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Abstract:
The features of the synthesis of neural controllers for 
the car speed control system are considered in this ar-
ticle. The task of synthesis is to determine the weight 
coefficients of neural networks that provide the imple-
mentation of proportional and proportional-integral-
derivative control laws. The synthesis of controllers is 
based on an approach that uses a reversed model of 
the standard. A model of the car speed control system 
with the use of permitting subsystems has been devel-
oped, with the help of the synthesized controller that is 
connected under certain specified conditions. With the 
iterative programming and mathematical modeling en-
vironment in MATLAB, and using the Simulink package, 
a structural scheme for controlling the speed of the car 
was constructed and simulated using synthesized neural  
 controllers.

Keywords: neural controller, PID-algorithm of control, 
dynamic object, neural networks, electric car, speed 
 control

1. Introduction
In recent human activities, different computerized 
 devices and systems have been widely incorporated 
in various fields, especially in the automotive and avi-
onics industries [1-12].

These possibilities come up during the design, si-
mulation, and testing processes [13-16] as well as in 
the ordinary exploitation period of a concrete product 
[17-23]. Controllers that use neural network systems 
achieve an effective speed control in both electric and 
traditional cars [24-30].

2.  Mathematical Model of the Car Movement
The task of any automatic control system’s creation 
is to supplement the managed object with external 
links that would allow processes to proceed accord-
ing to certain predefined criteria. The choice of these 
criteria is primarily determined by the fact that the 
purpose of the automatic control system is to ensure 
the output of the controlled object at any point in 
time. The controlled value is as close as possible to 
the specified.

For the most part, automatic control systems 
 consist of non-linear elements that are covered by 
complex feedbacks. The operation of such systems in 
the real world is affected by a variety of noises, inter-
ferences, and other disturbing factors, which signifi-
cantly limit the use of modern and classical control 
theory in the construction of controllers [31-36]. In 
recent decades, management strategies have used 
theories based on the idea of a system  linearization, 
which does not fully reflect its physical properties. 
In some cases, even when the dependencies betwe-
en the inputs and outputs of the system are accura-
tely reproduced, their use cannot provide adequate 
control of the system. Therefore, artificial neural 
networks are increasingly used in synthesizing con-
trol algorithms. This method considers  object fe-
atures that the network must reproduce, and its 
training is conducted based on the input and output 
data that characterizes the processes that run in 
the object [37, 38]. In general, the neural controller 
is implemented into the automatic control system  
(Fig. 1).

The main attention here is focused on the possibi-
lity of choosing the proper controller type. Meanwhi-
le, the creation of the controller architecture itself is 
out of the scope of this research because this task has 
already been described in detail [37].

Let us assume that the architecture of the neu-
ral controller is known and while training, it is only 
necessary to determine its weighting factors. In this 
case, the neural controller complements the nonline-
ar object so that when submitting any valid sequen-
ce rk, the formed system is as close as possible to the 
standard (ideally yrk = yk). Since one needs to know 
the input and output signals to train a neural network, 
then a neural controller can be trained if the following 
are known:

1. setting signal at the input of the neural control-
ler (sequence rk);

2. feedback signal of the output object (sequence 
yk);

3. the object’s input and the corresponding sequ-
ence yk, which is taken from its output. Using 
the model of the inverted reference, based on 
the sequence yk, it is possible to obtain an input 
sequence of the reference rk, which, when fed to 
the controller input of the system, will cause its 
reaction uk.
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When the reference is simple, this training sche-
me has several significant advantages. The process 
of building a model of the inverted reference is much 
simpler than the process of building a model of the 
inverted object. There are two ways to convert the 
reference in the classical sense: the first is to solve 
reference equation relative to the input variable, and 
the second is to construct a model inversion using 
 SIMULINK [39, 40]. One of the most effective ways to 
reverse a reference is to build a neural network-based 
inverted model (Fig. 2).

Let us consider using a neural network controller 
to control the speed of a car [39]. For example, let us 
look at the car movement on an inclined plane surfa-
ce (Fig. 3). Let us consider the main external forces 

applied to the car, i.e., the thrust force of the engine Fe 
(or in the case of its negative value, the braking  force) 
transmitted through the wheels; the aerodynamic for-
ce due to the wind action Fw,; and the projection of 
gravity on the longitudinal axis of the car Fh. 

The equation of a car’s motion under Newton’s se-
cond law can be written as follows:

 = − − ,e w hmx F F F  (1)

where m is the mass of the car, x is the displacement, 
and Fe is the magnitude of the force for which the 
maximum and minimum values are given, i.e., the 
maximum thrust of the engine and the maximum 
braking force, respectively.

Fig. 1. Automatic control system with neural controller implementation

Fig. 2. The general scheme of the neural controller training, using the neural model of the inverted reference
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There are accepted limits of thrust change and car 
weight [39]:

 − ≤ ≤ =m2000 2000   and   1000 kg .eF  (2)

The aerodynamic force is directly proportional to 
the drag coefficient CD, the frontal area of the car A and 
the speed pressure P, which is determined as  follows:

 
ρ

=
2

,
2
VP  (3)

where ρ is the air density, and V is the speed, which in-
cludes speed of the car and the speed of the wind Vw.

Suppose that there is given a value of a relation as 
follows [39]:

 

ρ
= 0,001,

2
DC A

 (4)

and the wind speed is described by the following ex-
pression [39]:

 Vw = 20sin(0.01t). (5)

Thus, the aerodynamic force is determined by the 
following equation:

 = + 20.001( 20sin(0,01 )) .wF x t  (6)

Since the considered surface of the road is not ho-
rizontal, the angle between the longitudinal axis of 
the car and the horizontal plane surface is given by 
the following equation [39]:

 θ = 0.0093 sin(0.0001 ).x  (7)

The equation of the projected gravity force is writ-
ten in the following form:

 Fh = 30sin(0.0001x). (8)

As can be seen from equations (1)-(8), the car 
 speed simulation system cannot be represented by a 
linear differential equation or a transfer function. The 
nonlinearity of the model eliminates the  possibility 

of using classical methods of controller synthesis 
[35, 36]. That is why the synthesis of controllers is 
carried out using artificial neural network technology 
[38]. To ensure a high performance using the princi-
ple of a variable structure [39], the  implementation 
is  carried out by a permitting subsystem. While 
 operating a car movement speed control system, 
the use of any controller is necessary to fulfill the 
 following  requirements:

1. ensuring that the car reaches set speed value 
without over-adjusting;

2. providing the specified system performance.

The dynamics of the processes that occur in the 
speed control system of the car depend on both the 
type and parameters of the selected controller and the 
given car of a nonlinear model. As such, it is  necessary 
to determine the effectiveness of the process  control 
system in a nonlinear object in the implementation of 
various control laws [41]. That means that the pro-
portional (P) and  proportional-integral-derivative 
(PID) controllers, based on neural networks,  follow 
their testing in the speed control system model.

This type of prepared model of the car speed con-
trol system, using P and PID controllers based on 
neural networks, is presented below (Fig. 4). The pro-
per results of such a system simulation, namely  the 
 advantages of a control system using a PID  controller 
(Fig. 5b), compared to a system based on a P control-
ler (Fig. 5a), are shown in Figure 5.

The advantages of the PID controller in compari-
son with P controller are the shorter transition time 
and the practical identity of settled and adjustable 
quantities behavior in the transition mode. It should 
also be noted that the weight coefficients of the PID 
and P controllers, obtained in the neural network 
training course, ensure the absence of oscillations of 
the original value in both transient and  steady-state 
modes. Thus, based on the simulation results, it can 
be concluded that to provide a predetermined per-
formance of the car speed control system using P and 
PID controllers, it is advisable to switch on the PID 
controller on the first stage of the control process, 
and the P controller should be used when the diffe-
rence between the given and real speeds reaches a  
small value.

Today, to solve such problems, variable structure 
systems are used [39]. To provide the necessary para-
meters of the control process, when reaching the dif-
ference between the reference and the output values 
of the setpoint, the switching of individual functional 
units is envisaged. In such systems, monitoring of the 
adjustable value is carried out during the operation 
of the system and when it reaches a certain value, 
the corresponding control algorithm is switched on 
by way of logical blocks. The switching procedure 
is possible due to the modular structure of the sys-
tem, which can be used as a subsystem in the com-
position of more complex systems. These systems are 
used in robotic complexes, and in transport, as well 
as in controlling the operation of electric motors and 

Fig. 3. Car position on an inclined plane surface
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 generators. In such cases, considering the features of 
the object, the model of one object can be replaced 
with the model of any other object.

Let us consider the features needed to create a 
system with a variable structure to control the speed 
of the car [39]. There is a constructed model of the car 
speed control system at the application of the princi-
ple of variable structure (Fig. 6).

The model consists of a speed setting unit, a car 
model, controllers made based on neural networks, 
a subsystem of choice of operating modes of control-
lers and output units (oscilloscopes and display). The 
system model uses the mode selection subsystem 
(Fig. 7).

The inputs of the subsystem are given a known 
and real value for the speed and their difference is de-
termined, which is simultaneously fed to the inputs 
of the unit of calculation of the module and the diffe-
rentiator. The resulting module value is fed to one of 

the inputs of the relational operator “<=”, the second 
input of which is connected to the output of block C1. 
The output of the differentiator via the module cal-
culator is fed to the first input of relational operator 
“<=”, the second input of which is connected to the 
output of block C2.

The operation of the mode selection subsystem 
is as follows. If the absolute value of the speed error 
is greater than the threshold value set in block C1 
and the rate of change of the error signal is greater 
than the threshold value set in block C2, then the PID 
controller is used. The PID controller cycle continu-
es until the difference between the set and real spe-
eds reaches the value set in block C1, and the rate of 
change of the error signal is less than the value set in 
block C2. In all other cases, the P controller is used. 
Without any grounds for justification, the established 
limits and thresholds were used only to demonstrate 
the operation of the system with variable structure.

Fig. 4. Model of the car speed control system using P controller and PID controller based on neural networks

Fig. 5. Results of system modeling using neural PID controller (a) and P controller (b)
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Relational operators “<=” determine the activation 
of a controller as follows:

< −

< −
PID controller, if

1

                                     2  

        set real

set real

C X X
dC X X
dt

 (9)

> −

> −

             
P   contro ller, if

1

                                     2  

set real

set real

C X X
dC X X
dt

 (10)

The result of model operation with such mode 
selection subsystem when using synthesized neuro-
controllers is shown in Fig. 8, and the graphs of the 
resolution signals of PID (b) and P (c) controller sub-
systems are shown in Fig. 9.

The created mode selection subsystem accelerates 
the speed setting and provides the required statistic 
error value (Fig. 9a). Therefore, the synthesis of con-
trollers based on artificial networks and the use of 
criteria for switching on and switching controllers are 

Fig. 6. Model of the car speed control system using the principle of variable structure

Fig. 7. The controller operation mode choosing subsystem
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Fig. 8. Operational diagram of the car speed control system with the mode selection subsystem using synthesized 
neurocontrollers

Fig. 9. Graphs of error (a), switch permissions of PID controller (b) and P controller (c) subsystem signals
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effective. It is advisable to use this type of subsystem 
in the model of the car speed control system using the 
principle of variable structure.

3. Conclusion
We have investigated a system with a variable 
 structure that can be used to control the speed of a car 
described by a nonlinear differential equation  using 
the SIMULINK environment.

The structure of the system uses both proportio-
nal and proportional–integral-derivative controllers 
made based on neural networks. In the simulation 
process, the available difference between the referen-
ce and the output values of the setpoint can be achie-
ved (for example, the speed of the car as well as the 
car acceleration).

To provide the necessary parameters of the control 
process by means of permitting subsystems, its sepa-
rate functional units are switched. This model can be 
used not only in the transport application, but also in 
several other areas especially in robotic complexes, as 
well as in the control of the operation of electric  motors 
and generators. In those cases, the model of the car 
may be replaced by the model of any other object. 

The switching procedure is possible due to the 
modular structure of the control system, which can 
be used as a subsystem in the composition of more 
complex systems.
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