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Abstract:
The market of Unmanned Aerial Vehicles (UAVs) for civil
applications is extensively growing. Indeed, these air‐
planes are now widely used in applications such as data
gathering, agriculture monitoring and rescue. The UAVs
are required to track a fixed ormoving object; thus, track‐
ing control algorithms that ensure the system stability
and that have a quick time response must be developed.
This paper tackles the problem of supervising a fixed
target using a fixedwing UAV flying at a constant altitude
and a constant speed. For that purpose, three control
algorithms were developed. In all of the algorithms, the
UAV is expected to hover around the target in a circular
trajectory. Moreover, the three approaches are based
upon a Lyapunov‐LaSalle stabilization method. The first
tracking algorithm ensures that the UAV circles around
the target. However, the path that the UAV follows in
order to join this pattern is not studied. In the second and
third approach, two different techniques that allow the
UAV to intercept its final circular pattern in the quickest
possible time and thus follow the tangent to the circular
pattern are presented. Simulation results that show and
compare the performances of the proposed methods are
presented.
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1. Introduction
Unmanned Aerial Vehicles (UAVs) are now widely

used in numerous civil applications including for
search and rescue, humanor animal surveillance, agri‐
culture and industrial monitoring, ϐireϐighting, etc. For
these purposes many types of UAV are developed,
such as Multi‐Rotor drones, Single Rotor Helicopters,
ϐixed wing drones and hybrid VTOL (Vertical Take‐
Off and Landing). Single and Multi‐rotor UAVs beneϐit
from being easy to manufacture, relatively cheap and
easy to control. These types of UAVs can take‐off and
land vertically and can ϐly with a speed equal to zero.
However, they suffer from some disadvantages, in fact,
these UAVs are relatively slow (limited speed range),
they have limited ϐlying time and range, they are not
efϐicient as they spend a huge amount of energy to
ϐight gravity and ϐinally they have a limited payload.
Fixed wing drones are totally different in the sense
they beneϐit fromhaving a long ϐlying time, long range,
high efϐiciency and higher velocity but suffer from
being hard to control. Indeed, these airplanes stall at
low speed and thus are usually controlled by ϐixing or
minimally varying their linear speed.

Finally, hybrid VTOL combines the beneϐits of
single and multi‐rotor UAVs along with ϐixed wing
drones but suffer from being expensive and hard to
manufacture.

In almost all UAV applications, the objective is to
track a ϐixed or moving target. This paper focuses
on ϐixed target tracking algorithms using ϐixed wing
UAVs for long range, ϐixed altitude applications. The
drones used in such applications are also called High
Altitude Long Endurance (HALE) type UAVswith ϐixed
wings. Since, as mentioned previously, these UAVs
could not drop below a minimum linear speed. Thus,
the control tracking algorithms applied to these air‐
planes are challenging. In fact, unlike single andmulti‐
rotor drones, ϐixed wings UAVs are not capable of
reaching and maintaining the target’s position. Thus,
these drones should follow a speciϐic path in order
to track then hover around the target. Consequently,
path planning and re‐planning based tracking control
algorithms are used [8,14].

The model used in this article is inspired by the
Dubins model [12, 24] and [9]. It has been exten‐
sively studied for the modeling of vehicles and ϐixed
wing drones, especially in regards to trajectory opti‐
mality [2, 7, 18] and [16]. The authors in [1, 4, 22]
and [21] provide a reviewofUAVpathplanning and re‐
planning tracking algorithms. In [5] and [3], the prob‐
lem of dynamic output stabilization of control systems
in the unobservable case for ϐixed wings drones is
treated.

The Lyapunov method has been used by several
authors, in different ways, such as in [10, 13, 15, 17]
and [19]. Lyapunov strategies presented in the lit‐
erature are not always completely smooth and the
ϐinal curvature is a bit smaller than the maximum
curvature.

In [6,18] and [23] the authors provided a detailed
study of path planning UAV tracking algorithms
using Lyapunov‐LaSalle based stabilization and time‐
optimal stabilizing synthesis. The proposed methods
have been used to track a circle pattern using a Dubins
vehicle.

The paper [18] presents three control algorithms
for ϐixed target tracking using a ϐixed wing UAV ϐlying
at a constant altitude and a constant speed and com‐
pares them to a minimum‐time path planning algo‐
rithm. In order to consider the target reached, the UAV
has to maintain a hovering pattern around the target.
The proposed tracking algorithms use a circle as a
hovering trajectory. This circle has the target as its
center. The ϐirst tracking algorithm presented herein
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is based on a Lyapunov‐LaSalle stabilization method
andhasbeen studied in [18]. This result is given for the
self‐consistency of this paper. This method ensures
that the UAV is reaching andmaintaining the hovering
pattern. In the two stabilization methods presented
herein, theUAVuses the tangent to the circular pattern
as its trajectory guide to get to its destination. The
performances of the proposed methods are similar;
However, the calculation techniques are different. In
fact, the second technique is computed in a new rotat‐
ing reference frame, while the third one is performed
in the stationary reference frame.

The rest of the paper is organized as follows: Sec‐
tion 2 presents the kinematical model of the ϐixed
wings UAV. In Section 3, the presentation of the major
results [18]is explored. The ϐirst tracking algorithm
considered in this paper and the time‐optimal syn‐
thesis are used as comparison. Section 4 presents
the second and third tracking algorithms. Simulation
results and algorithms comparison are addressed in
Section 5.

2. Problem Under Consideration
This section develops the kinematical model of a

ϐixed wing HALE UAV used herein for both simulation
and control purposes. The kinematics of a roughHALE
drone are supposed to be governed by the standard
Dubins equations [11,24]:

൞
�̇� = 𝑉0 cos(𝜃)
�̇� = 𝑉0 sin(𝜃)
�̇� = 𝑢

(1)

where (𝑥, 𝑦, 𝜃) ∈ ℝ2 × 𝕊1 is the state. (𝑥, 𝑦) ∈ ℝ2

is the drone’s inertial position in a constant altitude
plane and 𝜃 is the yaw angle (the angle made by the
aircraft directionwith respect to the𝑥‐axis).𝑉0 ∈ ℝ∗ is
the linear speed and 𝑢 ∈ [−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥] is the control
driving UAV kinematics.

Equation (1) expresses the drones movements in
the (𝑥, 𝑦)‐plan. The altitude of the UAV is considered
constant thus the altitude component is omitted in
Eq. (1). Moreover, the speed of the drone 𝑉0 is consid‐
ered constant. The bound on the yaw angular veloc‐
ity (𝑢) modeled the UAV kinematics restriction on its
turning radius, which is given by 𝑟 = 𝑉0

𝑢𝑚𝑎𝑥
.

As mentioned previously, in order to track a ϐixed
point (target), the drone has to hover around this
target using a circular pattern of radius 𝑟. This ϐinal
circular pattern is denoted by 𝒞 and has the following
characteristics:
‐ 𝒞 center is the target.

‐ 𝒞 radius is 𝑟 = 𝑉0
𝑢𝑚𝑎𝑥

.
𝒞 could also be seen as the maximum curvature

pattern that can be achieved by the UAV and could be
represented by the following equation:

𝒞 = {(𝑥, 𝑦, 𝜃) ∣ 𝑥 = 𝑟 sin𝜃, 𝑦 = −𝑟 cos𝜃} . (2)

3. Lyapunov and Minimal Path Planning
In [18], the authors studied two control strategies

for the problem presented previously. The ϐirst strat‐
egy relies on a Lyapunov‐LaSalle stabilizationmethod.
The second strategy was constructed using the time‐
optimal control synthesis for tracking a circle by a
Dubins vehicule. In this section, only the principal
results of [18] used in this paper are addressed.
3.1. Lyapunov‐based Strategy

The system modeled with Eq. (1) can be simpli‐
ϐied by writing it in a moving‐frame. This new frame
is sticking to the UAV and thus rotating with it. The
system model in the new moving‐frame could be cal‐
culated by applying the following transformation:

ቈ�̃��̃�቉ = ቈ cos𝜃 sin𝜃
− sin𝜃 cos𝜃቉ ቈ

𝑥
𝑦቉ (3)

And thus the system Eq. (1) could be rewritten as:

൝
̇�̃� = 𝑢 �̃� + 𝑉0
̇�̃� = −𝑢 �̃� (4)

The system in equation (4) possesses two equilib‐
rium points for 𝑢 = 𝑢max and 𝑢 = −𝑢max, namely
𝑒1 = (0,−𝑟) and 𝑒2 = (0, 𝑟). They correspond to the
target𝒞 being circulated counter‐clockwise and clock‐
wise, respectively. In the following, the equilibrium
point 𝑒1 is the point at the end of the mission where
the UAV will hover 𝒞 counter‐clockwise. It should be
mentioned that point 𝑒2 could also be chosen without
modifying the control algorithm performances.

Having chosen 𝑒1 as an equilibrium point, it is
possible to switch to a new rotating reference frame
(�̄�, �̄�) where the equilibrium point is (�̄� = 0, �̄� = 0).
The transformation form (�̃�, �̃�) to (�̄�, �̄�) is given by:

൝�̄� = �̃�
�̄� = �̃� + 𝑟 (5)

Reaching the equilibrium point (�̄� = 0, �̄� = 0) in
this new rotating frame is the same as circling the
hovering pattern 𝒞 counter‐clockwise in the (𝑥, 𝑦)‐
plane. The system model could be written in the new
(�̄�, �̄�) frame as:

൝
̇�̄� = 𝑉0 + 𝑢 �̄� − 𝑟𝑢
̇�̄� = −𝑢 �̄� (6)

The ϐixed target that the UAV should track is con‐
sidered to be located at the origin of the 𝑥𝑦 ϐixed
reference frame (𝑥 = 0, 𝑦 = 0). The UAV starts its
tracking mission from an initial position (𝑥 = 𝑥0, 𝑦 =
𝑦0) and with an initial angle (𝜃 = 𝜃0) and has to ϐind
its path to intercept and maintain a circular hovering
pattern that has a radius 𝑟 and 𝑥𝑦 origin as center.
Since the speed of the UAV is constant equal to 𝑉0,
the only parameter that could bemodiϐied tomeet the
control objectives is 𝑢 = �̇�, the UAV angular speed.
It should be mentioned that, according to Eq. (1), the
input is within the interval [−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥].
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Knowing this information, let Eq. (7) be a Lya‐
punov function candidate.

𝑉(�̄�, �̄�) = �̄�2 + �̄�2 (7)
After deriving 𝑉(�̄�, �̄�) and combining it with

Eq. (6), the following equation is computed:
�̇�(�̄�, �̄�) = 2�̄�(1 − 𝑟𝑢) (8)

In order for 𝑉(�̄�, �̄�) to be a Lyapunov function, the
following rules should be applied:
‐ 𝑉(0, 0) = 0.
‐ 𝑉(�̄�, �̄�) should be positive.
‐ �̇� should be non‐positive.

The ϐirst two rules are satisϐied. However, to
ensure the third one is veriϐied, some conditions on
𝑢 are needed. In [18], the authors showed that, if the
control 𝑢 is equal to a any smooth function �̄� ∶ ℝ2 →
[−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥] that veriϐies Eq. (9), then �̇� is non‐
positive.

𝑢 = �̄�(�̄�, �̄�) = ቊ𝑢𝑚𝑎𝑥 if �̄� ≥ 0
−𝑢𝑚𝑎𝑥 ≤ �̄�(�̄�, �̄�) ≤ 𝑢𝑚𝑎𝑥 if �̄� < 0

(9)
Moreover, according to LaSalle’s principle and

since 𝑉 is a proper function, all the trajectories of
system (6) with feedback control �̄�(⋅) converge to
the largest invariant set contained in the set 𝐸 =
{(�̄�, �̄�) | �̇�(�̄�, �̄�) = 0} which has been proved in [18]
to be the equilibrium point (0, 0). Consequently, there
exists an explicit feedback control function 𝑢(⋅) that
has the following propriety: the pattern 𝒞 is a global
asymptotically stable attractor for the closed‐loop sys‐
tem as a results of applying 𝑢(⋅). For example, we may
consider the following equation which satisϐies (9)
and steers asymptotically system (1) to 𝒞.

𝑢 = �̄�(�̄�, �̄�) = ൞
𝑎 if �̄� ≤ −𝜀

𝑢max−𝑎
1+𝑒1/(�̄�+𝜀)+1/�̄� + 𝑎 if �̄� ∈ (−𝜀, 0)
𝑢max if �̄� ≥ 0,

(10)
where 𝜖 is a positive real number and 𝑎 is such that
−𝑢𝑚𝑎𝑥 ≤ 𝑎 < 𝑢𝑚𝑎𝑥 .

In other words, the feedback controller (10) turns
the UAVwith the extremal authorized curvatures (𝑢 =
𝑢𝑚𝑎𝑥 or 𝑢 = 𝑎) whenever the UAV is moving away
from the target (�̄� ≥ 0 or �̄� ≤ −𝜖). Thus, the drone
will turn until it gets back on track. Whenever the
UAV is on track, it will turn with an angular speed
equal to +𝑎 hopping to get to its ϐinal circular pattern
with its minimum turning radius (𝑢 = 𝑢𝑚𝑎𝑥). The
UAV angular speed will vary according to Figure 1
during this approach (when �̄� ∈ [−𝜖, 0[) in order to
ensure a smooth transition from 𝑢 = 𝑢𝑚𝑎𝑥 to 𝑢 = 𝑎
and reduce the chattering effect of this controller. The
ϐirst tracking control algorithm considered herein is
obtained in applying the feedback control deϐined in
Eq. (10).

In order to verify the performances of this con‐
troller, the UAV is simulated in closed‐loop using MAT‐
LAB. The UAV parameters used in numerical simula‐
tions are given in Table 1, and the control parameters
are 𝑎 = 0.2 𝑟𝑎𝑑/𝑠 and 𝜖 = 10 𝑚.

Figure 1. Shape of the feedback controller �̄�(�̄�, �̄�)

Table 1. UAV parameters

Description Symbol Value Unit
UAV linear Speed 𝑉0 10 𝑚/𝑠
Maximum angular velocity 𝑢𝑚𝑎𝑥 1 𝑟𝑎𝑑/𝑠
Circular pattern radius 𝑟 10 𝑚

Figure 2. The path followed by the UAV using LaSalle’s
principle based planification

The startingpositionof theUAV is (𝑥0, 𝑦0, 𝜃0) equal
to (100 𝑚, 60 𝑚, 0 𝑟𝑎𝑑/𝑠).

Figure 2 shows the path followed by the UAV to
reach its target pattern centering at the origin.

On this Figure, the path used by the UAV seems to
not be time‐optimal. Indeed, the UAV is doing loops
before reaching and maintaining the ϐinal pattern.

3.2. Time‐optimal Synthesis Based Strategy

Another strategy was presented in [18] in order
to ϐind a solution to the problem presented in Section
2. Herein, the minimum time problem for System 1
is addressed, and a summary of this second method
based on an time‐optimal control synthesis is pre‐
sented.
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Figure 3. The optimal synthesis. All optimal trajectories
start at 𝑞0 with control −1. The dashed black curve is
the switching curve, the purple curve is the singular
trajectory and the green curves are cut loci. Notice that
the minimum‐time function is not continuous along the
blue dashed curve [18].

In order to simplify the treatment up to a dilation
in the (𝑥, 𝑦)‐plane we may assume without loss of
generality that 𝑉0 = 1 and [−𝑢max, 𝑢max] = [−1, 1].
Thus, we consider the following problemdenoted (P).
(P) For every (𝑥0, 𝑦0, 𝜃0) ∈ ℝ2 × 𝑆1 ϐind the pair

trajectory‐control joining (𝑥0, 𝑦0, 𝜃0) to 𝒞, which
is time‐optimal for the control system

൞
�̇� = cos𝜃
�̇� = sin𝜃
�̇� = 𝑢, 𝑢 ∈ [−1, 1].

(11)

To solve Problem (P), a reduced system in dimen‐
sion two is computed using Eq. 3: the problem con‐
sidered is therefore rewritten in the following form
denoted (P′).
(P′) For every (�̃�0, �̃�0) ∈ ℝ2 ϐind the pair trajectory‐

control joining (�̃�0, �̃�0) to 𝑞0 = (0, 1), which is
time‐optimal for the control system

൝
̇�̃� = −𝑢�̃� + 1
̇�̃� = 𝑢�̃�

, 𝑢 ∈ [−1, 1].

The time‐optimal stabilizing synthesis is the collec‐
tion of all solution to (P′) for every (�̃�0, �̃�0) [20].
In [18], authors stated this time‐optimal stabilizing
synthesis and constructed Figure 3, which is related to
the inverse dynamic of the problem. The time‐optimal
stabilizing synthesis of (P′) is obtained simply by
inverting the arrows of the trajectories represented.

The solutions to problem (P) can be deduced from
the solutions to problem (P′), obtained thanks to
the time‐optimal stabilizing synthesis represented in
Figure3. Figure4, showsapair of plots showing a solu‐
tion of problem (P′) (Figure 4a) and its corresponding
solution to problem (P) (Figure 4b).

(a)

(b)

Figure 4. A bang‐singular‐bang optimal trajectory
solution to problem (4a) and the corresponding optimal
solution to problem (4b)

4. Improvement of the Lyapunov‐LaSalle
Based Stabilization Method

The objective of this section is to propose two
tracking control algorithms that resolve the problem
presented in Section 2 with a shorter path than the
one obtained with the ϐirst Lyapunov‐based method
stated above. The proposed methods approach the
performances of the optimal technique but are com‐
putationally less demanding. This section is divided
into two subsections detailing the two methods for
computing these algorithms.

4.1. A First Shorter Stabilization Method

A ϐirst technique that allows the ϐixed wing UAV
to slide onto the tangent toward the circular pattern
target is detailed in this subsection. It is established
in the same way as in Section 3; however, in this con‐
troller, the parameter 𝑎 used in Eq. (10) is considered
a function 𝑎2 ∶ ℝ∗− × ℝ → [−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥[. Thus, the
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Figure 5. The fixed wing UAV in the 𝑥𝑦 and �̄��̄� frames

Figure 6. The path followed by the UAV to track the
target using the minimum time strategy for
𝛼 = 0.2𝑢𝑚𝑎𝑥, 𝛼 = 0.5𝑢𝑚𝑎𝑥 and 𝛼 = 0.9𝑢𝑚𝑎𝑥

controller equation (10) is rewritten as follows:

𝑢 = �̄�(�̄�, �̄�) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑎2(�̄�, �̄�) if �̄� ≤ −𝜀
𝑢max−𝑎2(�̄�,�̄�)
1+𝑒1/(�̄�+𝜀)+1/�̄�

+𝑎2(�̄�, �̄�) if �̄� ∈ (−𝜀, 0)

𝑢max if �̄� ≥ 0,

(12)

Considering �̄� < 0, let 𝜙 = arctan(�̄�/�̄�) be the
angular coordinate of the UAV in the (�̄�, �̄�)‐plane as
represented in Figure 5. Let 𝑎2(�̄�, �̄�) = 𝛼 sin(𝜙) with
𝛼 such that 0 ≤ 𝛼 < 𝑢𝑚𝑎𝑥 . Thus,−𝑢𝑚𝑎𝑥 ≤ 𝑎2(�̄�, �̄�) <
𝑢𝑚𝑎𝑥 , and the controller deϐined in Eq. (12) veriϐies
the conditions (9) and stabilizes the system(1) toward
the considered pattern as stated in Section 3.

Figure 6 shows the performances of the planning
algorithm using the control equation (12) for 𝛼 =
0.2𝑢𝑚𝑎𝑥 , 𝛼 = 0.5𝑢𝑚𝑎𝑥 and 𝛼 = 0.9𝑢𝑚𝑎𝑥 and
𝜖 = 10 𝑚. The UAV starting point is (𝑥0, 𝑦0, 𝜃0) =
(100 𝑚, 60 𝑚, 0 𝑟𝑎𝑑/𝑠), and its parameters are given
in Table 1. By increasing the value of 𝛼, the time
needed to join the pattern is decreased (quicker time
response), and by decreasing the value of 𝛼, the UAV

commands have less ϐluctuation. It should be men‐
tioned that a higher value of 𝛼 leads the UAV to slide
onto a tangent toward the hovering pattern.
4.2. A Second Simpler Computation Stabilization

Method

In this subsection, another method for computing
a tracking control algorithm that resolves the prob‐
lem presented above is established. This algorithm
is computed using the stationary coordinates (𝑥, 𝑦)
instead of using a rotating reference frame (�̄�, �̄�). The
stabilization of this system is performed using the
same Lyapunov‐LaSalle technique as in Section 3. As
previously, the parameter 𝑎 in Eq. (10) is replaced
by a function 𝑎3 ∶ ℝ2 → [−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥[. Thus the
controller Eq. (10) can be rewritten as:

𝑢 = �̄�(�̄�, �̄�) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑎3(�̄�, �̄�) if �̄� ≤ −𝜀
𝑢max−𝑎3(�̄�,�̄�)
1+𝑒1/(�̄�+𝜀)+1/�̄�

+𝑎3(�̄�, �̄�) if �̄� ∈ (−𝜀, 0)

𝑢max if �̄� ≥ 0,

(13)

A ϐirst step for calculating 𝑎3(𝑥, 𝑦) is to compute
the tangent equations of the circular pattern in the 𝑥𝑦
stationary frame. Let (𝑥0, 𝑦0) be the coordinates of the
UAV in the 𝑥𝑦 frame. Any line that passes through the
UAV has the following equation:

𝑦 = 𝓁(𝑥 − 𝑥0) + 𝑦0 (14)

where 𝑥, 𝑦 ∈ ℝ and 𝓁 is the slope of the line to be cal‐
culated in the following. In order to be a tangent to the
circular pattern Equation (14) must also satisfy the
circular pattern equation (𝑥2 + 𝑦2 = 𝑟2). Combining
both equations leads to the following:

𝑎′𝑥2 + 𝑏′𝑥 + 𝑐′ = 0 (15)

with

൞
𝑎′ = 1 + 𝓁2
𝑏′ = 2𝓁𝑦0 + 2𝓁2𝑥0
𝑐′ = 𝑦20 + 𝓁2𝑥20 + 2𝓁𝑥0𝑦0 − 𝑟2

The solutions of equation (15) are the lines that links
theUAV to the circular pattern. Each line cuts the circle
in two different points, except for the tangent, which
only cuts the circle at one point. Thus, equation (15)
double roots can help calculating the tangent equa‐
tions as follows.

Δ = 𝑏′2 − 4𝑎′𝑐′ = 𝑎″𝓁2 + 𝑏″𝓁 + 𝑐″ = 0 (16)

with

൞
𝑎″ = −4𝑥20 + 4𝑟2
𝑏″ = 8𝑥0𝑦0
𝑐″ = −4𝑦20 + 4𝑟2

Solving equation (16) results in calculating the two
slopes of the two tangents 𝓁1 and 𝓁2 (Figure 7). It
should bementioned that if no real solution exists, the
UAV (𝑥0, 𝑦0) is located inside the circular pattern.
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Figure 7.Minimum time method in the xy reference
frame

Knowing the equations of the two tangents, the
UAV should slide on one of them in order to reach its
ϐinal circular pattern. Indeed, After the computation
of the two tangent slopes 𝓁1 and 𝓁2, it is possible to
calculate the two slope angles 𝜉1 and 𝜉2 (Figure 7) by
applying an arctan function as follows:

𝜉1,2 = arctan൭−8𝑥0𝑦0 ± √Δ′
−8𝑥20 + 8𝑟2 ൱ (17)

with:
Δ′ = 𝑏″2 − 4𝑎″𝑐″

In order to have valid slope angles, Δ′ should be
positive or equal to zero which means the following
equation should be satisϐied:

𝑟2(𝑥20 + 𝑦20 − 𝑟2) ≥ 0

This equation means that the UAV should be outside
the hovering pattern.

It should be mentioned that the UAV position
(𝑥0, 𝑦0) could be written as function of �̄� and �̄� using
the following transformation:

𝑥0 = �̄� cos(𝜃) − (�̄� − 𝑟) sin(𝜃)
𝑦0 = �̄� sin(𝜃) + (�̄� − 𝑟) cos(𝜃)

(18)

The tangent that has the lowest value of the slope
angle is the one to be chosen since it leads to hov‐
ering around the circular pattern counterclockwise.
The other tangent with the higher value of the slope

Figure 8. The path followed by the UAV for 𝑓 = 1, 𝑓 = 3
and 𝑓 = 10 using second tracking algorithm

angle leads to hovering around the circular pattern
clockwise. In the following, we will either use 𝜉1 or 𝜉2
and denoted the chosen angle 𝜉.

After computing the angle 𝜉, the angle 𝛽 = 𝜋/2−𝜉
is calculated (Figure 7).𝛽 should bewithin the interval
[−𝜋; 𝜋]. Having 𝛽, it is possible to compute 𝑎3(𝑥, 𝑦) as
follows:

𝑎3(𝑥, 𝑦) = 𝑢𝑚𝑎𝑥 tanh(𝑓𝛽) (19)
Where 𝑓 >0 is a proportional regulation constant.
When increasing 𝑓, the time needed in order to
converge towards the tangent, will be decreased. By
applying equation (19), it is ensured that the UAV
will slide to the hovering pattern using the shortest
possible path (the tangent). It should be mentioned
that 𝑎3(𝑥, 𝑦) satisϐies the conditions expressed in Sec‐
tion 3 and ensures the convergence of a controller
based on the one given in Equation (10) towards the
circular pattern considered.

Finally, the proposed controller algorithm is sum‐
marized by the following steps:
‐ Compute 𝓁1 and 𝓁2 then 𝜉1 and 𝜉2
‐ Choose the tangent that leads to hovering the circu‐
lar pattern counterclockwise

‐ Compute 𝛽
‐ Compute 𝑎3(𝑥, 𝑦) using equation (19)
‐ Compute the input to be applied to the UAV (equa‐
tion (13))
Figure 8 shows the performances of the proposed

controller for 𝑓 =1, 𝑓 =3 and 𝑓 =10. TheUAV starting
point is (𝑥0, 𝑦0, 𝜃0) equal to (100 m, 60 m, 0 rad/s)
and its parameters are given in Table 1, 𝜖 is ϐixed to
10 m. The results of this method are very similar to
the results of the ϐirstmethod conceived in the rotating
frame. However, calculating the tracking algorithm in
the rotating frame is easier.

5. Simulation Results and Comparison
This section compares the simulation results of the

four previously presented control methods. The ϐirst

45



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 4 2023

Figure 9. The path followed by the UAV using the three
proposed algorithms starting from (𝑥0, 𝑦0, 𝜃0) equal to
𝚤1 = (−200 𝑚,−50 𝑚, 0 𝑟𝑎𝑑/𝑠)

Table 2. The time (in seconds) needed by each control
algorithm to reach the hovering pattern starting from 𝚤1
and 𝚤2

𝑴𝒆𝒕𝒉𝒐𝒅1 𝑴𝒆𝒕𝒉𝒐𝒅2 𝑴𝒆𝒕𝒉𝒐𝒅3 𝑴𝒆𝒕𝒉𝒐𝒅4
𝚤1 43.3𝑠 20.3𝑠 20.3𝑠 19.88𝑠
𝚤2 33.0𝑠 13.9𝑠 13.8𝑠 13.38𝑠

control method (𝑀𝑒𝑡ℎ𝑜𝑑1) subject to comparison is
the Lyapunov‐based method presented in Section 3.1,
the second one (𝑀𝑒𝑡ℎ𝑜𝑑2) is the ϐirst shorter sta‐
bilization method presented in section 4.1, the third
one (𝑀𝑒𝑡ℎ𝑜𝑑3) is the second simpler computation
stabilization method presented in section 4.2 and the
fourthmethod (𝑀𝑒𝑡ℎ𝑜𝑑4) is the time‐optimalmethod
presented in section 3.2.

Multiple initial conditions are considered in order
to show the performances of each method. It should
be mentioned that the control parameters of the ϐirst
method are 𝑎 = 0.2 𝑟𝑎𝑑/𝑠 and 𝜖 = 10 𝑚. The
parameters of the second algorithm are 𝛼 = 𝑢𝑚𝑎𝑥
and 𝜖 = 10 𝑚. Finally, the third algorithm param‐
eters are 𝑓 = 10 and 𝜖 = 10 𝑚. The UAV param‐
eters are given in table 1, and the initial conditions
(𝑥0, 𝑦0, 𝜃0) are 𝚤1 = (−200 𝑚,−50 𝑚, 0 𝑟𝑎𝑑/𝑠) and
𝚤2 = (50 𝑚,−120 𝑚, 0 𝑟𝑎𝑑/𝑠) respectively.

Figure 9 and 10, show the path followed by
the UAV starting from (−200 𝑚,−50 𝑚, 0 𝑟𝑎𝑑/𝑠) and
(50 𝑚, −120 𝑚, 0 𝑟𝑎𝑑/𝑠) respectively, using the pro‐
posed tracking control algorithms. The three pro‐
posed methods are converging toward the hovering
pattern. In the ϐirst algorithm (𝑀𝑒𝑡ℎ𝑜𝑑1) the trajec‐
tory used to get to the ϐinal pattern is twisting. The
second and third algorithms (𝑀𝑒𝑡ℎ𝑜𝑑2 and𝑀𝑒𝑡ℎ𝑜𝑑3)
show trajectories in which the UAV follows the tan‐
gent toward the hovering pattern. These three con‐
trol methods are compared to the time‐optimal tra‐
jectory (𝑀𝑒𝑡ℎ𝑜𝑑4). Table 2 shows the time needed
by the UAV to reach its circular hovering pattern.

Figure 10. The path followed by the UAV using the three
proposed algorithms starting from (𝑥0, 𝑦0, 𝜃0) equal to
𝚤2 = (50 𝑚,−120 𝑚, 0 𝑟𝑎𝑑/𝑠)

𝑀𝑒𝑡ℎ𝑜𝑑1 is showing very poor performances com‐
pared to𝑀𝑒𝑡ℎ𝑜𝑑2,𝑀𝑒𝑡ℎ𝑜𝑑3 and𝑀𝑒𝑡ℎ𝑜𝑑4. Moreover,
the optimal method is showing the best possible per‐
formances.𝑀𝑒𝑡ℎ𝑜𝑑2 and𝑀𝑒𝑡ℎ𝑜𝑑3 show very similar
performances, despite being calculated in different
ways, and their results are very close to 𝑀𝑒𝑡ℎ𝑜𝑑4.
Finally, it is possible to assume that by carefully choos‐
ing parameter 𝑎(𝑥, 𝑦) it is possible to obtain nearly
time‐optimal performances using less computational
time.

In summary, the ϐirst method employed a com‐
putationally efϐicient algorithm to converge towards
the hovering pattern. However, its convergence time
was notably slow,making it the least expedient among
the four methods presented. The second and third
methods have comparable performance, converging
towards the circular hovering pattern in nearly opti‐
mal time. Both methods were computationally efϐi‐
cient, with the second method being less demanding
than the third. The fourth and ϐinal algorithm also
successfully converged towards the hovering pattern
using an optimal trajectory but proved to be computa‐
tionally demanding.

6. Conclusion

This paper studies tracking control algorithms
applied to ϐixedwingUAVs ϐlying at constant speedand
constant altitude. Three control algorithms are pre‐
sented for the tracking of a ϐixed target. The proposed
method ensures the convergence of the UAVs toward
a circular hovering pattern.

In the ϐirst method, the trajectory obtained did
not allow the UAV to reach the pattern quickly. In the
second and third method presented above, the trajec‐
tories computed follow the direction of the tangent to
the pattern, which makes it possible to approach the
time‐optimal method results.

46



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 4 2023

AUTHORS
Jean Sawma∗ – Faculty of Engineering, Saint
Joseph University of Beirut, Beirut, Lebanon, e‐mail:
jean.sawma@usj.edu.lb.
Alain Ajami – Faculty of Engineering, Saint Joseph
University of Beirut, Beirut, Lebanon, e‐mail:
alain.ajami@usj.edu.lb.
Thibault Maillot – Agrosup, Dijon, France, e‐mail:
thibault.maillot@agrosupdijon.fr.
Joseph el Maalouf – College of Engineering and Tech‐
nology, American University of the Middle, Kuwait,
e‐mail: joseph.el‐maalouf@aum.edu.kw.
∗Corresponding author

References
[1] S. Aggarwal and N. Kumar. “Path planning tech‐

niques for unmanned aerial vehicles: A review,
solutions, and challenges,” Computer Communi-
cations, vol. 149, 2020, doi: 10.1016/j.comcom.2
019.10.014.

[2] A. Ajami, J.‐F. Balmat, J.‐P. Gauthier, and T.Maillot.
“Path planning and ground control station sim‐
ulator for UAV,” In: 2013 IEEE Aerospace Confer-
ence, 2013, doi: 10.1109/AERO.2013.6496845.

[3] A. Ajami, M. Brouche, J.‐P. Gauthier, and
L. Sachelli. “Output stabilization of military
uav in the unobservable case.” In: 2020 IEEE
Aerospace Conference, 2020, 1–6, doi: 10.1109/
AERO47225.2020.9172770.

[4] A. Ajami, J.‐P. Gauthier, T. Maillot, and U. Serres.
“How humans ϐly,” ESAIM: Control, Optimisation
and Calculus of Variations, vol. 19, no. 4, 2013,
1030–1054.

[5] A. Ajami, J.‐P. Gauthier, and L. Sacchelli.
“Dynamic output stabilization of control
systems: An unobservable kinematic drone
model,” Automatica, vol. 125, 2021, 109383, doi:
10.1016/j.automatica.2020.109383.

[6] A. Ajami, J. Sawma, and J. E. Maalouf. “Dynamic
stabilization‐based trajectory planning for
drones,” AIP Conference Proceedings, vol. 2570,
no. 1, 2022, 020003, doi: 10.1063/5.0099757.

[7] A. Balluchi, A. Bicchi, B. Piccoli, and P. Soueres.
“Stability and robustness of optimal synthesis
for route tracking by dubins’ vehicles.” In: Pro-
ceedings of the 39th IEEE Conference on Deci-
sion and Control, vol. 1, 2000, doi: 10.1109/CDC.
2000.912827.

[8] N. Boizot and J.‐P. Gauthier. “Motion planning for
kinematic systems,” IEEE Transactions on Auto-
matic Control, vol. 58, no. 6, 2013, 1430–1442,
doi: 10.1109/TAC.2012.2232376.

[9] U. Boscain and B. Piccoli. Optimal Syntheses for
Control Systems on 2-DManifolds, Springer, 2004.

[10] D. Campolo, L. Schenato, E. Guglielmelli, and S. S.
Sastry. “A lyapunov‐based approach for the con‐
trol of biomimetic robotic systems with periodic
forcing inputs,” IFAC Proceedings Volumes, vol.
38, no. 1, 2005, 637–641.

[11] H. Chitsaz and S. M. LaValle. “Time‐optimal paths
for a dubins airplane.” In: 46th IEEE Conference
on Decision and Control, 2007, 2379–2384, doi:
10.1109/CDC.2007.4434966.

[12] L. E. Dubins. “On curves of minimal length with
a constraint on average curvature and with pre‐
scribed initial and terminal positions and tan‐
gents,” Am. Journ. Math, vol. 79, no. 1, 1957,
497–516.

[13] E. W. Frew, D. A. Lawrence, C. Dixon, J. Elston,
and W. J. Pisano. “Lyapunov guidance vector
ϐields for unmanned aircraft applications.” In:
2007 American Control Conference, 2007, 371–
376, doi: 10.1109/ACC.2007.4282974.

[14] J.‐P. Gauthier and V. Zakalyukin. “On the motion
planning problem, complexity, entropy, and non‐
holonomic interpolation,” Journal of Dynamical
and Control Systems, vol. 12, no. 3, 2006, 371–
404, doi: 10.1007/s10450‐006‐0005‐y.

[15] M.‐D. Hua, T. Hamel, P. Morin, and C. Sam‐
son. “A control approach for thrust‐propelled
underactuated vehicles and its application to
vtol drones,” IEEE Transactions on Automatic
Control, vol. 54, no. 8, 2009, 1837–1853, doi:
10.1109/TAC.2009.2024569.

[16] M.‐A. Lagache, U. Serres, and V. Andrieu. “Time
minimum synthesis for a kinematic drone
model.” In: 54th IEEE Conference on Decision
and Control (CDC), 2015, 4067–4072, doi:
10.1109/CDC.2015.7402852.

[17] D. A. Lawrence, E. W. Frew, andW. J. Pisano. “Lya‐
punov vector ϐields for autonomous unmanned
aircraft ϐlight control,” Journal of Guidance, Con-
trol, and Dynamics, vol. 31, no. 5, 2008, 1220–
1229, doi: 10.2514/1.34896.

[18] T. Maillot, U. Boscain, J.‐P. Gauthier, and U. Ser‐
res. “Lyapunov and minimum‐time path plan‐
ning for drones,” Journal of Dynamical and
Control Systems, vol. 21, no. 1, 2015, 47–80, doi:
10.1007/s10883‐014‐9222‐y.

[19] S. Park, J. Deyst, and J. How. “A new nonlinear
guidance logic for trajectory tracking,” 2004, doi:
10.2514/6.2004‐4900.

[20] B. Piccoli and H. J. Sussmann. “Regular synthesis
and sufϐiciency conditions for optimality,” SIAM
J. Control Optim, vol. 39, 1998, 359–410, doi:
10.1137/S0363012999322031.

[21] Y. Qu, Y. Zhang, and Y. Zhang. “A global path plan‐
ning algorithm for ϐixed‐wing uavs,” Journal of
Intelligent & Robotic Systems, vol. 91, no. 3, 2018,
691–707, doi: 10.1007/s10846‐017‐0729‐9.

47



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 4 2023

[22] F. Ropero, P. Muñoz, and M. D. R‐Moreno. “Terra:
A path planning algorithm for cooperative ugv–
uav exploration,” Engineering Applications of
Artiϔicial Intelligence, vol. 78, 2019, 260–272,
doi: 10.1016/j.engappai.2018.11.008.

[23] J. Sawma, A. Ajami, and J. El Maalouf. “Dynamic
stability for uav path planning.” In: 2022 Inter-
national Conference on Communications, Infor-
mation, Electronic and Energy Systems (CIEES),
2022, 1–6, doi: 10.1109/CIEES55704.2022.99
90803.

[24] P. Soueres and J.‐P. Laumond. “Shortest paths
synthesis for a car‐like robot,” IEEE Transactions
on Automatic Control, vol. 41, no. 5, 1996, 672–
688, doi: 10.1109/9.489204.

48


	Introduction
	Problem Under Consideration
	Lyapunov and Minimal Path Planning
	Lyapunov-based Strategy
	Time-optimal Synthesis Based Strategy

	Improvement of the Lyapunov-LaSalle Based Stabilization Method
	A First Shorter Stabilization Method
	A Second Simpler Computation Stabilization Method

	Simulation Results and Comparison
	Conclusion

