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Abstract:
This study proposes an integrated framework for effi‐
cient traffic object detection and classification by leverag‐
ing advanced deep‐learning techniques. The framework
beginswith the input of video surveillance, followed by an
image‐acquisition process to extract the relevant frames.
Subsequently, a Faster R‐CNN (ResNet‐152) architecture
was employed for precise object detection within the
extracted frames. The detected objects are then classified
using deep reinforcement learning, specifically trained
to identify distinct traffic entities, such as buses, cars,
trams, trolleybuses, and vans. The UA‐DETRAC dataset
served as the primary data source for training and eval‐
uation, ensuring the model’s adaptability to real‐world
traffic scenarios. Finally, the performance of the frame‐
work was assessed using keymetrics, including precision,
recall, and F1 score, providing insights into its effec‐
tiveness in accurately detecting and classifying traffic
objects. This integrated approach offers a promising solu‐
tion to enhance traffic surveillance systems and facilitate
improved traffic management and safety measures in
urban environments.

Keywords: classification, deep learning, vehicle detection
video surveillance, traffic estimation, efficient R‐CNN,
traffic detection, convolutional neural network

1. Introduction
In recent years, both industry and academia

have witnessed signiϐicant advancements in vehicle‐
detection technologies [1]. However, many state‐of‐
the‐art‐image identiϐication algorithms have strug‐
gled tomeet stringent standards for vehicle detection.
The primary challenges in automobile identiϐication
include substantial differences in object size, signiϐi‐
cant occlusions, and ϐluctuations in lighting conditions
[2–5].

Sensor‐based algorithms have been employed to
address certain surveillance tasks in urban trafϐic sys‐
tems, including vehicle counting, license plate iden‐
tiϐication, incident detection, driver facial emotion
identiϐication, and Internet of Things (IoT) source
location and identiϐication. Conversely, vision‐based
approaches offer the advantage of leveraging visual
patterns to distinguish target objects in amanner sim‐
ilar to human perception.

While radar‐sensor‐based methods may be lim‐
ited to relatively small areas, vision‐based systems
utilizing cameras can detect vehicles across vast
regions and provide additional information about
each detected vehicle simultaneously [6].

Consequently, researchers have extensively
explored various computer vision and machine
learning models to address a range of challenges in
intelligent transportation systems. Classic vehicle
detection algorithms, from early developments to
contemporary approaches, have often relied on
handcrafted features such as Haar‐like features
and histogram of oriented gradient (HOG) features.
Notably, the cascaded detector has emerged as
a pioneering real‐time detection system, while
methods such as Support Vector Machines (SVM) and
deformable part‐basedmodels (DPM) have addressed
issues such as heavy occlusion and signiϐicant
variations in object sizes [7–13].

To address challenges, such as light variance,
occlusion, and size variations, researchers have pro‐
posed innovative solutions. For instance, a strong
CNNmodel was developed for trafϐic light recognition,
and strategies for handling heavy occlusions caused
by ϐixed surveillance cameras were devised [14–16].
In addition, a scale‐aware Region Proposal Network
(RPN) has been introduced to effectively identify vehi‐
cles of various sizes effectively [17,18].

Among the various techniques explored, region‐
based convolutional neural networks (R‐CNNs) have
demonstrated promising performance in vehicle iden‐
tiϐication. The Faster R‐CNN (Resnet‐152), which inte‐
grates a Region Proposal Network (RPN), has shown
competitive performance in object recognition tasks.
Notably, recent works have reported impressive mean
average accuracy on benchmark datasets such as
KITTI and COCO, showcasing the effectiveness of
Faster R‐CNN (Resnet‐152) in vehicle detection [19–
22].

Despite its competitive performance, there
remains room for improvement in Faster R‐CNN
(Resnet‐152), particularly in addressing wide‐scale
variance in vehicle detection. Accurate classiϐication
of vehicles into distinct categories is crucial not
only for transportation management but also for
efϐicient damage detection in insurance solutions.
Therefore, there is a pressing need for advancements
in automatic damage assessment procedures to
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mitigate work accidents and ensure a comprehensive
vehicle assessment [23–25].

Currently, most cities worldwide have several
video surveillance systems [26–30]. They have grown
rapidly, and now they have heterogeneous cameras
with various resolutions [1]. Today, closed‐circuit tele‐
vision works all times a day and week to produce a
huge amount of data, mainly big and huge frames of
videos. The data visualization presented in Figure 1
offers a comprehensive view of the input from video
surveillance systems, enabling analysts to effectively
monitor, analyze, and interpret activities captured
within the monitored environment.

Faster R‐CNN, an abbreviation for “Region‐based
Convolutional Neural Network,” marks a signiϐicant
advancement in computer vision’s object detection
capabilities. It introduces a streamlined approach,
condensing object localization and classiϐication into
a single‐step process. This breakthrough simpliϐies
detection tasks, enabling a Faster R‐CNN to swiftly
analyze images and videos with exceptional accuracy.
Additionally, the evolution of this technology, exem‐
pliϐied by YOLOv8, continues to push the boundaries
between object detection and image segmentation.
YOLO’s real‐time performance distinguishes it as the
top choice for applications demanding both rapid and
precise object identiϐication.

The primary focus of this research is the detection
and classiϐication of trafϐic, which is a pivotal aspect of
urban trafϐic management systems. The objective is to
precisely categorize vehicleswithin deϐined regions in
every frame to accurately evaluate trafϐic density. This
critical information plays a key role in recognizing
peak trafϐic times and congested areas and contributes
signiϐicantly to urban planning efforts. Through this
endeavor, our aim is to construct an extensive toolkit
capable of offering nuanced analyses of trafϐic ϐlow
and trends, thereby bolstering trafϐic management
strategies and urban planning initiatives. Figure 2
shows the structured classiϐication and categorization
of deep learning methods employed in vehicle detec‐
tion and classiϐication tasks. The methods are orga‐
nized into several categories based on their underly‐
ing techniques and approaches.

Moreover, this video data can be used as a prin‐
cipal for automated vehicle control systems. There
are many issues when working with Big Data trafϐic
surveillance. To realize an intelligent system for trafϐic
vehicle surveillance, we have an efϐicient hard disk
system for storing, moving forward and back and ana‐
lyzing videos. In this study, we focused on analyzing
videos for trafϐic surveillance, which remains limited
in terms of real‐time data analysis.

Some representative papers in this theme used
heterogeneous low‐resolution data to estimate trafϐic
density and count vehicles.

Many efforts have been made to provide vehicle
analysis, counting, classiϐication, detection, and satis‐
factory results in speciϐic tasks. The remainder of this
paper is organized as follows.

Section 1 introduces related studies on trafϐic
classifϐication and dominant feature selection meth‐
ods. In Section 2, we discuss trafϐic classifϐication
and dominant feature selection methods. Section 3
presents themethodology used in this study. Section 4
presents experimental results and performance eval‐
uation. Finally, in Section 5, we provide concluding
remarks.

2. Classification and Recognition of Traffic
Video

2.1. Related Works

Detecting and categorizing objects within video
footage represents a critical challenge in the develop‐
ment of autonomous surveillance systems. Numerous
algorithms have been proposed to address this chal‐
lenge, ranging from background‐subtraction‐based
techniques to classiϐier‐based methods for object
detection and classiϐication in videos. Each approach
to this problempresents its own set of advantages and
drawbacks, necessitating careful consideration of the
algorithm type best suited to the speciϐic task at hand
[31,32].

Background subtraction methods involve the
detection of new objects in an image that are
absent from a reference background image. The
fundamental principle involves subtracting a new
image containing multiple objects to be detected from
the reference image to yield a difference‐encoded
image. A threshold value was applied to enhance
the background subtraction’s tolerance to potential
noise within the video. Subsequently, a blob detector
was employed to identify and count objects. Each
identiϐied blob was then treated as a single object and
subjected to classiϐication algorithms for reϐinement.
A more intricate background subtraction method
based on a mixture of Gaussian (MoG) models,
capable of detecting not only foreground object pixels
but also the shadows they cast, has been proposed
in previous studies. This MoG‐based approach has
also been utilized to detect human movements in
videos [33–36].

The detection of speciϐic objects within images
poses challengesdue to variations in object size, orien‐
tation, and instances of overlapping objects that cause
occlusions. Addressing these challenges requires a
detection algorithm that possesses certain properties
including translation, rotation, and scale invariance.
Typically, machine learning methods are employed
to learn representations directly from available data
to train models. Popular approaches involve utiliz‐
ing low‐level features, such as Scale‐Invariant Fea‐
ture Transform (SIFT), Histogram of Oriented Gradi‐
ents (HOG), and Haar‐like features, combined with
machine learning techniques for object classiϐication.
This methodology is commonly referred to as the
“Feature + Classiϐier” approach. For tracking or object
detection in video surveillance, efϐicient convolutional
neural networks (FCNN), are divided into two princi‐
pal classes: single‐phase captors and second phase.
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Figure 1. Data visualization
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Figure 2. Classification and categorization of deep learning methods for vehicle detection and classification tasks

2.2. Objects Detection in Video Surveillance

The primary‐phase captor is typically very fast
and can be used to predict objects in video skipping

boxes with classes within a simple network. The con‐
ventional experiments of the ϐirst captor were SSD
and YOLO. In addition, the application of good speed‐
precision trade‐of is version 2 for the YOLO method,
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particularly for vehicle detection via anchor cluster‐
ing, multi‐layer feature fusion strategy, and loss nor‐
malization. The R‐CNN family of captors is used in
many representative two‐stage captor methods [37].

The comparison between the ϐirst‐ and second‐
stage captors beganwith thepredictionof regions, and
then classiϐied and reϐinedeachof themduring the two
stages.

The ϐirst study on R‐CNN employed a simple
approach: a region was generated with many selec‐
tive research algorithms and then the recognition the
object was implemented. The global Vitesse of the
efϐicient R‐CNN is feasible for computing the time for
each region. To resolve this issue, we propose a Fast
R‐CNN. Instead of executing a CNN for each region.
Modifying selective research in the proposed Efϐicient
R‐CNN with this method, called region‐suggested net‐
work, also computes the accuracy and Vitesse of the
captor [38,39].

3. Research Methodology
The process commences with the extraction of

frames from the input video stream and is subse‐
quently forwarded to the Faster R‐CNN model for
detection. Faster R‐CNN encompasses two distinct
models within its architecture. Initially, a region pro‐
posal (RP) augmentedwith Deformable Convolutional
Networks (DCN) is executed to generate potential
object regions. This stage efϐiciently identiϐies candi‐
date regions within frames that are likely to contain
the objects of interest. Subsequently, in the second
model, a Fast R‐CNN was employed to conduct object
detection within the proposed regions, leveraging the
reϐined region proposals obtained from the preceding
stage. The architecture of Faster R‐CNN, delineating
the integrationof regionproposal andobject detection
stages, is shown in Figure 3, offering a visual represen‐
tation of the model’s intricate design and operational
ϐlow.

The workϐlow of the detection and classiϐication
models is shown in Figure 3. The diagram illustrates
the initial conversion of input surveillance videos into
a sequence of frames, followed by the application of
the Faster R‐CNN model for detection of each frame
individually.

3.1. Dataset of Detection of the Video Surveillance

In this application, the number of surveillance
cameras is more than forty surveillance cameras, and
most surveillance cameras are ϐixed. In this dataset,
most cameras had 25 frames per second, with a
resolution of 960 × 540. Moreover, the streams of
these videos are not very good because of hardware
faults, blurring, and compression artifacts. Figure 1
shows the video from one of these cameras, and
Figure 4 shows some experimentations cameras of
UA‐DETRAC dataset. Algorithm 1 leverages the efϐi‐
ciency of the Faster R‐CNN framework, enhanced by
the ResNet‐152 backbone, to achieve state‐of‐the‐art
performance in object‐detection tasks. Owing to its

intricate architecture and feature extraction capabil‐
ities, it enables the accurate and efϐicient detection of
objects in diverse real‐world scenarios.

We focused on datasets such as UA‐DETRAC and
KITTI, noting key differences across various aspects:
the total occurrences of the same grid, signiϐicant
scale variations, viewing angles, and occlusion lev‐
els. The primary challenge with this dataset lies in
the images themselves, as illustrated in Figure 4. Our
study utilized a small camera monitoring one of the
many trafϐic types, aiming to achieve optimal detec‐
tion accuracy while providing a viable alternative to
ϐixed cameras. To this end, we developed speciϐic solu‐
tions and annotated over 60,000 polygons across 982
images from the selected camera, using the COCO
Annotator utility [14]. Annotating video sequences
can be highly time‐consuming, especially in crowded
scenes; therefore, we focused on trafϐic scenarios,
weather conditions, and different times of the day.
Additionally, we meticulously annotated individual
vehicles with a high degree of conϐidence, particu‐
larly in dense trafϐic conditions. Table 1 provides an
overview of the dataset distribution.

Algorithm 1. Object detection using Faster R‐CNN
(ResNet‐152).

1. Input Video Surveillance Data:

• Receive input from video surveillance systems that capture
trafϐic scenes.

2. Image Acquisition and Frame Extraction:

• Extract the relevant frames from the input video.
3. Object Detection Using Faster R-CNN (ResNet-152):

• Employ Faster R‐CNN (ResNet‐152) architecture for precise
object detection within extracted frames.

• Detect and localize trafϐic objects, such as buses, cars, trams,
trolleybuses, and vans.

4. Object Classiϐication using Deep Reinforcement
Learning:

• Utilize deep reinforcement learning techniques for object
classiϐication.

• Train the model to identify distinct trafϐic entities including
buses, cars, trams, trolleybuses, and vans.

5. Dataset Utilization:

• Utilize the UA‐DETRAC dataset as the primary data source
for training and evaluation.

• Ensure adaptability of the model to various real‐world
trafϐic scenarios present in the dataset.

6. Performance Evaluation:

• Assess the performance of the framework using key metrics
such as precision, recall, and F1 score.

• Evaluate the effectiveness of the framework in accurately
detecting and classifying trafϐic objects.
Output:

• Generate insights into the effectiveness of the integrated
approach for trafϐic surveillance.

• Provide a promising solution for enhancing trafϐic
management and safety measures in urban environments.
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Figure 3. Intelligent video anomaly detection and classification using Faster R‐CNN

Figure 4. Some experimentations cameras of
UA‐DETRAC dataset

Table 1. Distribution of dataset

Type Number Mean instance
of vehicle of instances per frame
Bus 1,234 1.26
Truck 2,415 2.46
Car 53,083 4.06
Trolleybus 611 0.62
TRAM 1,298 1,298
VAN 2,783 2.83

4. Experimentation

4.1. Numerical Result and Experimentations

To ensure robust evaluation, we utilized the pub‐
licly available UA‐DETRAC dataset to construct our
training dataset. This dataset has been extensively
employed in previous studies focusing on trafϐic clas‐
siϐication tasks, thus facilitating comparability with
existing research outcomes. Despite the rich diversity
of images contained within the UA‐DETRAC dataset,
the number of labeled instances per frame, which is
crucial for training deep‐learning models, is insufϐi‐
cient.

Figure 5. Object detection using Faster R‐CNN

In response to this limitation, we augmented
the training data by gathering supplementary UA‐
DETRAC data, thereby enriching our dataset with a
more comprehensive representation of trafϐic ϐlows
and scenarios.

In this experiment, as shown in Figure 5, we per‐
formed object detection using Faster R‐CNN on an
HP EliteBook ×360 1130 G5 running Windows 11.
The setup was based on a Python 3.8 environment,
utilizing an Intel Core i7—8400 2.80 GHz CPU and an
Nvidia GeForce RTX 2160 GPU with 8 GB of memory.
We employed Darknet‐53 as the convolutional neural
network within the deep learning framework.

Figure 6 illustrates several experiments in object
detection using Faster R‐CNN. The confusion matrix,
depicted in the ϐigure, is an essential tool for evalu‐
ating classiϐication performance, offering insights into
the accuracy of the model’s predictions. It quantiϐies
correct and incorrect classiϐications across various
classes and enables the calculation of key metrics,
including true positives, true negatives, false positives,
and false negatives. As illustrated in Figure 7, the con‐
fusion matrix delineates the classiϐication outcomes
for each class.
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Figure 6. Some experimentations of object detection
using Faster R‐CNN

Figure 7. Traffic class confusion matrix: buses, cars,
trams, trolleybuses, and vans

Notably, the model achieved an impressive over‐
all classiϐication accuracy of approximately 96.67%.
Furthermore, by leveraging the information from the
confusion matrix, metrics such as precision, recall,
and F1‐score for each service can be meticulously
calculated, as shown in Figure 8. These metrics offer
a comprehensive evaluation of the model’s perfor‐
mance, capturing its effectiveness in correctly identi‐
fying instances belonging to speciϐic classes.

5. Conclusion
This study presents an integrated framework

that combines Faster R‐CNN and deep reinforcement
learning for trafϐic object detection and classiϐication.
By sequentially processing video surveillance data,
extracting frames, and utilizing advanced deep learn‐
ing techniques, the framework demonstrated promis‐
ing results in accurately identifying and categorizing
various trafϐic entities.

The utilization of Faster R‐CNN (ResNet‐152)
ensures robust object detection capabilities, enabling
the system to localize and identify trafϐic objects
with high precision. Subsequently, deep reinforce‐
ment learning enhances the classiϐication process,

Figure 8. Precision, recall, and F1‐score analysis for
traffic classes: buses, cars, trams, trolleybuses, and vans

enabling themodel to autonomously learn and classify
objects, such as buses, cars, trams, trolleybuses, and
vans.

The framework’s performance was evaluated
using key metrics such as precision, recall, and
F1 score, providing comprehensive insights into
its effectiveness. Through experimentation with
the UA‐DETRAC dataset, the framework shows its
adaptability to diverse trafϐic scenarios, highlighting
its potential for real‐world applications.
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