
37

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles 37

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

FDA*: A FOCUSED SINGLE‐QUERY GRID BASED PATH PLANNING ALGORITHMFDA*: A FOCUSED SINGLE‐QUERY GRID BASED PATH PLANNING ALGORITHMFDA*: A FOCUSED SINGLE‐QUERY GRID BASED PATH PLANNING ALGORITHMFDA*: A FOCUSED SINGLE‐QUERY GRID BASED PATH PLANNING ALGORITHM

Submitted: 4th October 2021; accepted: 9th February 2022

Mouad Boumediene, Lamine Mehennaoui, Abderazzak Lachouri

DOI: 10.14313/JAMRIS/3‐2021/17

Abstract:
Square grid representations of the state‐space are a com‐
monly used tool in path planning. With applications in
a variety of disciplines, including robotics, computatio‐
nal biology, game development, and beyond. However,
in large‐scale and/or high dimensional environments the
creation andmanipulation of such structures become too
expensive, especially in applicationswhen an accurate re‐
presentation is needed.

In this paper, we present a method for reducing the
cost of single‐query grid‐based path planning, by focu‐
sing the search to a smaller subset, that contains the
optimal solution. This subset is represented by a hyper‐
rectangle, the location, and dimensions of which are cal‐
culated departing from an initial feasible path found by a
fast search using the RRT* algorithm.We also present an
implementationof this focused discretizationmethod cal‐
led FDA*, a resolution optimal algorithm, where the A*
algorithm is employed in searching the resulting graph
for an optimal solution. We also demonstrate through si‐
mulation results, that the FDA* algorithm uses less me‐
mory and has a shorter run‐time compared to the classic
A* and thus other graph‐based planning algorithms, and
at the same time, the resulting path cost is less than that
of regular RRT based algorithms.

Keywords: motion planning, grid‐based, path planning,
mobile robots

1. Introduction
Motion planning for robots has received a sub‑

stantial amount of attention in the last two decades,
due to the increasing integration of robots in modern
industry and even in many tasks of our daily lives.
In addition to this, motion planning plays a key role
in autonomous robot navigation, and numerous
other disciplines such as computational structural
biology [1, 18], crowd simulation [14, 19], and video
game development [2].
The fundamental problem to be solved is how to
compute a path that allows the robot to move from
an initial to a target location in the state‑space while
avoiding the surrounding obstacles. One of the most
common approaches to solving this problem is to
discretize the continuous state space, through a de‑
terministic grid with a pre‑de�ined resolution. From
there the implicit graph within this grid is searched
using graph search algorithms, such as A* [6] and
Dijkstra’s [3], to obtain a resolution‑optimal solution
to the problem.

Fig. 1. Example of FDA* in a 2D Euclidean space with
random obstacles, the new state‐space represented by
the blue borders is discretized and searched by the A*
algorithm and finally the resolution optimal path is
generated between the start and goal states

This is known as grid‑based path planning, however,
the number of grid cells required for this process
grows exponentially with the number of the state
space dimensions. in addition to this, the grid reso‑
lution needed for an accurate representation often
leads to extremely large search spaces which cause
the use of grids to be costly in terms of time and
memory resources.
Furthermore, in large‑scale environments, only a
small subset of grid cells will contribute to �inding the
optimal solution especially if the distance between
the start and goal states is relatively small, therefore
cells outside of this subset will only consumememory
space that could otherwise be allocated for other
purposes.
�owever, �inding the optimal path is not always a
requirement. In some instances of the path planning
problem, only an obstacle‑free path is needed. In
such a case many cheaper solutions can be applied.
For example, various stochastic algorithms avoid
creating expensive grids altogether, and instead,
generate random samples in the planning domain to
incrementally grow a search tree in the free space.
The Rapidly‑exploring Random Trees (RRTs) pre‑
sented by Laval [12] is one of these algorithms, it
ef�iciently provides an obstacle‑free path, making it
useful, especially in high dimensional environments.
We also mention the RRT* presented by Karaman
and Frazzoli [8], which converges to the optimal
solution asymptotically, as the number of iterations
approaches in�inity.

While discretizing the full state‑space using a grid
canget expensive in largeor/andhighdimensional en‑
vironments, one possible solution is to discretize only
a smaller subset of the planning domain, under the a

39

38

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles38

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

condition that the optimal solution belongs with cer‑
tainty to this subset. The states outside this subset are
therefore not necessary for the computation of the op‑
timal path and they will only constitute a burden on
the available resources. This subset as in [5]and [15],
can be described by a prolate hyper‑ellipsoid, and the
calculation of its dimensions is carried out departing
from the cost of an initial feasible path, which can be
obtained ef�iciently by conducting a low‑cost search
using stochastic algorithms such as those mentioned
above.
In this paper, we present an ef�icient method for grid
discretization of the state‑space to be used by grid‑
based planning algorithms. In this method, we consi‑
der discretizing only a rectangular subset, that tightly
bounds the ellipsoidal subset where the optimal path
is guaranteed to be found. For that purpose, RRT* is
used to rapidly obtain an initial path, that can then
be used for calculating the boundaries of this infor‑
med subset.Wealso present an implementation of this
method, we call it FDA*(focused discretization A*),
where the A* algorithm is used to plan the optimal
path in the obtained grid .
FDA* uses FD(focused discretization) to improve upon
classic grid‑based algorithms in terms of storage‑
space and execution time, exploiting the fact that a lo‑
wer number of states have to be handled using FD. The
rest of the paper is organized as follows:
Section 2 provides a formulation of the path plan‑
ning problem and a review of the related work in‑
cluding a comprehensive overview of the RRT* algo‑
rithm. Section 3 presents the focused discretization
(FD), a method for building size‑ef�icient grids for the
use of single query grid‑based planning algorithms. In
section 4, an implementation of the focused discreti‑
zation method called FDA* is presented. As for section
5, it is devoted to the presentation of the results of
several experiments conducted on FDA* and A* al‑
gorithms, to compare the performance of our algo‑
rithmwith the classical grid‑based planners. Section 6
provides interpretations and presents drawn conclu‑
sions regarding results presented in section 5. Finally,
section 7 concludes the paper with thoughts of future
work.

2. Background
2.1. Problem Definition

In our proposed algorithm, we tackle two variati‑
ons of the path planning problem, namely the feasible
and the optimal planning. Therefore, in this section
and similarly to [7] we will formally de�ine these two
variants and provide some notations that will be used
in the rest of this paper.

Let X ⊆ Rn be the open set that represents the
state‑space of the planning problem, where n ≥ 2.
Let Xobs � X be the obstacle region, that is con‑
sisted of the states in collision with obstacles, and
Xfree = X/Xobs be the free space. Let xstart ∈ Xfree

be the initial state, and xgoal ⊆ Xfree be the goal re‑
gion. Since we are dealing with a 2‑Dimensional state

space, let d2(x1, x2) be the 2‑D Euclidean distance
between two arbitrary states x1, x2 ∈ X2.
Feasible path planning is concerned with generating
π : [0, 1] �→ Xfree, an obstacle‑free path, where
π(0) = xstart and π(1) ∈ Xgoal if such a path exists,
otherwise it returns failure.
The optimal planning in the other hand deals with the
generation of a path π∗ such that :
(i) π∗ : [0, 1] �→ Xfree, where π∗(0) = xstart and
π∗(1) ∈ Xgoal.
(ii) C(π∗) = min

π∈
∑C(π).

where C is the cost function, and ∑ is the set of all
nontrivial paths from xstart to xgoal, however if no
such path exists then it returns failure.

2.2. Related Work

The early work on path planning was generally
dominated by classical methods such as: arti�icial
potential �ields (APF) [9], roadmaps, and cell decom‑
position [13].
The APF method proposed by Khatib in 1986 deals
with the environment as a continuous state space,
and use it to generate a scalar �ield, where the robot is
attracted to the goal and repulsed from the obstacles.
Cell decomposition methods on the other hand build
a graph by discretizing the continuous state‑space
using cell decomposition techniques, and converting
the problem to a graph search problem .
Approximate cell decomposition is a class of cell de‑
composition, that overlays a grid with a deterministic
resolution over the state space, and then generates a
route in this grid by searching the embedded graph
within it. Hence, this is usually known as grid‑based
path planning .

Grid‐basedpath planning Among the graph search al‑
gorithms used in this approach, A* is one of the most
famous methods, it �inds the optimal path in a graph
using a heuristic function uponwhich its ef�iciency de‑
pends heavily. Later, many variations of the A* algo‑
rithm were developed to deal with its limitations.
D*(dynamic A*) [17] allows for ef�icient online re‑
planning in partially known as well as dynamic envi‑
ronments. LPA*(life long A*) [11] uses heuristics to fo‑
cus the replanning process when the implicit graph’s
topology or its edges costs change. However, these two
algorithms come with high memory costs [17].
D* Lite [10] builds on LPA* but avoids the reordering
of the priority queue, achieving a lower computatio‑
nal cost than LPA*, and guarantees an ef�iciency equal
or greater than that of D*with a lower memory con‑
sumption than both of them. Field D* [4] uses linear
interpolation during re‑planning to calculate accurate
path cost estimates for arbitrary positionswithin each
grid cell, generating paths with a continuous range of
headings as opposed to other A* variants mentioned
above.

40

39

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles 39

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Stochastic methods The high memory and computa‑
tion time requirements needed for grid‑based plan‑
ners in large search spaces inspired the development
of incremental stochastic planning methods such as
RRT, where random samples are drawn from a uni‑
form distribution over the planning domain, and then
used to build a search tree in the free space. Howe‑
ver, since RRT produces only a feasible sub‑optimal
path, it was necessary to develop an optimal random
sampling‑based algorithm, and so RRT*was proposed
by Karaman and Frazzoli in 2011 [8], where the con‑
cept of tree rewiring was used in order to enhance the
paths extended by the tree using new samples. This al‑
gorithm is therefore considered to be asymptotically
optimal since the cost of the generated paths approa‑
ches the optimum as the number of iterations approa‑
ches in�inity, however, the rate of convergence to that
optimal solution remained an issue.
In 2014 Gamel, Srinvansa, and Barfoot [5] presented
a focused version of RRT* called informed‑RRT*, they
�irst use RRT* to �ind an initial path between the start
pose and the goal region, this initial path is then used
to calculate an ellipsoidal subset from which the new
samples will be drawn instead of the full state space,
focusing the search to only include this subset, which
contains the states that may improve the initial path,
they also proved that the informed RRT* outperforms
RRT* in terms of convergence rate, �inal cost, and the
ability to deal with narrow passages.

Learning‐Based Methods recently, new learning‑
based algorithms were widely applied to solve path
planning problems.
MPN(motion planning Networks) [16] developed by
Qureshi et al, uses a neural motion planner called
MPNet to plan a path from a start to a goal position
directly from a provided point cloud and proved to be
more ef�icient and consistent than the state of the art
BIT* algorithm.
in [20], the authors implemented a policy‑based
search method that can improve planning times by
learning implicit sampling distributions for particular
environments, however, this method doesn’t offer
a solution for all types of problems, environments
with narrow passages for example are still a serious
challenge. [7] also proposes a method for sampling
biasing, they use a conditional variational autoen‑
coder (CVAE) to construct a nonuniform sampling
distribution, but the need for a lot of preprocessed
conditional information, and the fact that it is a
multi‑process generative model demands a great deal
of time and effort for predicting the whole sampling
distribution [21].

2.3. RRT*
Algorithm 1 describes the operation of the RRT*

algorithm: It builds a tree rooted at the initial state
xstart. At each iteration, a sample is drawn from a uni‑
form distribution over X . If the new sample is loca‑
ted in anobstacle free location, the algorithmproceeds

Algorithm 1:RRT ∗(X,xstart, xgoal)

1: V ←{xstart},E ←∅
2: T ← (V,E)
3: cinit ←∞
4: for k ∈ {1, ...,K} do
5: xrand ← Sample(X)
6: Xnearest ←Nearest(T, xrand)
7: xnew ← Steer(xnearest, xrand)
8: if ObstacleFree(Xnearest, Xnew) then
9: V ← V ∪ {xnew}

10: Xnear ← Near(T, xnew, rRRT∗)
11: xmin ← xnearest

12: cmin ← cost(xmin) + d2(xnearest, xnew)
13: for all xnear ∈ Xnear do
14: cnew ← cost(xnear) + d2(xnear, xnew)
15: if cnew < cmin then
16: if CollisionFree(xnear, xnew) then
17: xmin ← xnear

18: cmin ← cnew
19: end if
20: end if
21: end for
22: E ← E ∪ {(xmin, xnew)}
23: for all xnear ∈ Xnear do
24: cnear ← cost(xnear)
25: cnew ← cost(xnew) + d2(xnew, xnear)
26: if cnew < cnear then
27: if CollisionFree(xnew, xnear) then
28: xparent ← Parent(xnear)
29: E ← E {(xparent, xnear)}
30: E ← E ∪ {(xnew, xnear)}
31: end if
32: end if
33: end for
34: if IsGoalState(xnew) then
35: return Cinit ← cost(xnew)
36: end if
37: end if
38: end for
39:
40: return Cinit

by extracting its nearest neighbor in the tree (line 6)
xnearest. The function steer then chooses an obsta‑
cle free con�iguration between these two labeled xnew

so that it minimizes the distance d2(xnearest − xnew)
while maintaining d2(xnew − xrand) ≤ nwhere n is a
prede�ined value .
If the path fromxnearest toxnew does not cross any ob‑
stacles, xnew is added to the RRT* vertex list (line 9).
The algorithm then loops through the set of the near
neighbors of xnew in the tree, and �ind the best parent
for xnew from that set, a parent that provides the mi‑
nimum cost to come to xnew from xstart through the
tree. After that, the algorithm rewires the tree using
xnew , by assigning it as the new parent of any node
in its neighborhood, if the cost to come to that node
through xnew is better than the cost to come through
its old parent. The algorithm then keeps iterating until
a termination condition is met.

41

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

condition that the optimal solution belongs with cer‑
tainty to this subset. The states outside this subset are
therefore not necessary for the computation of the op‑
timal path and they will only constitute a burden on
the available resources. This subset as in [5]and [15],
can be described by a prolate hyper‑ellipsoid, and the
calculation of its dimensions is carried out departing
from the cost of an initial feasible path, which can be
obtained ef�iciently by conducting a low‑cost search
using stochastic algorithms such as those mentioned
above.
In this paper, we present an ef�icient method for grid
discretization of the state‑space to be used by grid‑
based planning algorithms. In this method, we consi‑
der discretizing only a rectangular subset, that tightly
bounds the ellipsoidal subset where the optimal path
is guaranteed to be found. For that purpose, RRT* is
used to rapidly obtain an initial path, that can then
be used for calculating the boundaries of this infor‑
med subset.Wealso present an implementation of this
method, we call it FDA*(focused discretization A*),
where the A* algorithm is used to plan the optimal
path in the obtained grid .
FDA* uses FD(focused discretization) to improve upon
classic grid‑based algorithms in terms of storage‑
space and execution time, exploiting the fact that a lo‑
wer number of states have to be handled using FD. The
rest of the paper is organized as follows:
Section 2 provides a formulation of the path plan‑
ning problem and a review of the related work in‑
cluding a comprehensive overview of the RRT* algo‑
rithm. Section 3 presents the focused discretization
(FD), a method for building size‑ef�icient grids for the
use of single query grid‑based planning algorithms. In
section 4, an implementation of the focused discreti‑
zation method called FDA* is presented. As for section
5, it is devoted to the presentation of the results of
several experiments conducted on FDA* and A* al‑
gorithms, to compare the performance of our algo‑
rithmwith the classical grid‑based planners. Section 6
provides interpretations and presents drawn conclu‑
sions regarding results presented in section 5. Finally,
section 7 concludes the paper with thoughts of future
work.

2. Background
2.1. Problem Definition

In our proposed algorithm, we tackle two variati‑
ons of the path planning problem, namely the feasible
and the optimal planning. Therefore, in this section
and similarly to [7] we will formally de�ine these two
variants and provide some notations that will be used
in the rest of this paper.

Let X ⊆ Rn be the open set that represents the
state‑space of the planning problem, where n ≥ 2.
Let Xobs � X be the obstacle region, that is con‑
sisted of the states in collision with obstacles, and
Xfree = X/Xobs be the free space. Let xstart ∈ Xfree

be the initial state, and xgoal ⊆ Xfree be the goal re‑
gion. Since we are dealing with a 2‑Dimensional state

space, let d2(x1, x2) be the 2‑D Euclidean distance
between two arbitrary states x1, x2 ∈ X2.
Feasible path planning is concerned with generating
π : [0, 1] �→ Xfree, an obstacle‑free path, where
π(0) = xstart and π(1) ∈ Xgoal if such a path exists,
otherwise it returns failure.
The optimal planning in the other hand deals with the
generation of a path π∗ such that :
(i) π∗ : [0, 1] �→ Xfree, where π∗(0) = xstart and
π∗(1) ∈ Xgoal.
(ii) C(π∗) = min

π∈
∑C(π).

where C is the cost function, and ∑ is the set of all
nontrivial paths from xstart to xgoal, however if no
such path exists then it returns failure.

2.2. Related Work

The early work on path planning was generally
dominated by classical methods such as: arti�icial
potential �ields (APF) [9], roadmaps, and cell decom‑
position [13].
The APF method proposed by Khatib in 1986 deals
with the environment as a continuous state space,
and use it to generate a scalar �ield, where the robot is
attracted to the goal and repulsed from the obstacles.
Cell decomposition methods on the other hand build
a graph by discretizing the continuous state‑space
using cell decomposition techniques, and converting
the problem to a graph search problem .
Approximate cell decomposition is a class of cell de‑
composition, that overlays a grid with a deterministic
resolution over the state space, and then generates a
route in this grid by searching the embedded graph
within it. Hence, this is usually known as grid‑based
path planning .

Grid‐basedpath planning Among the graph search al‑
gorithms used in this approach, A* is one of the most
famous methods, it �inds the optimal path in a graph
using a heuristic function uponwhich its ef�iciency de‑
pends heavily. Later, many variations of the A* algo‑
rithm were developed to deal with its limitations.
D*(dynamic A*) [17] allows for ef�icient online re‑
planning in partially known as well as dynamic envi‑
ronments. LPA*(life long A*) [11] uses heuristics to fo‑
cus the replanning process when the implicit graph’s
topology or its edges costs change. However, these two
algorithms come with high memory costs [17].
D* Lite [10] builds on LPA* but avoids the reordering
of the priority queue, achieving a lower computatio‑
nal cost than LPA*, and guarantees an ef�iciency equal
or greater than that of D*with a lower memory con‑
sumption than both of them. Field D* [4] uses linear
interpolation during re‑planning to calculate accurate
path cost estimates for arbitrary positionswithin each
grid cell, generating paths with a continuous range of
headings as opposed to other A* variants mentioned
above.

40

40

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles40

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

In our case and at this point, we are only concerned
with �inding a feasible path, this means that when the
RRT* tree reaches the goal region (line 34), the algo‑
rithm should be terminated. Also Amaximumnumber
of iterations K can be assigned to the RRT* loop, after
which we consider the algorithm to have failed in �in‑
ding the solution, and thus we return Cinit, which in
this case still have its initial value∞ [8] [5].

3. Focused Discretization

Fig. 2. This figure shows the ellipsoidal subsetXs in the
case of a 2‐D path planning problem calculated
departing from the initial path between xstart and xgoal

of cost Cinit insideXr which is the rectangular subset
that tightly boundsXs where its width and height are
equal toXs’s diameters it is used to mark the new
boundaries of the state‐space to be discretized

In this paper, we are applying the concept of focu‑
sed search from [8], in the context of grid‑based plan‑
ning, to decrease the high consumption of resources,
that generally accompanies the use of grids in state‑
space discretization.
First, let Cinit be the cost of a path π that connects
xstart and xgoal, and let Cx = f(x) + g(x) be the
cost of the optimal path π∗, that is constrained to in‑
clude the state x ∈ X , where f(x) = d2(xstart, x) and
g(x) = d2(x, xgoal). Therefore, we can de�ine a sub‑
setXs ⊆ X that consists exclusively of the states that
ful�ill the following inequality, Cx ≤ Cinit, allowing
these states to be components of a path with a lower
cost than Cinit. And since the objective here is to �ind
the optimal path, Xs can be a good basis for focusing
the search process.
According to the condition above, Xs is an n‑
dimensional prolate hyper‑ellipsoid, in the 2D case
it is represented as an ellipse with xstart and xgoal

as its focal points and D1 = Cinit and D2 =√
C2

init − C2
min as its transverse and conjugate diame‑

ters, where Cmin = d2(xstart, xgoal) [5]. In order to
successfully use a regular square grid for the discre‑
tization procedure we need to de�ine another subset
Xr ⊆ X , a hyper‑rectangle that tightly boundsXs and
represents the new boundaries of the state‑space as
shown in �igure 2. And �inallyXr can be used instead
of X in grid‑based path planning, saving a substan‑
tial amount of resources that can be allocated to other
tasks.

4. FDA*
FDA* is an implementation of the focused discre‑

tization concept discussed in the preceding section,

which results in amore cost‑effective grid‑based plan‑
ning as shown by the results presented in the next
section. The pseudo‑code for FDA* is shown in algo‑
rithm 2.
The procedure followed by grid‑based methods can
often be divided into two phases. The discretization
phase where the original state‑space is subdivided
using a grid with an initial resolution then comes the
planning phase where a graph search algorithm is
used to obtain the optimal path within this grid. If no
path was returned, the planner can increment the re‑
solution and start again from phase 1. This procedure
continues until either a solution is found or some ot‑
her termination condition is triggered.

The only difference between FDA* and classic grid‑
based planning using A*is the introduction of lines 2
and 3 in algorithm 2. Where the RRT* algorithm is
executed �irst for a few iterations until an initial path
is found(line2). Its cost Cinit is then passed to the
function new_bounds as an argument, along with the
original planning domain X and the xstart and xgoal

con�igurations. This functionwill subsequently return
the vertices of the rectangleXr that tightly bounds the
ellipsoidal subsetXs .
Following this, the new state‑space is discretized (line
4), generating a square grid Gr that can be �inally se‑
arched by the A* algorithm in order to compute the
resolution optimal path between xstart and xgoal.

Algorithm 2: FDA∗(X,Cinit, xstart, xgoal)

1: Lr ← initialize to the original domain
2: Cinit ← RRT ∗(X,xstart, xgoal)
3: Lr ← new_bounds(X,Cinit, xstart, xgoal)
4: Gr ← discretiz(X,Lr)
5: A∗(Gr)

5. Results and Simulations
Initially in this section, we will present the results

of an experiment designed for demonstrating the per‑
formance of ourmethod regardingmemory consump‑
tion, and thenwewill display the outcomes of an expe‑
rimental comparison between FDA* and the classical
A*, aimed for highlighting the difference in execution
time between these two algorithms.

Each one of these experiments is conducted by
executing a large number of Monte‑Carlo simulations
in environments populated with randomly generated
(30x30) pixels obstacles. In addition to this, the obsta‑
cle density will be varied to create environments with
different complexities (examples are shown in �igure
3). It is important to note that the density levels used
inour experiments donot exceed32%sincemost real‑
life applications operate within these limits.

It should also be noted that both of these experi‑
ments are implemented with the same un‑optimized
code which eliminates any effects code‑ef�iciency
might have on the results of the comparison, also all
experiments were run on the same 2.3GHz Intel i5 8th
gen processor, 8GB memory machine.

42

41

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles 41

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

(a) 3% (b) 11% (c) 31%

Fig. 3. Examples depicting some the of the
environments used in the conducted experiments (a) a
low density environment (b) a medium density
environment (c) a high density environment

Fig. 4. Comparison between the average memory space
consumed by FDA* and A* algorithms

Fig. 5. The average percentage of memory space saved
using FDA* instead of the classic A* algorithm

5.1. Memory Use
In this �irst experiment, we ran �onte‑�arlo simu‑

lations for both the new proposed (FDA*) and A* al‑
gorithms in a 1200x1200 pixels map, while keeping
a constant distance between the start and goal positi‑
ons. Each time a simulationwas executed, thememory
space allocated for each algorithm was recorded, and
at the end, the results were averaged and �inally illus‑
trated in �igure 4.
This experiment showsamarkeddrop inmemory con‑
sumption for the FDA* algorithm compared with A*,
which is also displayed in �igure 5, where their ratio
is illustrated, showing an average of 92% reduction in
terms of memory usage in relatively simple environ‑
ments, such as environment (a) in �igure 3. And even
though this percentage decreases in more clustered
spaces with narrow passages, more complex environ‑

Fig. 6. Average execution time needed by FDA* and A*
for finding the optimal path in 2‐D environments with
varying obstacle densities and a constant distance
between the start and goal poses

ments still reach an average of 83 % reduction.

5.2. Execution Time
In an experimental comparison, we ran both FDA*

and the classical A* algorithm through the same num‑
ber of simulations as the �irst experiment, in an envi‑
ronment of 600x1200 pixels and recorded then avera‑
ged the execution time for both of them.
Figure 6 shows the results of this experiment where
we can clearly see that our algorithm is faster in envi‑
ronmentswhere the obstacle density is less than15%,
which is considered to be the range where most of the
real‑life applications operate in. However, beyond that
our algorithm is out‑preformedby the conventional A*
path planning. Similar to the second experiment, se‑
veral additional experiments were performed by va‑
rying only the size of the map. Table 1 illustrates the
results where we can clearly see that the density from
where our algorithmbecomes slower than A* gets hig‑
her with the increase of the problem scale, giving our
algorithm the upper hand in relatively large‑scale pro‑
blems.

6. Discussions and Conclusions
In the course of this paper, we discuss improving

the expensive process of grid‑based state‑space dis‑
cretization in single query path planning problems,
through cropping the search space to only include
a small subset, represented by a hyper‑rectangle, in
which the optimal solution can be found.
By doing so, we eliminate the states that are unneces‑
sary for �inding the optimal path and thus reduce the
amount of resources dedicated to this process.

�e have demonstrated in the �irst experiment,
that focusing the discretization process can immen‑
sely decrease the memory requirements, especially in
large‑scale environments. The Focused Discretization
technique bene�its from the fact that in such environ‑
ments a considerable amount of states does not con‑
tribute to solving the optimal path planning problem,
and by discarding them, we save the memory space
needed for storing these states.

43

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

In our case and at this point, we are only concerned
with �inding a feasible path, this means that when the
RRT* tree reaches the goal region (line 34), the algo‑
rithm should be terminated. Also Amaximumnumber
of iterations K can be assigned to the RRT* loop, after
which we consider the algorithm to have failed in �in‑
ding the solution, and thus we return Cinit, which in
this case still have its initial value∞ [8] [5].

3. Focused Discretization

Fig. 2. This figure shows the ellipsoidal subsetXs in the
case of a 2‐D path planning problem calculated
departing from the initial path between xstart and xgoal

of cost Cinit insideXr which is the rectangular subset
that tightly boundsXs where its width and height are
equal toXs’s diameters it is used to mark the new
boundaries of the state‐space to be discretized

In this paper, we are applying the concept of focu‑
sed search from [8], in the context of grid‑based plan‑
ning, to decrease the high consumption of resources,
that generally accompanies the use of grids in state‑
space discretization.
First, let Cinit be the cost of a path π that connects
xstart and xgoal, and let Cx = f(x) + g(x) be the
cost of the optimal path π∗, that is constrained to in‑
clude the state x ∈ X , where f(x) = d2(xstart, x) and
g(x) = d2(x, xgoal). Therefore, we can de�ine a sub‑
setXs ⊆ X that consists exclusively of the states that
ful�ill the following inequality, Cx ≤ Cinit, allowing
these states to be components of a path with a lower
cost than Cinit. And since the objective here is to �ind
the optimal path, Xs can be a good basis for focusing
the search process.
According to the condition above, Xs is an n‑
dimensional prolate hyper‑ellipsoid, in the 2D case
it is represented as an ellipse with xstart and xgoal

as its focal points and D1 = Cinit and D2 =√
C2

init − C2
min as its transverse and conjugate diame‑

ters, where Cmin = d2(xstart, xgoal) [5]. In order to
successfully use a regular square grid for the discre‑
tization procedure we need to de�ine another subset
Xr ⊆ X , a hyper‑rectangle that tightly boundsXs and
represents the new boundaries of the state‑space as
shown in �igure 2. And �inallyXr can be used instead
of X in grid‑based path planning, saving a substan‑
tial amount of resources that can be allocated to other
tasks.

4. FDA*
FDA* is an implementation of the focused discre‑

tization concept discussed in the preceding section,

which results in amore cost‑effective grid‑based plan‑
ning as shown by the results presented in the next
section. The pseudo‑code for FDA* is shown in algo‑
rithm 2.
The procedure followed by grid‑based methods can
often be divided into two phases. The discretization
phase where the original state‑space is subdivided
using a grid with an initial resolution then comes the
planning phase where a graph search algorithm is
used to obtain the optimal path within this grid. If no
path was returned, the planner can increment the re‑
solution and start again from phase 1. This procedure
continues until either a solution is found or some ot‑
her termination condition is triggered.

The only difference between FDA* and classic grid‑
based planning using A*is the introduction of lines 2
and 3 in algorithm 2. Where the RRT* algorithm is
executed �irst for a few iterations until an initial path
is found(line2). Its cost Cinit is then passed to the
function new_bounds as an argument, along with the
original planning domain X and the xstart and xgoal

con�igurations. This functionwill subsequently return
the vertices of the rectangleXr that tightly bounds the
ellipsoidal subsetXs .
Following this, the new state‑space is discretized (line
4), generating a square grid Gr that can be �inally se‑
arched by the A* algorithm in order to compute the
resolution optimal path between xstart and xgoal.

Algorithm 2: FDA∗(X,Cinit, xstart, xgoal)

1: Lr ← initialize to the original domain
2: Cinit ← RRT ∗(X,xstart, xgoal)
3: Lr ← new_bounds(X,Cinit, xstart, xgoal)
4: Gr ← discretiz(X,Lr)
5: A∗(Gr)

5. Results and Simulations
Initially in this section, we will present the results

of an experiment designed for demonstrating the per‑
formance of ourmethod regardingmemory consump‑
tion, and thenwewill display the outcomes of an expe‑
rimental comparison between FDA* and the classical
A*, aimed for highlighting the difference in execution
time between these two algorithms.

Each one of these experiments is conducted by
executing a large number of Monte‑Carlo simulations
in environments populated with randomly generated
(30x30) pixels obstacles. In addition to this, the obsta‑
cle density will be varied to create environments with
different complexities (examples are shown in �igure
3). It is important to note that the density levels used
inour experiments donot exceed32%sincemost real‑
life applications operate within these limits.

It should also be noted that both of these experi‑
ments are implemented with the same un‑optimized
code which eliminates any effects code‑ef�iciency
might have on the results of the comparison, also all
experiments were run on the same 2.3GHz Intel i5 8th
gen processor, 8GB memory machine.

42

42

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles42

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Tab. 1. Comparison of the performance of FDA* with
the classic A* algorithm regarding execution time in
different scale environments

env dimensions
(pixels)

start‑goal
distance
(pixels)

obstacle density
from which
FDA* becomes
out‑performed

1 512 x 512 300 0 %
2 700 x 700 300 16 %
3 900 x 900 300 16.50 %
4 1200 x 1200 300 19.37 %
5 1500 x 1500 300 21 %

We have further shown that this approach can reduce
the overall time required to �ind the optimal solution
in low and medium obstacle density environments,
where most of the real‑world applications operate.
This is a result of the lower number of states (i.e.grid
cells), which reduces the time needed for reading and
writing the grid into memory, and thus reducing the
overall execution time of grid‑based planners.
Moreover, these effects are ampli�ied in large‑scale en‑
vironments where even a greater number of states do
not contribute to the optimal path planning.
This was made clear by comparing FDA*, to our im‑
plementation of Focused Discretization with the clas‑
sical approach, using A* as a graph search algorithm
for both of them. The results presented in �igure 5
con�irms the superiority of our technique in medium
and low dense environments, this is due to the RRT*
fast planning combined with the effect of the reduced
number of states to be handled, resulting in the overall
FDA * computation time being better than that of the
conventional A*.
As the obstacles density increases, it becomes more
dif�icult for the RRT* algorithm to �ind an initial path,
causing our method to have an overhead in extremely
clustered environments with narrow passages. Howe‑
ver, the density in which our algorithm starts to be
out‑performed seems to grow higher as the problem
domain grows in size, and that is caused by the higher
number of states handled by the classical approach.
The path length generated by FDA* is theoretically the
same as A*, due to the fact that A* is used as a planner
in the second stage of FDA* after the �irst stage (focu‑
sed discretization) is done, line 5 in algorithm 2. FDA*
however, is more ef�icient in generating this solution.
Such ef�iciency is the result of focusing the discreti‑
zation process to a smaller subset of the state space,
which leads to consuming less time and memory re‑
sources.

7. Future Work
In the future, we intend to investigate the possibi‑

lity of using a learning‑based technique for estimating
the focused subset instead of the stochastic approach,
this would immensely save the valuable computatio‑
nal and storage resources, increasing the ef�iciency of
our proposedmethodmaking itmore suitable for real‑

time applications.

AUTHORS
Mouad Boumediene – Laboratoire Automati‑
que Skikda, Road Elhadaiek, BP.26, Skikda, Alge‑
ria, e‑mail: mouadboumediene@yahoo.fr, www:
http://vrpg.univ‑skikda.dz/las/.
Lamine Mehennaoui∗ – Laboratoire Automati‑
que Skikda, Road Elhadaiek, BP.26, Skikda, Algeria,
e‑mail: me_lamine@yahoo.fr, www: http://vrpg.univ‑
skikda.dz/las/.
Abderazzak Lachouri – Laboratoire Automatique
Skikda, Road Elhadaiek, BP.26, Skikda, Algeria,
e‑mail: alachouri@yahoo.fr, www: http://vrpg.univ‑
skikda.dz/las/.
∗Corresponding author

REFERENCES
[1] I. Al‑Bluwi, T. Siméon, and J. Cortés, “Motion

planning algorithms for molecular simulations:
A survey”, Computer Science Review, vol. 6, no. 4,
2012, 125–143, 10.1016/j.cosrev.2012.07.002.

[2] V. Bulitko, Y. Björnsson, N. R. Sturtevant, and
R. Lawrence. “Real‑Time Heuristic Search for
Path�inding in Video Games”. In: P. A. González‑
Calero and M. A. Gómez‑Martı́n, eds., Arti�icial
Intelligence for Computer Games, 1–30. 2011.
10.1007/978‑1‑4419‑8188‑2_1.

[3] E. W. Dijkstra, “A note on two problems
in connexion with graphs”, Numerische
Mathematik, vol. 1, no. 1, 1959, 269–271,
10.1007/BF01386390.

[4] D. Ferguson and A. Stentz, “Field D*: An
Interpolation‑Based Path Planner and Replan‑
ner”. In: S. Thrun, R. Brooks, and H. Durrant‑
Whyte, eds., Robotics Research, Berlin, Hei‑
delberg, 2007, 239–253, 10.1007/978‑3‑540‑
48113‑3_22.

[5] J. D. Gammell, S. S. Srinivasa, and T. D. Bar‑
foot, “Informed RRT*: Optimal sampling‑based
path planning focused via direct sampling of
an admissible ellipsoidal heuristic”. In: 2014
IEEE/RSJ International Conference on Intelli‑
gent Robots and Systems, 2014, 2997–3004,
10.1109/IROS.2014.6942976.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A For‑
mal Basis for the Heuristic Determination of Mi‑
nimumCost Paths”, IEEETransactions on Systems
Science and Cybernetics, vol. 4, no. 2, 1968, 100–
107, 10.1109/TSSC.1968.300136.

[7] B. Ichter, J. Harrison, and M. Pavone, “Learning
Sampling Distributions for Robot Motion Plan‑
ning”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018, 7087–
7094, 10.1109/ICRA.2018.8460730.

[8] S. Karaman and E. Frazzoli, “Sampling‑
based algorithms for optimal motion plan‑

44

43

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Articles 43

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

ning”, The International Journal of Robo‑
tics Research, vol. 30, no. 7, 2011, 846–894,
10.1177/0278364911406761.

[9] O. Khatib. “Real‑Time Obstacle Avoidance for
Manipulators andMobile Robots”. In: I. J. Cox and
G. T. Wilfong, eds., Autonomous Robot Vehicles,
396–404. 1990. 10.1007/978‑1‑4613‑8997‑
2_29.

[10] S. Koenig and M. Likhachev, “Fast replanning for
navigation in unknown terrain”, IEEE Transacti‑
ons on Robotics, vol. 21, no. 3, 2005, 354–363,
10.1109/TRO.2004.838026.

[11] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong
Planning A∗”, Arti�icial Intelligence, vol. 155, no.
1, 2004, 93–146, 10.1016/j.artint.2003.12.001.

[12] S. M. Lavalle. “Rapidly‑Exploring Random Trees:
A New Tool for Path Planning”. Technical report,
1998.

[13] S. M. LaValle, Planning Algorithms, Cam‑
bridge University Press: Cambridge, 2006,
10.1017/CBO9780511546877.

[14] M. C. Lin, A. Sud, J. Van den Berg, R. Gayle, S. Cur‑
tis, H. Yeh, S. Guy, E. Andersen, S. Patil, J. Sewall,
and D. Manocha, “Real‑Time Path Planning and
Navigation for Multi‑agent and Crowd Simulati‑
ons”. In: A. Egges, A. Kamphuis, andM. Overmars,
eds., Motion in Games, Berlin, Heidelberg, 2008,
23–32, 10.1007/978‑3‑540‑89220‑5_3.

[15] M. Otte and N. Correll, “C‑FOREST: Parallel Shor‑
test Path Planning With Superlinear Speedup”,
IEEE Transactions on Robotics, vol. 29, no. 3,
2013, 798–806, 10.1109/TRO.2013.2240176.

[16] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C.
Yip, “Motion Planning Networks”. In: 2019 Inter‑
national Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 2019, 2118–2124,
10.1109/ICRA.2019.8793889.

[17] A. Stentz. “The D* Algorithm for Real‑Time Plan‑
ning of Optimal Traverses”. Technical report,
Carnegie Mellon University, 1994.

[18] X. Tang, B. Kirkpatrick, S. Thomas, G. Song,
and N. M. Amato, “Using Motion Planning to
Study RNA Folding Kinetics”, Journal of Compu‑
tational Biology, vol. 12, no. 6, 2005, 862–881,
10.1089/cmb.2005.12.862.

[19] D. Thalmann and S. Raupp Musse, Crowd Si‑
mulation, Springer London: London, 2007,
10.1007/978‑1‑84628‑825‑8.

[20] C. Zhang, J. Huh, and D. D. Lee, “Learning Impli‑
cit Sampling Distributions for Motion Planning”.
In: 2018 IEEE/RSJ International Conference on In‑
telligent Robots and Systems (IROS), 2018, 3654–
3661, 10.1109/IROS.2018.8594028.

[21] T. Zhang, J. Wang, and M. Q.‑H. Meng, “Genera‑
tive Adversarial Network Based Heuristics for
Sampling‑Based Path Planning”, IEEE/CAA Jour‑
nal of Automatica Sinica, vol. 9, no. 1, 2022, 64–
74, 10.1109/JAS.2021.1004275.

45

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Tab. 1. Comparison of the performance of FDA* with
the classic A* algorithm regarding execution time in
different scale environments

env dimensions
(pixels)

start‑goal
distance
(pixels)

obstacle density
from which
FDA* becomes
out‑performed

1 512 x 512 300 0 %
2 700 x 700 300 16 %
3 900 x 900 300 16.50 %
4 1200 x 1200 300 19.37 %
5 1500 x 1500 300 21 %

We have further shown that this approach can reduce
the overall time required to �ind the optimal solution
in low and medium obstacle density environments,
where most of the real‑world applications operate.
This is a result of the lower number of states (i.e.grid
cells), which reduces the time needed for reading and
writing the grid into memory, and thus reducing the
overall execution time of grid‑based planners.
Moreover, these effects are ampli�ied in large‑scale en‑
vironments where even a greater number of states do
not contribute to the optimal path planning.
This was made clear by comparing FDA*, to our im‑
plementation of Focused Discretization with the clas‑
sical approach, using A* as a graph search algorithm
for both of them. The results presented in �igure 5
con�irms the superiority of our technique in medium
and low dense environments, this is due to the RRT*
fast planning combined with the effect of the reduced
number of states to be handled, resulting in the overall
FDA * computation time being better than that of the
conventional A*.
As the obstacles density increases, it becomes more
dif�icult for the RRT* algorithm to �ind an initial path,
causing our method to have an overhead in extremely
clustered environments with narrow passages. Howe‑
ver, the density in which our algorithm starts to be
out‑performed seems to grow higher as the problem
domain grows in size, and that is caused by the higher
number of states handled by the classical approach.
The path length generated by FDA* is theoretically the
same as A*, due to the fact that A* is used as a planner
in the second stage of FDA* after the �irst stage (focu‑
sed discretization) is done, line 5 in algorithm 2. FDA*
however, is more ef�icient in generating this solution.
Such ef�iciency is the result of focusing the discreti‑
zation process to a smaller subset of the state space,
which leads to consuming less time and memory re‑
sources.

7. Future Work
In the future, we intend to investigate the possibi‑

lity of using a learning‑based technique for estimating
the focused subset instead of the stochastic approach,
this would immensely save the valuable computatio‑
nal and storage resources, increasing the ef�iciency of
our proposedmethodmaking itmore suitable for real‑

time applications.

AUTHORS
Mouad Boumediene – Laboratoire Automati‑
que Skikda, Road Elhadaiek, BP.26, Skikda, Alge‑
ria, e‑mail: mouadboumediene@yahoo.fr, www:
http://vrpg.univ‑skikda.dz/las/.
Lamine Mehennaoui∗ – Laboratoire Automati‑
que Skikda, Road Elhadaiek, BP.26, Skikda, Algeria,
e‑mail: me_lamine@yahoo.fr, www: http://vrpg.univ‑
skikda.dz/las/.
Abderazzak Lachouri – Laboratoire Automatique
Skikda, Road Elhadaiek, BP.26, Skikda, Algeria,
e‑mail: alachouri@yahoo.fr, www: http://vrpg.univ‑
skikda.dz/las/.
∗Corresponding author

REFERENCES
[1] I. Al‑Bluwi, T. Siméon, and J. Cortés, “Motion

planning algorithms for molecular simulations:
A survey”, Computer Science Review, vol. 6, no. 4,
2012, 125–143, 10.1016/j.cosrev.2012.07.002.

[2] V. Bulitko, Y. Björnsson, N. R. Sturtevant, and
R. Lawrence. “Real‑Time Heuristic Search for
Path�inding in Video Games”. In: P. A. González‑
Calero and M. A. Gómez‑Martı́n, eds., Arti�icial
Intelligence for Computer Games, 1–30. 2011.
10.1007/978‑1‑4419‑8188‑2_1.

[3] E. W. Dijkstra, “A note on two problems
in connexion with graphs”, Numerische
Mathematik, vol. 1, no. 1, 1959, 269–271,
10.1007/BF01386390.

[4] D. Ferguson and A. Stentz, “Field D*: An
Interpolation‑Based Path Planner and Replan‑
ner”. In: S. Thrun, R. Brooks, and H. Durrant‑
Whyte, eds., Robotics Research, Berlin, Hei‑
delberg, 2007, 239–253, 10.1007/978‑3‑540‑
48113‑3_22.

[5] J. D. Gammell, S. S. Srinivasa, and T. D. Bar‑
foot, “Informed RRT*: Optimal sampling‑based
path planning focused via direct sampling of
an admissible ellipsoidal heuristic”. In: 2014
IEEE/RSJ International Conference on Intelli‑
gent Robots and Systems, 2014, 2997–3004,
10.1109/IROS.2014.6942976.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A For‑
mal Basis for the Heuristic Determination of Mi‑
nimumCost Paths”, IEEETransactions on Systems
Science and Cybernetics, vol. 4, no. 2, 1968, 100–
107, 10.1109/TSSC.1968.300136.

[7] B. Ichter, J. Harrison, and M. Pavone, “Learning
Sampling Distributions for Robot Motion Plan‑
ning”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018, 7087–
7094, 10.1109/ICRA.2018.8460730.

[8] S. Karaman and E. Frazzoli, “Sampling‑
based algorithms for optimal motion plan‑

44

