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Abstract:
The conventional control system is a controller that 
controls or regulates the dynamics of any other pro-
cess. From time to time, a conventional control system 
may not behave appropriately online; this is because 
of many factors like a variation in the dynamics of the 
process itself, unexpected changes in the environment, 
or even undefined parameters of the system model. To 
overcome this problem, we have designed and imple-
mented an adaptive controller. This paper discusses 
the design of a controller for a ball and beam system 
with Genetic Model Reference Adaptive Control (GM-
RAC) for an adaptive mechanism with the MIT rule. 
Parameter adjustment (selection) should occur using 
optimization methods to obtain an optimal perfor-
mance, so the genetic algorithm (GA) will be used as 
an optimization method to obtain the optimum values 
for these parameters. The Linear Quadratic Regulator 
(LQR) controller will be used as it is one of the most 
popular controllers. The performance of the proposed 
controller with the ball and beam system will be car-
ried out with MATLAB Simulink in order to evaluate 
its effectiveness. The results show satisfactory perfor-
mance where the position of the ball tracks the desired 
model reference.

Keywords: model reference adaptive control, gradient 
approach, Linear Quadratic Regulator, genetic algorithm

1. Introduction
Adaptive control is a method of control that uses a 
controller with adaptable parameters that change 
with respect to the variation in system response. 
This method has advantages over conventional con-
trol, where it has been used for better performance 
and accuracy of advanced control systems design, and 
for systems with uncertain or unknown parameter 
variations and environmental changes. These char-
acteristics made adaptive control find numerous ap-
plications in control problems where it has the ability 
to be automatically compensated for changes in the 
plant dynamics [1]. Model Reference Adaptive Control 
(MRAC) is considered one of the most popular types 
of adaptive controllers for its straight adaptive strat-
egy with adjustable parameters [2].

This adaptive effect will be given through a  
reference model, where the error between the real 
plant (system) and the reference model will be used 
to modify its parameters to make the plant output 
follow the reference model response [3]. As a result, 
MRAC will force the real plant to track the referen-
ce system, which has been chosen precisely. In the 
area of self-tuning controllers, MRAC is considered 
very popular. It is a robust control that can deal 
with disturbances and rapid changes in the parame-
ters despite not needing a priori information about 
the bounds of the uncertainties or the time-varying 
parameters [4]. An example of a system requiring 
adaptive control is an aircraft, which when flying 
will reduce its mass at a slow rate as it consumes 
fuel. In this case, the controller needs to adapt itself 
continuously.

As for the controller to be used inside the MRAC, 
the Linear Quadratic Regulator (LQR) was chosen, as 
it is one of the most utilized techniques for the feed-
back control design [5]. Optimal feedback LQR is one 
of the tools that might be implemented for stability 
improvement of the system performance, where a set 
of optimal feedback gains may be found by using mi-
nimization of a quadratic index [6].

The challenge of using the LQR application is the 
adjustment process that is used to find the elements 
of both weighting matrices Q and R. Therefore, for 
the LQR that will be used, the genetic algorithm (GA) 
optimization method will be used for Q and R adju-
stment. The GA has advantages over other optimiza-
tion methods due to its ability to deal with complex 
problems and different optimization. For instance, it 
can deal with the linear or nonlinear, or with a sys-
tem with random noise [7-10]. The MRAC that uses 
the GA to optimize its parameters and mechanism 
is called Genetic Model Reference Adaptive Control 
(GMRAC).

The proposed GMRAC will be applied on a ball and 
beam system whose open loop is inherently unstable. 
This system has some uncertainty about its model 
due to the many assumptions considered when de-
riving the model. Also, this system is linked directly 
to real control problems in settings such as in an air-
plane: for instance, issues have arisen in horizontal 
stabilizing during landing, turbulent airflow, and au-
tomatic ball balancers in optic disk drivers [11]. Ano-
ther problem of this system is nonlinearity where the 
open loop transfer function is nonlinear; to overcome 
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where x is the position of the ball (m) and v is the con-
trol voltage [12]. Table 1 shows the parameter values 
that have been used.

Tab. 1. Parameters of the ball-beam system

Parameters Value 

Mass of ball (Mball) 0.0327 kg

Electric resistor (R) 4.7 ohms 

Electromotive force constant (K) 4.91 Nm/A

Ball radius (Rb) 0.01 m 

Moment of inertia (Jbm) 0.062 kg/m2

It is crucial to notice that the system model  
depending on the physical and electrical laws in 
Equations 1 and 2 was depending on some assump-
tions. For instance, there is no slip between the ball 
and beam and the gearbox of the motor does not 
have backlash.

The final model after the assumption and simplifi-
cations will be represented in Equations 3 and 4.
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where the input is the voltage (v) and the outputs are 
θ and x.

this problem, linearization with the modern state  
space method will be used around the horizontal re-
gion [12]. Although the model of the system has been 
linearized, it still represents typical systems in real 
life (e.g., horizontal stabilization of airplanes during 
landing) [12-14].

This paper deals with the design of the adaptive 
controller with a model reference scheme using the 
MIT rule. The principle of this work is to adjust the 
controller parameters in order to make the output of 
the plant (process) follow the output of the reference 
model for the same input.

2.  Mathematical Model of Ball and Beam 
System

The ball-beam system involves a beam whose posi-
tion can be adjusted by using an electrical motor 
and a ball that rolls on the top of the beam. This 
system has two degrees of freedom: one is for the 
rolling up and down of the ball, while the second 
one is from the beam rotating around its central 
axis. For this system, the torque generated by the 
motor will be used to control the ball position on 
the beam.

The mathematical model of the ball and beam sys-
tem has been explained in detail by many researchers, 
depending on the mathematical equations that drive 
the model of the system [12, 15-20]. Figure 1 shows 
the sketch of the system that this mathematical mo-
del is drawn from, including the torque balance of the 
beam as well as the force balance.

Fig. 1. Sketch map of the system [11]

Many analyses must be completed to derive the 
mathematical model of the system. Firstly, the analy-
sis of the balance force (Fb) depending on Newton’s 
law, and the torque balance of the motor (T motor), 
must be completed. Next, the equation of the used DC 
motor must be derived. All equations analyzed will be 
represented in state space, which can be used with 
state space control methods.

The mathematical model may be expressed in 
state space form. The parameters that need to be 
controlled are the beam tilt angle (θ), the rate of 
change in θ, the ball position (x), and the rate of 
change in x.
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and there are many methods to select its value.  
In this paper, we have used the GA adjustment 
mechanism.

As the MIT rule is a gradient scheme which aims to 
minimize the squared model error e2 [22], the change 
in the parameter is in the negative gradient of J.

If the process is linear with the transfer function 
while the k.G(s) equation is unknown, the underlying 
design provides a system with the transfer function 
km.G(s), where the value of Km is known [2, 23]. From 
Equation 5:

 ( ) ( ) ( ) ( ) ( )= − m cE s KG s U s k G s U s  (8)

Defining a control law:

 ( ) ( )θ= cU s U s  (9)

Substituting Equation 9 in Equation 8:

 ( ) ( ) ( ) ( ) ( )θ= −c m cE s kG s U s k G s U s  (10)

Taking the partial derivative:
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Substituting Equation 12 in Equation 7,
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Equation 13, which shows the law for adjusting the 
parameter θ, can be represented in Figure 3 as such:

Fig. 3. MIT rule for adjusting feed forward gain

A reference model, whose pole positions determi-
ne the stability of the whole system, has been selec-
ted. For the output ym, which is the desired position 
of the ball on beam x, the input of the reference model 
is Uc(s), which is the voltage to the motor that rotates 

3. MRAC Methodology
Adaptive controllers generally consist of two loops: 
the outer loop (normal feedback loop), and the inner 
loop (parameter adjustment loop). The traditional 
MRAC strategy is used to adjust the controller param-
eters so that the response of the actual plant follows 
the response of the reference model, where both have 
the same reference input.

Whitaker proposed a MRAC in 1958 whose block 
diagram is illustrated below (Fig. 2) [21].

Fig. 2. Basic block diagram of a model-reference 
adaptive control (MRAC) system

The reference model Gm(s) is used to create an 
optimal response of the adaptive system to the refe-
rence input Uc(s).

The adjustable parameters are implemented to 
describe the controller while the values of θ depend 
on the adaptation gain. The most important block in 
the system is the “adjustment mechanism,” which is 
considered the heart of the MRAC, and its determina-
tion is crucial. For this work, the MIT rule has been 
chosen as the parameter adjustment mechanism, 
which is originally used in MRAC.

For perfect tracking between the output of the 
plant (y) and the output of the reference model (ym), 
the squared model cost function must be minimized, 
so that the error function can be minimized.

Using Equation 5, the error between y and ym can 
be determined.

 ( ) ( ) ( )= −  mE s y s y s  (5)

According to the MIT rule, the cost function is  
defined as:

 
( ) ( )θ
θ =

2

2
e

J  (6)

where θ, the controller parameter vector, is an adjust-
able parameter used to minimize J to zero. The pa-
rameter adjustment mechanism showed in Equation 
3 is called the MIT rule.

 
θ γ γ

θ θ
∂ ∂

= − = −
∂ ∂

 d J ee
dt

 (7)

where the ∂e / ∂θ component is the derivative of 
the sensitivity of the error while γ is the adaptation 
gain. Both indicate the error changing with respect 
to θ. The selection of γ is crucial to reduce the error  
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For the LQR controller, the cost function used to 
find values of Q, R, which are the control input (θ), is 
represented in Equation 15. The goal is to reduce its 
value to the minimum.

 
( )

0
  T T

c cJ x Q x U R U dt
∞

= +∫  (15)

where R can be defined as the control-weighting ma-
trix and Q is the state-weighting matrix. They are usu-
ally square and symmetric, and their choosing will be 
used to penalize the control signal and state variables 
respectively. Choosing a larger R means keeping the 
control input u(t) smaller to keep J small, while choos-
ing a larger Q means keeping the state variables x(t) 
smaller.

The other element that needs to be found is  
the P matrix, which represents the solution of 
the Algebraic Riccati equation, and it is given in  
Equation 16.

 
1 0T TPA A B Q PBR P P−+ + − =  (16)

To find the K matrix, Equation 17 can be used.

 
1   TK R B P−=  (17)

The optimal control signal (u) can be found using 
Equation 18.

 ( ) u K X t= −  (18)

where 1 2K k k kn = …… , 1 2
T

X x x xn = …… 

for our system, n=4, where the system has four 
state variables. The closed-loop system that has the 
optimal Eigen values is given by:

 ( )     cx A x A B K x= = −  (19)

The genetic algorithm is a random search method 
that copies the process of natural evolution. The GA 
begins with no awareness of the accurate solution 
while relying on the response from its environment 
and evolution operators to find the best solution. 
The application of the basic operations permits the  
creation of new individuals, which have the opportu-
nity to be better than their parents.

The process above will keep repeating until it re-
aches individuals that represent the optimal solution.  
The architecture of the GA is shown in Figure 5  
(Fig. 5) [25, 26, 27].

The tuning procedure using the GA starts with the 
definition of the chromosome representation (θ) 
where 11 22 33 44, , , ,=   q q q q Rθ . As illustrated in  
 Figure 6, the chromosome is defined by five values 
that correspond to the five gains to be adjusted in or-
der to achieve satisfactory behavior. [28]

the beam forward and backward. Reference model 
parameters have been selected so that the poles of 
the transfer function at x1 and x2 are placed on the 
left half of the s-plane. For the selected system, the 
ball-beam system, the most important specifications 
that need to be considered are the overshoot and set-
tling time. This is so that the ball will reach its desi-
red position in a specific time (settling time) while 
not going far from the desired position (overshoot). 
For this research, the required % OS <= 10%, while  
Ts<= 3 sec.  To achieve these values, the transfer func-
tion with poles x1, 2= -2.5 ± i1.3229 will be chosen for 
the reference model.

The transfer function Gm(s) of the reference  
model is defined as:

( ) ( )( )= = =
+ + + +2

1 2

8
5 8

m m
m

c

y k
G s

U s x s x s s
 (14)

4.  MRAC with LQR Controller and GA 
Optimization Method

As the adjustment mechanism requires a method to 
choose θ values, the GA optimization method will be 
used with the MRAC. This combination is called the 
Genetic Model Reference Adaptive Control (GMRAC). 
Figure 4 shows the schematic representation of GM-
RAC (Fig. 4).

The error between the outputs of the reference mo-
del and the plant is used to drive the linear quadratic 
regulator (LQR) controller parameters. The reference 
model is designed based on both control specifications 
and the position controller.  This appropriate selection 
of a reference model leads to the stabilization of the 
entire system. To design the genetic adaptive control-
ler, the behavior of the ball and beam system with the 
output of the reference model will be used.

The genetic algorithm (GA) can be applied to tune 
the weight matrices Q and R of the LQR controller 
gains, which are unknown and approximated to refe-
rence values per requirement, to ensure an optimal 
control performance at nominal operating conditions. 
By using the approximation and adaptation of the  
reference model, the error derivatives will be calcula-
ted based on the GA [24].

Fig. 4. GA-tuned LQR controller based on model- 
reference approach
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Tab. 2. Continued.

GA property Value/Method

Fitness Function ( ) ( )2

2

e
J

θ
θ =

Selection Method
Normalized Geometric

Selection

Probability Of
Selection

0.05

Crossover Method Scattering

Mutation Method Uniform Mutation

Mutation Probability 0.01

5. MRAC Simulation and Results
The simulation of the GMRAC with the system 
has been carried out with MATLAB and the Simu-
link in order to examine its effectiveness. MAT-
LAB has m-files that can be used to build the 
controller and the optimization method; in the 
same time, Simulink can be used to show the re-
sults and analyze them. The first step of the simu-
lation is running the GA program. For the GA, the 
convergence curve for each gain is called a par-
ticle. These particles, q11, q22, q33, q44 and R, are 
plotted in Figure 7 with population size 50 to give 
an initial idea how the GA converged to its final  
value.

Fig. 7. Convergence curve for Q and R matrices of 
LQR Controller with population size 50 and reference 
model Gm

The control weight matrix R and the state ma-
trix Q obtained below are usually square and  
symmetric.
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R= 0.349986
After finding the Q and R-values, the closed loop 

poles of the system and controller are:

Fig. 5. Simulation flow chart for the computation of  
GA-LQR controller parameters

Fig. 6. Chromosome Definition [ ]θ = ,Q R

Choosing the suitable GA tuning strategy to pick 
the target work is considered to be the most essential 
step, and it has been utilized to assess the fitness va-
lue of every chromosome.

The objective function, J, is the sum of the square 
error between the tracking errors of ball-beam and 
the reference model along the same trajectory. It is 
crucial to use the squared error in the objective func-
tion in order to have more accurate results for smaller 
values of error.

 ( )2 / 2mJ y y= ∑ −
 

where y is the system response, while ym is the model 
response.

The genetic algorithm parameters chosen for the 
purpose of tuning are shown in Table 2. They were 
chosen depending on the system specifications, whe-
re these parameters are different from one system to 
another.

Tab. 2. Parameters of GA.

GA property Value/Method

Population Size 50

Maximum Number Of
Generations

100

(continued)
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method, the genetic algorithm (GA) has been used for 
parameter tuning of the LQR controller.

A test of these results has been performed on 
SIMULINK, and the results show satisfactory per-
formance. Adaptation of LQR based on MRGAC tech-
niques improves the performance of the system, thus 
bringing up quick tracking and steady state control 
(% OS <= 10%, while Ts<= 3 sec).

AUTHORS
Abdulla I. Abdullah* – Systems and Control Engineer-
ing Department, Ninevah University, Mosul, 40001, 
Iraq, E-mail: abdullah.abdullah@uoninevah.edu.iq.

Ali Mahmood – Systems and Control Engineering 
Department, Ninevah University, Mosul, 40001, Iraq, 
E-mail: ali.mahmood@uoninevah.edu.iq.

Mohammad A. Thanoon – Systems and Control  
Engineering Department, Ninevah University, Mosul, 
40001, Iraq, E-mail: mohammed.alsayed@uoninevah.
edu.iq.

*Corresponding author

References
[1] P. Jain and M. J. Nigam, “Design of a Model Ref-

erence Adaptive Controller Using Modified 
MIT Rule for a Second Order System,” vol. 3, no. 
4,2013, pp. 477–484.

[2] M. Mohan and P. CP, “A model reference adaptive 
pi controller for the speed control of three phase 
induction motor” International Journal of Engi-
neering Research and, vol. V5, no. 07, 2016.

[3] X.-J. Liu, F. Lara-Rosano, and C. W. Chan,  
“Model-reference adaptive control based on 
Neurofuzzy Networks,” IEEE Transactions on 
Systems, Man and Cybernetics, Part C (Ap-
plications and Reviews), vol. 34, no. 3, 2004,  
pp. 302–309.

[4] S. Kersting and M. Buss, “Direct and indirect 
model reference adaptive control for multivar-
iable piecewise affine systems,” IEEE Transac-
tions on Automatic Control, vol. 62, no. 11, 2017,  
pp. 5634–5649.

[5] A, Abdulla, I. Mohammed, and A. Jasim.  
“Roll control system design using auto tuning 
LQR technique.” International Journal of Engi-
neering and Innovative Technology, V7, no. 01, 
2017.

[6] L. Lublin and M. Athans, “Linear quadratic regu-
lator control,” in The Control Systems Handbook: 
Control System Advanced Methods, Second Edi-
tion, 2010.

  = − − − ± _ 108.87 ;  1.81; 0.9  1.55 P cl i  

In addition, the solution of the algebraic Riccati 
equation matrix P can be found to be:

 

 
 
 =
 
 
 

39.4176 22.1122 22.7911 0.2022
22.1122 18.7683 26.1233 0.2340
22.7911 26.1233 54.8376 0.4954
0.2022 0.2340 0.4954 0.0091

P

 

Finally, the feedback gain matrix K can be found 
using Equation 17. After running the simulation for 
the whole system, the response control law u is shown 
in Figure 8.

Fig. 8. Response of control law u

The response of the LQR controller tuned by the 
GA, according to the fitness function with reference 
model (Gm), are illustrated in Figure 9.

Fig. 9. Response of ball-beam using MRGAC-LQR 
controller for reference model Gm

6. Conclusion
In this paper, the model of the ball-beam system has 
been presented and discussed in detail, and a linear-
ized model with the modern state-space method has 
been used around the horizontal region. A Model Ref-
erence Adaptive Control (MRAC) using the MIT rule 
with the LQR controller was designed to control the 
position of a ball over a beam.  As an optimization 

mailto:abdullah.abdullah@uoninevah.edu.iq
mailto:ali.mahmood@uoninevah.edu.iq
mailto:mohammed.alsayed@uoninevah.edu.iq
mailto:mohammed.alsayed@uoninevah.edu.iq


81

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  16,      N°  3       2022

Articles 81

and non-model based control approaches,” Int.  
J. Smart Sens. Intell. Syst., vol. 5, no. 1, 2012.

[19] D. Colón, Y. Smiljanic Andrade, A. M. Bueno,  
I. Severino Diniz, and J. Manoel Balthazar. “Mod-
eling, control and implementation of a Ball and 
Beam system.” In 22nd International Congress of 
Mechanical Engineering-COBEM. 2013.

[20] M. Nokhbeh and D. Khashabi, “Modelling and 
Control of Ball-Plate System,” Math. Model., 
2011.

[21] K. B. Pathak Scholar, “MRAC BASED DC SERVO 
MOTOR MOTION CONTROL,” Int. J. Adv. Res. Eng. 
Technol., vol. 7, no. 2, 2016.

[22] S. A. Kochummen, N. E. Jaffar, and A. Nasar, “Mod-
el Reference Adaptive Controller designs of 
steam turbine speed based on MIT Rule,” 2016.

[23] M. Swathi and P. Ramesh, “Modeling and analy-
sis of model reference adaptive control by using 
MIT and modified MIT rule for speed control of 
DC motor,” 2017.

[24] W. Alharbi and B. Gomm, “Genetic Algorithm  
Optimisation of PID Controllers for a Multivaria-
ble Process,” Int. J. Recent Contrib. from Eng. Sci. 
IT, vol. 5, no. 1, 2017.

[25] N. Razmjooy, M. Ramezani, and A. Namadchian, 
“A new LQR optimal control for a single-link flex-
ible joint robot manipulator based on grey wolf 
optimizer,” Majlesi J. Electr. Eng., vol. 10, no. 3, 
2016.

[26] A. Mahmood, M.Almaged, and A. Abdulla.  
“Antenna azimuth position control using 
fractional order PID controller based on ge-
netic algorithm.” In IOP Conference Series: Ma-
terials Science and Engineering, vol. 1152, no. 1,  
p. 012016. IOP Publishing, 2021.

[27] A. Mahmood, A. Abdulla, and I. Mohammed, 
“Helicopter Stabilization Using Integer and Frac-
tional Order PID Controller Based on Genetic  
Algorithm,” 2020.

[28] P. Shen, “LQR control of double inverted- 
pendulum based on genetic algorithm.” In 2011 
9th World Congress on Intelligent Control and  
Automation, pp. 386-389. IEEE, 2011.

[7] Y. S Dawood, A. K Mahmood, and M. A Ibrahim,  
“Comparison of PID, GA and Fuzzy Logic 
Controllers for Cruise Control System,” Int. 
J. Comput. Digit. Syst., vol. 7, no. 05, 2018,  
pp. 311–319.

[8] V. Dhiman, G. Singh, and M. Kumar, “Modeling 
and control of underactuated system using LQR 
controller based on GA,” in Lecture Notes in Me-
chanical Engineering, 2019.

[9] A. G. Pillai, E. R. Samuel, and A. Unnikrishnan, 
“Analysis of optimised LQR controller using ge-
netic algorithm for isolated power system,” in 
Advances in Intelligent Systems and Computing, 
2019, vol. 939.

[10] X.-S. Yang, “Genetic Algorithms,” Nature-Inspired 
Optim. Algorithms, pp. 91–100, Jan. 2021

[11] M. Rezaee and R. Fathi, “A new design for au-
tomatic ball balancer to improve its perfor-
mance,” Mech. Mach. Theory, vol. 94, 2015,  
pp. 165–176.

[12] E. A.Rosales, “A Ball-on-Beam Project Kit,” Proc. 
22nd …, 2004.

[13] M. Shah, R. Ali, and F. M. Malik, “Control of ball 
and beam with LQR control scheme using flat-
ness based approach,” 2019

[14] X. Li and W. Yu, “Synchronization of ball and 
beam systems with neural compensation,” Int. J. 
Control. Autom. Syst., vol. 8, no. 3, 2010

[15] C. G. Bolívar-Vincenty and Beauchamp-Báez, 
“Modelling the Ball-and-Beam System From 
Newtonian Mechanics and from Lagrange Meth-
ods,” Twelfth LACCEI Lat. Am. Caribb. Conf. Eng. 
Technol., vol. 1, 2014.

[16] Mr. Hrishikesh R. Shirke and Dr. Prof. Mrs. N. R. 
Kulkarni, “Mathematical Modeling, Simulation 
and Control of Ball and Beam System,” Int. J. Eng. 
Res., vol. V4, no. 03, Mar. 2015.

[17] F. A. Salem “Mechatronics design of ball and 
beam system: education and research,” Mecha-
tronics vol. 5, no. 4, 2015.

[18] M. Keshmiri, A. F. Jahromi, A. Mohebbi, M. H. 
Amoozgar, and W. F. Xie, “Modeling and control 
of ball and beam system using model based 


