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Abstract:
The paper presents an approach to parametric optimi‐
zation with response surface methodology. This process
was performed based on the design of a construction
frame for a Cartesian industrial robot. The presented
installation is dedicated to the real industrial pick‐and‐
place application. Firstly, the case study was described
with relevant information about the components invol‐
ved. Then, the finite element model with constraints and
loads, as well as the settings of the response surface op‐
timization were discussed. The simulation was presented
to the reader within all the stages with necessary details.
Into consideration were taken six methods of creating re‐
sponse surfaces. Influence on the final optimization result
and prediction accuracy of each one was presented. In
the end, to validate the outcomes of the process, the sta‐
tic structural analysis of the setupwas computed. The pa‐
per compares the impact of applying differentmethods of
response surface generation on the results of parametric
optimization. Moreover, it indicates the most vulnerable
fragments of dynamically loaded elements made of con‐
struction profiles. Its results may be used to select appro‐
priate settings in similar applications, mainly for frame
structures.

Keywords: Cartesian robot, FEM, Industry 4.0, Optimiza‐
tion, Response surface

1. Introduction
Over the past decades, the engineering design pro‑

cess has changed signi�icantly. Computer simulations
and three‑dimensional modelling have been gaining
more and more interest since they became commer‑
cially available. In industrial mechanical engineering,
one of the most essential processes is structural ana‑
lysis. It enables determining effects such as stresses,
strains, and deformations of constructions caused by
the loads [1]. The modern approach to solving such
a problem is often based on the �inite element met‑
hod (FEM), which approximates a real solution [2] [3].
Considered frame structures may be discretized with
one‑dimensional elements with an associated speci�ic
cross‑section [4] [5].

Engineers optimize their designs regarding vari‑
ous criteria, minimal mass among others. FEM allows
tracking an impact of single structural parameters,
but this approach requires many iterations carried
out by a designer, to give satisfying results. Distribu‑
tion and maximum value of stress depend not only
on the particular cross‑sections but also on the over‑

all geometry of the structure. Moreover, the correla‑
tion between these is sometimes dif�icult to predict.
Therefore, an effective optimization process for fra‑
mes requires prior determination of all the parame‑
ters with a non‑neglectable impact on the criterium.
Afterwards, parametric optimization, a process of mi‑
nimizing de�ined outputs by searching for the corre‑
sponding values of the inputs, may be carried.

It is proposed to use the response surface metho‑
dology (RSM) for optimization, so to replace the origi‑
nal inputs‑outputs correlation model with an approx‑
imated one. This approach reduces computation time
and enables the assessment of relationships between
input and output parameters. However, at the same
time, it reduces the precision of simulations’ results.
Available response surface generation algorithms are
compared in terms of their approximation accuracy as
well as their impact on the optimization outcomes.

The following paper aims in introducing the rea‑
der to the application of the RSM in structural design.
�articularly, as more ef�icient use of materials is a key
aspect of sustainable manufacturing and Industry 4.0.
1.1. Related Works

The RSM is widely used for the planning of che‑
mical processes, where the course of reaction may be
unknown [6] [7] [8] [9] [10]. However, the applicati‑
ons of this method go beyond cases where the original
model is insuf�iciently well known. The substitutemo‑
del can support the design process from an early stage
by visualising the in�luence of design variables on key
deliverables and ensuring their optimal selection [11].
The use of RSM‑based adaptivemodels is aimed at im‑
proving accuracy [12] [13]. Whereas these generally
require more computational power and are more dif‑
�icult to implement, the basic RSMmodule is built into
ANSYS Workbench 2021.
1.2. Case Description

Industrial frames are often used as support con‑
structions for various mechanisms. In the paper, it is
attached to the Cartesian manipulator presented in
Fig. 1. It consists of four linear units driven by three
steppermotors. Every unit converts torque fromamo‑
tor into the linear force through a belt‑driven mecha‑
nism. Two of them are responsible for the motion al‑
ong with the same axis. This enables operation un‑
der higher loads. However, such an application requi‑
res assuring synchronous movement, realised by con‑
necting the drives through shafts to the common en‑
gine. The robot’s tasks contain transporting objects up
to100kg froma conveyor to boxes onEUR‑pallets. The
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analysed framewasdesigned in a Computer‑AidedDe‑
sign (CAD) environment.
1.3. FEM and RSM

The static structural analysis of the frame was
performed for the loading states resulting from the
components’ weights, dynamics of movements and
weights of the transported objects. Dynamic reacti‑
ons were traced within the multibody (MBD) analy‑
sis module during simulation operation. Their highest
values, occurring while accelerating, braking, and lif‑
ting, were converted into static loads described in the
next sections. Afterwards, they were applied as vertex
and edge loads. Conducted analyses provide informa‑
tion on stress, strain and deformation distributions in
a construction.

To perform optimization, selected dimensions of
the frame geometry and cross‑sections of the con‑
struction pro�iles are parametrised. Their various
combinations are considered and the optimal solution
is searched according to a speci�ic criterion within the
set ranges of parameters’ values.

Initially, for RSM, FEM analyses are performed for
the design points ‑ sets of parameters with diffe‑
rent values, chosen to �ill the whole range of conside‑
red hyperspace. Thanks to this, an original, complex,
unknown relationship between input and output pa‑
rameters may be substituted with approximated hy‑
perplanes [14]. Hence, the analytical gradients may
be used for the computations to accelerate them. The
estimated function is used in the optimization pro‑
cess providing results for applied objectives and con‑
straints [15]. However, due to the approximation, the
accuracy of the result may differ from the optimal.  

Fig. 1. Visual of the Cartesian robot model

1.4. Optimization
Optimization techniques are commonly used in

many different �ields of science and engineering [16]

[17] [18] [19] [20] [21] [22] [23]. They empowermore
effective usage of resources; thus cost reduction. In
the paper, Multi‑Objective Genetic Algorithm (MOGA)
[24] [25] is usedwithin the process of designing a sup‑
porting frame for a cartesian robot shown in Fig. 1. Op‑
timization algorithms are continuously developed for
a wide range of applications [26] [27] [28] [29] [30]
[31] [32]. In general, they enable systematic search
for the candidate points minimizing the loss function.
In RSM, algorithms perform computations based on
samples from the model. Alternatively, a direct opti‑
mization that performs calculations on the model it‑
self, may be used. Each sample is obtained by the ex‑
periment, not a prediction in contrast to the RSM al‑
gorithms. Thus, it requires signi�icantly more compu‑
tational power but typically results in more accurate
outcomes.
1.5. Considered Methods

The optimization process is based on static struc‑
tural stress analysis. It is aimed at �inding the most
vulnerable fragments and further mass minimization
with constraints involving a safety factor and total de‑
formation. The safety factor is calculated as a ratio of
the yield strength to the equivalent stress according to
the Huber‑Mises‑Hencky hypothesis. Six methods of
constructing response surfaces were taken into con‑
sideration:
1) genetic aggregation
2) full 2nd order polynomials
3) kriging
4) non‑parametric regression
5) neural network
6) sparse grid

Genetic aggregation is initialized with several re‑
sponse surface methods with different settings. Every
method has its parameters selected through genetic
operations such as crossover or a mutation. Additio‑
nally, the weights for them are calculated in an analo‑
gue way; so to get the �inal weighted model [33].

The full second‑order polynomials method ap‑
proximates the real model with quadratic functions. It
calculates the surfaces’ parameters so as to minimize
an error with respect to the real design points [34].

Kriging method obtains each surface as a combi‑
nation of a global function (usually a quadratic poly‑
nomial) and local functions. The global function is de‑
termined to �it best in its whole domain, while the lo‑
cal functions improve accuracy only in the neighbour‑
hood of few design points and have no effect for more
distanced ones [35] [36].

Non‑parametric regression comes to the use of
Support Vector Machine (SVM) for regression [37].
The response surface s(x1, x2, ...) is estimated in a
way that a majority of the design points are within the
e space around the surface. This space is limited with
two hyperplanes, called margins and described by the
minimal ϵ, as presented in Eq. 1.

∀(x1, x2, ..., y) ∈ e : s− ϵ ≥ y ≥ s+ ϵ (1)
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Neural network estimated output parameters are
calculated within a multiple‑layer neural network
structure. The method calculates the weights and bi‑
ases so as to minimize the error between estimations
and real values [38].

Sparse grid is an adaptive response surface met‑
hod. It self‑corrects by creating design points in the
directions expected to contain inaccurate approxima‑
tion. The sparse grid algorithm works well for almost
all problems. It is even able to estimate a response sur‑
face with multiple discontinuities [39] [40]. However,
this algorithm requiresmuchmore design points than
othermethods, to obtain accurate results (in this study
it used around 2.5 times more points). As it requires
much more computation time, it is not recommended
for simpler applications.

Each of thementioned above requires the design of
the experiment phase (DoE). It is a process of de�ining
a set of design points covering the considered ranges
of input parameters. A bottleneck of the computations
is calculating output parameters for these. Therefore,
it is preferable to initially exclude the input parame‑
ters that have amarginal impact on the loss function in
their considered ranges. For this purpose, Spearman’s
rank correlationmatrix is beingused, as it contains the
linear relationship between the parameters [41]. Va‑
lues close to zero indicate poor correlations and may
be excluded from the optimization process.

2. Plan of the Experiment
2.1. Loads

The end effector carries an object from the con‑
veyor to a box and then returns to its base position,
over the conveyor; all during a cycle of 7.64 seconds.
Within this time object needs to be gripped, transpor‑
ted and released. While gripping or releasing the ob‑
ject, the end effector should stop for 0.5 seconds. The
maximumvelocity is 1m/s for the vertical linear drive
and 6 m/s for the other drives. A motion along the
path was planned according to all these conditions,
and then, internal loads of the frame were computed
with Autodesk Inventor’s multi‑body dynamic simula‑
tion module. The resultant forces at the three potenti‑
ally most dangerous stages of motion were used after‑
wards for static structural analysis. These include:
1) lifting the object from the conveyor (load state 1);
2) vertical acceleration of the system after gripping

the object (load state 2);
3) vertical braking of the system before releasing the

object (load state 3).
Vectors of applied acceleration �ield, forces and

torque are presented in Fig. 4. Force A (610 N) is the
weight of stationary drives, while Force B (173 N) is
the weight of the engine and shafts, Vector C repre‑
sents earth gravity, and loads D‑G are dynamic reacti‑
ons of the system. Their values are gathered in Tab. 1.
The frame is relatively large compared to the moun‑
ting feet, which are to be anchored. Therefore, each
leg’s connection to the ground is modelled as �ixed
support (H).

2.2. Preparation of the Model
A model of the frame in a non‑native format was

imported to be embedded in the Ansys SpaceClaim,
where the construction pro�iles were replaced by
beam elements. The model was parametrised with
three variables represented in Fig. 2 and additionally
with construction pro�ile cross‑sections’ properties:
thickness t and size a. �nly the pro�ile, connectedwith
the engine and shafts, has been constrained with spe‑
ci�ic dimensions (150x140mm). All the oblique beams
were identically constrained with the same parame‑
ter describing their bases’ distance from the corner of
the frame. The angles between the oblique and verti‑
cal beams were taken as to 45 ◦. The input parame‑
ters were consideredwithin certain scopes being a re‑
sult of available space (e.g. front beam could not be
placed too low, as to allow replacement of the storage
boxes on pallets) and normalization standards of com‑
mercial parts. As construction pro�iles are available in
standardized series, their typical combinations of di‑
mensions were used. The corners of the pro�iles are
rounded; however, for simulation purposes, theywere
simpli�ied for the Ansys beam tool. The comparison
of the simpli�ied and real cross‑sections is presen‑
ted in Fig. 3. As proved for the initial simulation, this
simpli�ication does not signi�icantly affect the pro�iles’
moments of inertia and thus, calculated stresses and
strains.

The frame’s mesh consists of three‑node one‑
dimensional elements of a default size of 20 mm. The
element sizewas forced to 0.1mmat the ends of every
beam (see Fig. 5). The statistics of the mesh are pre‑
sented in Tab. 3. Stainless steel (from General Materi‑
als inAnsysWorkbench2021)was assigned as thema‑
terial of the construction pro�iles. Its strength parame‑
ters correspond to those of commonly used industrial
materials. They are presented in Tab. 4 in comparison
with steel used for such constructionpro�iles. The cho‑
senmaterial, X5CrNiMo17‑12‑2, is compliant with the
EN1.4401 standard,which is the equivalent of theAISI
316 standard. [42].

Fig. 2.Model of the frame geometry
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distanced ones [35] [36].

Non‑parametric regression comes to the use of
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In the end, the MOGA optimization algorithm was
used for each response surface model to minimize the
mass of the frame. Additionally, the safety factor was
constrained to remain greater or equal to 3, while the
maximum total deformation was constrained not to
exceed2mm.The settings of the algorithmarepresen‑
ted in Tab. 5. Physical properties and strength results
obtained with the optimal candidate points for all the
methods were compared with the initial ones.

Number of initial samples 5000
Number of samples per iteration 1000

Maximum allowable pareto percentage 70
Convergance stability percentage 2
Maximum number of iterations 20

Type of discrete crossover one point

Tab. 5.MOGA settings

3. Results
First of all, the equivalent stress analyseswere con‑

ducted for the initial frame design. Their results are
illustrated in terms of distribution in Fig. 6‑8 with
highlighted places of themaximumstresses occurring.
Their values are gathered in Tab. 6.

State σmax [MPa]
Lifting 8.1634

Acceleration 17.824
Braking 18.211

Tab. 6.Maximum equivalent stress

Correlation matrix is presented in Fig. 9. The �irst
�ive parameters are inputs, and the last three are out‑
puts of optimization. The correlation coef�icients be‑
tween the df and the output parameters are almost
equal to zero. Linear andquadratic trendsbetween the
df and the safety factor are illustrated in Fig. 10. They
are used to investigate the in�luence of this parameter
on the loss function.

Fit statistics and a response surface of safety factor
as a function of db and do are presented in Fig. 11‑16
for every method. The �it statistics provide accuracy

Fig. 6. Stress distribution at the load state 1

Fig. 7. Stress distribution at the load state 2

Fig. 8. Stress distribution at the load state 3

metrics of the response surface. These affect the reli‑
ability and the quality of the �inal results. The coef�i‑
cient of determination (R2, see Eq. 3) is a parameter
that denotes howwell the response surface represents
the variability of the output parameter.

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

(3)

The other metrics describe errors of the approx‑
imation. These are: Root mean square error (σ, see
Eq. 4);

σ =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

Relative maximum absolute error (σr,max, see Eq. 5)

σr,max =
1

σ
max(|yi − ŷi|) (5)

Relative average absolute error (σr,avg , see Eq. 6)

σr,avg =
1

nσ

n∑
i=1

(|yi − ŷi|) (6)
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Load State Remote Force D [N] Remote Force E [N] Remote Force F [N] Torque G [Nm]
1 0 0 3605 0
2 3448.9 0 0 26.25
3 0 3448.9 0 ‑26.25

Tab. 1. Values of loads

Stress distribution across beams is not constant
due to the internal changes in the bending moment.
Therefore, the distributions of maximum and mini‑
mum stress along a beamwere analysed. Safety factor
(FS) was calculated based on the calculated stress va‑

Fig. 3. Comparison of profiles’ cross‐sections

Fig. 4. Loads and boundary conditions applied to the
frame

Parameter Scope/Discrete values
db [mm] ⟨100; 400⟩
df [mm] ⟨400; 700⟩
do [mm] ⟨200; 820⟩
a [mm] [60, 70, 75, 80]
t [mm] [2, 3, 4]

Tab. 2. Considered scopes for the parameters

Beams Parametrised Engine mounting
Elements 16368 1119
Nodes 32751 2240

Element type Beam188 Beam188
Cross‑section a x a x t 150 x 140 x t

Tab. 3.Mesh statistics

lues, according to the formula Eq. 2.

FS =
Re

max(|σmax|, |σmin|)
(2)

Where the used symbols represent particular parame‑
ters: Re ‑ yield strength, σmax ‑ maximum combined
stress, σmin ‑ minimum combined stress.

Geometry mass, safety factor, and maximum total
deformation were set as the output parameters. FEM
analysis was performed for each load state described
in the previous sections. Afterwards, parameters cor‑
relation was checked with the analysis of the correla‑
tion matrix.

2.3. Response Surface Optimization
Response surfaces were computed with enhanced

Face‑Centred Central Composite Design (FCCCD) DoE
type [43] [44] (except sparse grid response surface,
where the sparse grid initialization was used) and ve‑
ri�iedwith 3 points not used before to create the surfa‑
ces. The DoE generally needed 53 design points, while
the sparse grid generation took 131 design points.
The results of optimization with the different appro‑
aches towards the generation of response surfaces
were compared to choose the most suitable algorithm
for similar frame constructions.

Steel Model EN 1.4401
Density [kg/m3] 7750 7950

Young’s Modulus [GPa] 193 200
Poisson’s Ratio 0.31 0.31

Yield Strength [MPa] 207 205
Ultimate Strength [MPa] 586 515

Tab. 4.Material properties for the Ansys model and the
industrial steel

Fig. 5. Frame mesh
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The response surface function is a three‑
dimensional vector function of �ive variables. As it
is impossible to represent on a single surface chart,
the single response charts of one output parameter
(safety factor) are presented dependent on two in‑
put parameters (db and do selected for this case, see
Fig. 12‑16). These speci�ic variables were chosen due
to the curvature of the surface, discussed in the follo‑
wing section.

The optimization results for every response sur‑
facemethod (named as in the �irst section) are compa‑
redwith each other andwith the ones obtained for the
initial frame design (see Tab.7). Additionally, the out‑
put parameterswere veri�ied as regular design points.
The safety factor anddeformationswere calculated for

all the three load conditions. Their extremevalues (mi‑
nimum for safety factor and maximum for deformati‑
ons) in the whole structure were used for further ana‑
lysis. As may be observed, these tend to occur under
load condition 3.

The �igures Fig. 17‑22 illustrate stress and defor‑
mation distributions for the frames optimized with
every method. As may be observed, the maxima occur
at approximately the same locations for every case,
while the global minima are variable for stress distri‑
butions.

Fig. 9. Linear correlation matrix Fig. 10. Trend between the safety factor and the df

Fig. 11. The goodness of fit and the plot of response surface of safety factor dependent on db and do for genetic
aggregation method
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Fig. 12. The goodness of fit and the plot of response surface of safety factor dependent on db and do for second order
polynomials method

Fig. 13. The goodness of fit and the plot of response surface of safety factor dependent on db and do for kriging method

Fig. 14. The goodness of fit and the plot of response surface of safety factor dependent on db and do for non‐parametric
regression method
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Fig. 12‑16). These speci�ic variables were chosen due
to the curvature of the surface, discussed in the follo‑
wing section.

The optimization results for every response sur‑
facemethod (named as in the �irst section) are compa‑
redwith each other andwith the ones obtained for the
initial frame design (see Tab.7). Additionally, the out‑
put parameterswere veri�ied as regular design points.
The safety factor anddeformationswere calculated for

all the three load conditions. Their extremevalues (mi‑
nimum for safety factor and maximum for deformati‑
ons) in the whole structure were used for further ana‑
lysis. As may be observed, these tend to occur under
load condition 3.

The �igures Fig. 17‑22 illustrate stress and defor‑
mation distributions for the frames optimized with
every method. As may be observed, the maxima occur
at approximately the same locations for every case,
while the global minima are variable for stress distri‑
butions.

Fig. 9. Linear correlation matrix Fig. 10. Trend between the safety factor and the df

Fig. 11. The goodness of fit and the plot of response surface of safety factor dependent on db and do for genetic
aggregation method
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Fig. 17. The equivalent stress distribution and the deformation at the load state 3 for genetic aggregation configuration

Fig. 18. The equivalent stress distribution and the deformation at the load state 3 for 2nd order polynomials configuration

Fig. 19. The equivalent stress distribution and the deformation at the load state 3 for kriging configuration

23

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

Fig. 15. The goodness of fit and the plot of response surface of safety factor dependent on db and do for neural network
method

Fig. 16. The goodness of fit and the plot of response surface of safety factor dependent on db and do for sparse grid
method

Method (number) 1 2 3 4 5 6 Initial Frame
db [mm] 179.69 364.25 113.33 120.67 298.31 130.04 200.00
df [mm] 429.75 456.55 409.66 417.48 662.74 419.34 600.00
do [mm] 200.43 203.82 256.25 203.61 200.64 200.20 450.00

�ro�i�e si�e [mm] 80 80 75 75 75 80 80
�ro�i�e thickness [mm] 2 2 2 2 2 2 4
Geometry mass [kg] 131.94 130.39 126.91 131.71 125.25 130.79 ‑

Safety factor 6.9842 6.6271 5.7762 6.6254 6.7461 6.8452 ‑
Maximum deformation [mm] 1.7331 1.9063 1.9924 1.9664 1.9981 1.7334 ‑
Geometry mass (�eri�ied) [kg] 131.95 132.06 126.79 124.88 124.77 131.95 276.42

Safety factor (�eri�ied) 6.7984 6.7957 6.0372 6.0982 6.1023 6.7981 11.367
Maximum deformation (�eri�ied)[mm] 1.7812 1.7814 2.0904 2.0906 2.0861 1.7798 0.8722

Tab. 7. Optimization results for different methods
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Fig. 17. The equivalent stress distribution and the deformation at the load state 3 for genetic aggregation configuration

Fig. 18. The equivalent stress distribution and the deformation at the load state 3 for 2nd order polynomials configuration

Fig. 19. The equivalent stress distribution and the deformation at the load state 3 for kriging configuration
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Fig. 16. The goodness of fit and the plot of response surface of safety factor dependent on db and do for sparse grid
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Fig. 20. The equivalent stress distribution and the deformation at the load state 3 for non‐parametric regression
configuration

Fig. 21. The equivalent stress distribution and the deformation at the load state 3 for neural network configuration

Fig. 22. The equivalent stress distribution and the deformation at the load state 3 for sparse grid configuration
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4. Discussion of the Results
According to the FEM analysis of the frame, the

parts connected to the ground are the ones with the
highest values of internal stress. They are especially
exposed to damage within load cases 1 and 3. It is the
result of the greatest local internal torque caused by
the horizontal component of the dynamic response.
Regarding this, frame structures are typically more lo‑
aded during acceleration and deceleration of the Car‑
tesian robot’s horizontal units. Moreover, the surroun‑
ding of the load application point is more stressed
than the other fragments of the frame. As the design
is overly stiff, the entire load is distributed among the
supports. Such a dependence shall occur for the frame
parts connecting the force application points with the
constraint points for the constructions with similar
stiffness properties. The longer the beam, the more
�lexible it is, and thus, transfers less load to the sup‑
port.

The correlation coef�icients of the df with the out‑
puts indicate that this parameter has almost no in�lu‑
ence on the loss function within the considered scope.
Also, an analysis of the linear and quadratic trend
graphs con�irm this theory. Therefore, it could have
been excluded from the optimization process. As ex‑
pected, the response surfaces involving this parame‑
ter indicated almost no relationship with outputs.

Regarding different methods of response surface
generation, the sparse grid obtained the best me‑
trics of quality. Genetic aggregation and kriging met‑
hods estimated geometry mass correctly. However,
their stress and deformation estimations remained
less accurate. The second‑order polynomials algo‑
rithmprovideddecent geometrymass estimations but
failed in determining stress and deformation respon‑
ses. Finally, non‑parametric regression and the appro‑
ach based on neural networks provided the worst �it‑
ting response surfaces.

The included charts of safety factors may be used
to de�ine the cause of the insuf�icient �it for response
surface models. As observed, the stress changes ra‑
pidly for the upper range of input parameters associ‑
ated with oblique beams. The tendency is similar for
the correlation between these parameters and the to‑
tal deformation.

The kriging and genetic aggregation algorithms
provide wavy response surfaces, while others, except
the sparse grid, provide smooth ones. The response
surface for the sparse grid algorithm is irregular with
a sharp geometry. It is especially visible for the hig‑
her values of the parameter related to oblique beams
and the extremal values of theparameter related to the
bottom beams. This can be observed in Fig. 12‑16, as
well as for other response surfaces not presented in
this paper.

Genetic aggregation and kriging provide accepta‑
ble metrics for learning points. However, the veri�ica‑
tions points indicate that the response surfacemodels
are less accurate. This situation may be caused by a
lack of design points especially for such a high varia‑
bility of the safety factor.

The second‑order polynomials method resulted
in poor metrics for the safety factor and deforma‑
tion estimations. This means that quadratic functions
are insuf�icient to estimate curvatures of the real re‑
sponses. Similar outcomes may be observed for non‑
parametric regression and neural networks approach.

Even though some algorithms had poor quality
metrics, all methods provided similar results of opti‑
mization. Some of them underestimated displacement
and while verifying, it turned out to exceed the boun‑
dary limit. However, as the RSM is a numerical esti‑
mation, some minor inaccuracies should be conside‑
red and acceptable. The genetic aggregation involves
signi�icantly fewerpoints and leads to almost the same
outcomes as the sparse grid, for relatively simple con‑
struction of a frame. Therefore, it is not recommended
touse sucha complexmethod if there arenoextraordi‑
nary circumstances, such as expected discontinuities
in the inputs‑outputs function.

The stress distributions in the optimized structu‑
res are similar to those for the initial design under
the same loading condition. Also, themaxima for both,
stress anddeformation, occur at the same locations for
all the methods.

5. Conclusion
The rising importance of digital technologies and

particular simulations in the design process brings
new possibilities for engineers. This arises a need to
understand the basics of numerical algorithms laying
behind these. Related knowledge and experience are
useful to select appropriate methods from their wide
range. This is especially important for FEM, as the de‑
cision onmodelling the system and setting the compu‑
tations may signi�icantly affect their results.

In frame structures, it is advisable to inspect the
connections and joints in the nearby surroundings of
the frame‑ground interface. This is necessary due to
the higher values of the stress appearing there. All the
simulations shall be run for the extremal load cases,
hence, for the greatest moment occurring nearby the
supports.

Response surface optimization is a powerful tool
to reduce mass at the early stage of design. Additio‑
nally, dependencies between input and output para‑
meters may be analysed by the engineer to empower
suboptimal manual design. Within response surface
optimization, the key aspect is to select an adequate
method for an expected characteristic of the response.
However, this may be dif�icult for multi‑output sys‑
tems with numerous variables. The previous sections
may be used as a base for the optimization of similar
frame constructions. Nevertheless, the qualitymetrics
of the models obtained with a particular method shall
be controlled at all stages. The amount of necessary
design points increases with the number of input pa‑
rameters, the span of their ranges and the complex‑
ity of the response. However, it dependsmainly on the
number of variables, as the domain of the estimated
response grows linearlywith the number of their com‑
binations.
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Fig. 20. The equivalent stress distribution and the deformation at the load state 3 for non‐parametric regression
configuration

Fig. 21. The equivalent stress distribution and the deformation at the load state 3 for neural network configuration

Fig. 22. The equivalent stress distribution and the deformation at the load state 3 for sparse grid configuration
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All the considered methods provided appropriate
optimization results. However, genetic aggregation,
kriging and the sparse grid had noticeably better accu‑
racy metrics. These methods are expected to give cor‑
rect results for similar frameconstructions; i.e. a frame
on a rectangular plan without a base and with additi‑
onal diagonal reinforcing beams �ixed in the corners,
particularly for the similar cross‑sections and overall
dimensions.

The wavy response surfaces cause a better local �it
of kriging, genetic aggregation and sparse grid met‑
hods to the design points. Therefore, they are bet‑
ter suited for nonlinear and dynamically changing re‑
sponses. However, they are less effective if the data is
noisy, e.g. for the sets with a measurement error.

The investigation may be continued in three diffe‑
rent directions. First of all, it is possible to test the ap‑
plication of RSM for more complex frames as well as
the structures with two‑ and three‑dimensional �inite
elements. The results of such an experiment should
enable forming a benchmark of geometries connected
with the best‑�itted RSM methods. Second of all, it is
possible to perform direct optimization and compare
the accuracy gain, considering the additional compu‑
tational cost. Also, the use of adaptive models for the
design of similar industrial frames can be tested. The
original research is planned to be followed up within
the �irst approach, and possibly broadened for a vari‑
ety of materials as well as manufacturing techniques.
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