅∆g totE m g h (31)

where: h∆  – change of mass center height of the sys-
tem (see Fig. 7).

Hence, the energy needed for swinging up the 
cube equals:

 = − = ⋅ ⋅∆g ref totE E E m g h (32)

where: mtot – total mass of the cube.

Fig. 7. Change of height of the centre of mass of the 
cube

Fig. 4. Visualization of the physical model of the cube

As actuators, three-phase brushless DC motors 
(BLDC) were selected due to their high precision 
in controlling the angular velocity and low motion 
resistance. The motors were equipped with Hall sen-
sors which improved control of the angular velocity 
and allowed direct measurement of angular velocity.

For controlling the motion of the cube, the measure-
ments of the angular velocity and position of the cube in 
three axes as well as the angular velocity of the flywhe-
els are needed. The angular velocity of the flywheels is 
measured with the aforementioned Hall sensors. The 
system measures the value of the magnetic field going 
through each sensor; by measuring the time between 
extremes, it calculates the angular velocity of the drive. 
Angular velocity and position of the cube were measu-
red with the MPU6050 module. It is a system equipped 
with an accelerometer and a gyroscope that can calcu-
late the needed values with great precision.

The chosen control device was the STM32 microcon-
troller. For the implementation of the main control algo-
rithm, the microcontroller of the STM32F4xx family was 
selected due to its high computing speed and 100MHz 
clock speed. The microcontroller was used for gathe-
ring data from the MPU module and calculating control 
variables for each flywheel. After computing the measu-
rement data, the microcontroller outputs set velocities 
for the flywheels and transfer them to the system re-
sponsible for controlling the drives. Each drive is con-
trolled by a system consisting of an STM32F103C8T6 
microcontroller and a DRV8313 driver controller which 
supplies each phase of the drive. For linking all needed 
elements to control the drives it was decided to create 
a custom PCB board (see Figs. 5-6), the prototype for 
which was designed in the Eagle environment.

Fig. 5. Project of PCB board
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The gain matrix K was calculated:

[ ]= = − − −  K 1 2 3 112.2122 8.0649 0.3182K K K

 

(37)

The simulation with matrices (35), (36) was 
carried out with the angular position of the cube at 
0.25 rad (around 14°) from the upper equilibrium. 
Results show that the linear and non-linear systems 
behave almost identically (see Fig. 9). The designed 
control system achieves the aim which is to keep the 
cube in the upper equilibrium point with good con-
trol quality.

Fig. 9. Results of the LQR control for the mathematical 
model

4.3. Switching Between Algorithms
To obtain a complete control system of the cube, both 
the swing-up algorithm and LQR control need to be 
used together. As the switching condition, after a  
series of simulations, the angular position of the face 
at 0.2 rad (around 11°) was selected. 

The switching algorithm was implemented as a  
sequential algorithm (see Figs. 10, 11). First, the 
swing-up is executed and then, if the conditions are 
met, the control signal switches to LQR stabilizing in 
upper equilibrium.

Fig. 10. Block Chart used for the switching algorithm

The block has 3 inputs: theta – the angular position 
of the face, swing – control signal from the swing-up 
regulator and LQR – control signal from the stabiliza-
tion regulator. The block switches the active step of 
the sequence based on the angular position of the  
face – indicated by the conditions above the arrows 
between steps (see Fig. 11). The starting step is 
Swing_up which is indicated by the arrow with the 

The flywheel has to be accelerated to a velocity 
that allows the system to gather the needed value 
of kinetic energy. Minimum angular velocity which 
meets this condition can be calculated by comparing 
the energy needed for swing-up with the energy of 
the flywheel:

 
θ
⋅

⋅ ⋅∆ = ⋅ ⋅ 21
2tot w wm g h I  (33)

where: Iw – moment of inertia of the flywheel, θ
⋅

w –  
angular velocity of the flywheel.

After transformations, the minimal angular  
velocity is derived:

 
θ
⋅ ⋅ ⋅ ⋅∆
=

2 tot
w

w

m g h
I  (34)

Simulation in the Matlab environment was carried 
out where the flywheel is accelerated for 5 seconds 
and then rapidly brakes transferring gathered kine-
tic energy to the frame of the cube. The result shows 
that the aim of swinging-up action was achieved by 
bringing the frame near the upper equilibrium point  
(see Fig. 8).

Fig. 8. Results of the swing-up experiment for the 
mathematical model

4.2. Stabilization in the Upper Equilibrium Point
The selected structure of the control system for  
stabilization is LQR. This structure is linear, hence 
during the synthesis, the linear state-space model 
(25)-(29) was applied. LQR structure and its princi-
ples are widely and well described, e.g., in [11], [12], 
[13], so they are omitted in this paper. 

Weight matrices Q and R were chosen iteratively 
starting at the lowest weight and by observing the 
system response in a series of simulations (see Sec-
tion 4.3). Finally, the following weight matrices were 
chosen:

 

 
 =  
  

Q
100 0 0

0 1 0
0 0 10

 (35)

 =R 10 (36)
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Fig. 14. Configuration of peripheries in STM32F103

4.4.1. Measurements
The implementation of the control system in a physi-
cal model can be divided into a few steps. The first 
step is measurement handling. The MCU6050 mod-
ule communicates with the microcontroller using I2C 
protocol as a slave device. This is a synchronous pro-
tocol with one data line. The communication is moni-
tored by the microcontroller which acts as a master 
device. The process is based on reading and writing 
the re-quired registers of the MPU module. The pro-
tocol clock frequency was set to 400kHz due to the  
necessity of handling a high number of measure-
ments. The MPU module was configured as well. Tem-
perature measurement was disabled for speeding up 
the module. The clock speed was set to 1kHz. The op-
erating range was set to a minimum for achieving high 
precision of measurement. After the configuration 
of both I2C protocol and MPU module, the required 
measurements can be read from suitable registers by 
the microcontroller. The angular velocity in each axis 
is measured directly and the angular position is calcu-
lated based on the velocity and sample rate.

For measuring the angular velocity of the flywhe-
els, Hall sensors, with which the drives are equipped, 
were used. Generally, the sensors are integrated with 
a comparator and transistor but the sensor used in the 
project was not. A custom PCB board (see Section 3)  
for proper connection was used. Measuring the an-
gular velocity is based on handling external interrup-
tions in the microcontroller from the Hall sensors. 
The algorithm counts the travelled impulses of the 
drive between the interruptions and with a constant 
sample rate calculates the angular velocity.

4.4.2. Control Loop
Implementation of the main control loop requires 
implementing the control law of the LQR in the mi-
crocontroller. New control variables for the drive are 
calculated in the loop with constant frequency using 
gain matrix K (see Subsection 4.2). The designed con-
trol system is identical for each of the three faces of 
the cube with the drive system.

4.4.3. Actuators
The control loop is implemented in the main mi-
crocontroller but for controlling the actuators, the  

dot. When one of the steps is active the block feeds 
the control signal swing or LQR to the output (control_
var) to close the feedback loop. 

Fig. 11. Implementation of the switching algorithm in 
the block

The simulation of the complete control system 
with the implemented switching algorithm (see  
Fig. 12) shows that it achieves the aim to swing up 
the face and stabilize it in upper equilibrium. To 
control the movement of the whole cube, the deri-
ved model should be implemented in the faces with 
flywheels.

Fig. 12. Results of the complete control system for the 
mathematical model

4.4. Implementation of the Control System
The main control algorithm was implemented in 
the STM32F411 microcontroller and drives control 
in STM32F103 microcontrollers. For the configura-
tion of the peripheries used in the project, the ST-
M32CubeMX environment was applied (see Figs. 
13-14).

Fig. 13. Configuration of peripheries in STM32F411
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Fig. 17. Stabilization of the whole cube for the physical 
model

5.2.  Comparison Between Physical and 
Mathematical Models

Control results of the tests on the physical model were 
compared to simulations with similar conditions (see 
Figs. 18, 19). The comparison shows that both models’ 
behavior is alike. In the simulated model, the settling 
time is shorter due to achieving higher angular veloci-
ties. Other discrepancies are the result of inaccuracy 
of simulating the disturbance, slight differences in 
parameters, and difficulties in achieving the same ex-
perimental conditions for both models.

Fig. 18. Comparison of the mathematical and physical 
model – 1D

Fig. 19. Comparison of the mathematical and physical 
model – 3D

5.3.  Analysis of LQR Weights Influence on Control 
Quality

In the LQR structure, the weight matrices Q and R are 
selected manually. Each value in the diagonal of the 
matrix is a weight on the penalty function responsible 
for each state variable or control variable, so it is im-
portant to know the influence of each weight on the 

calculated values of the control variable are required to 
be transferred to the master driver microcontrollers. 
Universal Asynchronous Receiver and Transmitter 
(UART) protocol with half-duplex was used. Each  
motor controller is connected to its master microcon-
troller and has isolated communication. For config-
uring the connection, the speed of transfer, length of 
the word, stop and parity bit is required to be set. To 
calculate the control variable for the driver controller, 
the actual angular velocity of the flywheels is needed. 
The drivers are controlled with pulse-width modula-
tion (PWM) signals and it is based on enabling suit-
able phases of the motor with the required frequency 
to achieve a set angular velocity. Calculations are per-
formed in the master driver microcontroller.

5. Verification Tests
To prove the functionality of the physical model of the 
cube with the implemented control system, a series of 
tests was conducted. The measurements of relevant 
values were per-formed in the STMStudio environ-
ment (see Fig. 15).

Fig. 15. View of the STMStudio environment

5.1. Implementation of the Control System
The tests consist of stabilization of the cube on the 
edge (one flywheel used) and on the vertex (all fly-
wheels used). Results of the experiments show that 
the implemented control system is allowing the cube 
to stabilize in upper equilibrium and rejects small 
disturbances up to around 0.15 rad (around 8.5°)  
(see Figs. 16, 17).

Fig. 16. Stabilization of one face of the cube for the 
physical model
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of overshoot. Q11 has the greatest influence: incre-
asing its value causes a great extension of settling 
time as well as an increase in control variable value. 
Q33 is indirectly linked with the flywheel motor and 
when increased, the value of the control variable also  
increases rapidly. However, it causes the settling time 
to shorten. The weight R is linked to a penalty func-
tion on the usage of input resources, so increasing it 
results in a lower value of control variable but with a 
cost of longer settling time.

The control system designer, when he or she ob-
tains the knowledge of the influence of each weight,  
selects the values optimally based on the require-
ments and limitations of the system.

6. Conclusion
This paper presented the modelling and construc-
tion of a balancing cube robot using flywheels for 
controlling its movement and keeping balance in the 
upper equilibrium point. The aim of the designed 
control system was to get the cube close to the up-
per equilibrium and stabilizing it at this point. Then, 
a series of tests on both mathematical and physi-
cal model were conducted. The simulations have 
shown that the constructed model acts similarly to 
the mathematical one in the field of stabilizing the 
cube. Differences between the models are the result 
of inaccuracy of simulating the disturbance, slight 
differences in parameters and difficulties in achiev-
ing the same experimental conditions for both mod-
els. The selected control system structure was LQR 
and despite the non-linear system, the control sys-
tem achieves the requirement set for the system. 
The non-linearity of the system around the upper 
equilibrium was negligible and it is confirmed in the  
simulation.

Because of technical problems, the braking system 
of the cube was unfinished and hence not used in the 
project. It is a subject of future works on the system 
as well as improving the control system performance. 
The constructed cube can also be applied as a bench-
mark for researching non-linear control systems, e.g., 
fuzzy logic.
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