
72

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 16, N° 1 2022

2022 ® Bamberger et al. This is an open access article licensed under the Creative Commons Attribution-Attribution 4.0 International (CC BY 4.0)
(https://creativecommons.org/licenses/by-nc-nd/4.0)

Migrating Monoliths to Microservices
Integrating Robotic Process Automation into the Migration Approach

Submitted: 21th July 2021; accepted: 29th of March 2022

Burkhard Bamberger, Bastian Körber

DOI: 10.14313/JAMRIS/1-2022/8

Abstract:
This research should help scholars and practitioners to
manage the transition of monolithic legacy application
systems to microservices and to better understand the
migration process, its steps, and its characteristics. It
should also provide guidance on how best to approach
the migration process. We performed a systematic lite-
rature review and analyzed migration approaches pre-
sented by other research. We propose leveraging Robo-
tic Process Automation technology to extract business
logic and create and deploy bots, which are then used to
mimic microservices. In essence, this represents a novel
use case of integrating RPA technology into the migra-
tion approach in order to reduce uncertainty and risk of
failure.

Keywords: Microservice, RPA, Monolithic Architecture,
Reverse Code Engineering, Migration

1. Introduction
Organizations increasingly rely on information tech-
nology to create value. New digital business models,
changes to business processes, and automation of
tasks previously performed by office workers require
investment in hardware and software. Management
is then tasked with deciding how to best allocate re-
sources in the field of information technology. Capi-
tal expenditure and implementation costs associated
with introducing new or updating existing application
systems are material. Therefore, management needs
to assure that the organization’s information systems
adequately support its business strategy.

Many application systems, however, were intro-
duced years ago and have been continuously cus-
tomized and upgraded. These “legacy systems” were
designed following a monolithic architecture style
that dates back to legacy mainframe computers [29].
Replacing or updating existing legacy systems to ad-
dress changes in business strategy or higher system
load requirements due to increased transactional vol-
ume is a key challenge, especially since monoliths of-
ten lack scalability.

Monolithic applications are self-contained, consist
of a single code base, include every single function-
ality, and are easily implemented [34]. Modularity,
however, is not considered as a design principle [35];

therefore, it functions within a monolith collectively
sharing resources on the host system, which limits
scalability [32]. Developing, maintaining and chang-
ing monolith applications also becomes increasingly
difficult and slow, as they tend to grow in size and
complexity [44]. Cloud services make automatic scal-
ing easy and cost-efficient; however, large monolithic
applications cannot take full advantage of these func-
tionalities [28]. Amazon, Netflix, LinkedIn, Sound-
cloud and other leading technology companies were
among the first to transition to microservices [16].

Microservices represent a fundamentally different
architectural design principle. Prioritizing decentral-
ization over centralization is the common pattern
guiding the development of distributed applications
on cloud platforms [36]. Suites of small, independent
services, sharing as little as possible, each running in
its own process, and communicating with lightweight
mechanisms are key characteristics of this architec-
tural design style [16] [17]. Each single service cap-
sules small deployable chunks of application logic,
built around business capabilities [24] which is sep-
arately developed and deployed by a small, dedicated
team [24]. This should allow for agile development
and operation [10] resulting in “high availability and
redundancy, automatic scaling, easier infrastructure
management and compliance with latest security
standards…” [8].

Therefore, microservice-based applications are
advantageous from a flexibility, scalability, complex-
ity, agility, and maintainability perspective [36]. In
microservices, business processes are split up into
separate, manageable components, as task logic is
codified within distinct, easily identifiable services.
By comparison, task logic is hard to locate and change
within monolithic systems. Since business processes
are made up of multiple “logically-related tasks per-
formed to achieve a defined business outcome” [14],
changes in corporate strategy necessitate adaptions to
the application logic. Therefore, in creating new appli-
cation systems, microservices are favored over mon-
olithic principles, as early adopters have demonstrat-
ed. In contrast, when legacy systems were designed,
applications were almost exclusively built according
to monolithic architectural principles. If monoliths
require major modifications to address new business
requirements or improve scalability, management
needs to decide whether to (a) buy and implement
new software, (b) build new application from scratch,

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Articles 73

(c) patch-up the legacy system by modifying the exist-
ing code base to reflect the desired changes or (d) mi-
grate the monolith toward microservices to improve
flexibility, scalability, agility and maintainability. This
paper researches option (d), the migration of mono-
liths to microservices.

Robotic Process Automation (RPA) is a technology
designed to automate business processes or task se-
quences without changing existing back-end systems
[46] by building and deploying digital agents that
mimic activities of human users in a variety of differ-
ent application systems [30]. This lightweight auto-
mation approach via the application´s user interface
opens up previously untapped automation potentials
due to its ease of use, speed of implementation, and
cost-effectiveness (Czarnecki & Fettke, 2021).

Despite the compelling advantages of microser-
vices, migrations are rare [35]. This may be rooted
in a perceived risk and uncertainty surrounding the
migration. Our literature review revealed that except
for comprehensive migration approaches presented
by Maisto et al. (2020) and Megargel et al. (2020),
most research focuses on code reverse engineering,
a multitude of methods aimed at extracting business
logic from the monolith’s code base. We describe
how migration processes are approached and which
steps are critical. Rather than reengineering busi-
ness logic from legacy code, we propose to use RPA
to create and deploy bots, which mimic microservic-
es. This not only provides an alternative solution to
the critical extraction phase, but the bots also serve
to improve and speed up the testing of microservic-
es. This integrated approach should help reduce risk
associated with migrating monoliths to microservic-
es and, therefore, be of interest to both academics
and practitioners.

2. Research Questions and Methods
Migrating from monolith to microservices is a com-
plex undertaking. It requires a thorough understand-
ing of the elements and characteristics of both the
starting point (monolith) and end (microservices). A
migration approach needs to address how to trans-
form crucial elements, what steps to take and which
steps warrant special attention, as they are mission
critical.

Our key research questions are: (1) What migra-
tion approaches have other researchers or practi-
tioners presented? (2) What are the benefits and
challenges associated with each approach? (3) What
alternative solutions or which modifications help re-
duce uncertainty and risk of failure?

Microservices is a relatively new design in soft-
ware architecture, having gained popularity in the
wake of cloud technology. Migrating monoliths to
microservices has received limited attention from
academia and migration to microservices is a rare
phenomenon in practice [35]. There are few earlier
studies; however, research efforts are at a preliminary
stage. Therefore, qualitative, exploratory research
seems most appropriate to establish an understand-

ing of the migration process, its steps and character-
istics, clarification on proposed approaches, as well
as new ideas complementing existing approaches.
Furthermore, it can help to structure, clarify, and pri-
oritize future research and assist practitioners with
resource allocation.

This research applies a design science approach,
aiming at introducing new and innovative artifacts as
well as the process of creating artefacts [42]. There
are three stages of the research process [21]: First, we
established the relevance of our research by inquiring
and documenting the state of the art process of mi-
gration. Then, we modified and enhanced an existing
artefact (migration approach), evaluated earlier ver-
sions and refined them. Lastly, we assured research
rigor by leveraging the existing knowledge base as
well as personal experiences and shared knowledge
with professionals in the software industry. As a re-
sult, we designed an innovative artefact to help solve
the practical problem of migrating from monolith to
microservices.

3. Literature Review
In this section, we summarize migration approach-
es by other researchers or practitioners. Our steps
of identifying, selecting and documenting relevant
sources followed the process proposed by Onwueg-
buzie et al. (2012) and O’Brian and McGuckin (2016).
We first performed an internet search on the Google
and Google Scholar platform by using the search
string “migrating monolith to microservices.” Based
on these results, we modified and applied various
alternative search strings and controlled for differ-
ent spellings and synonyms. Additional test searches
were then performed in the EBSCO, WISO, De Gruyter
and Springer repositories. As a result of our prelimi-
nary searches, we identified a literature review by
Silva Filho and Figueiredo Carneiro. Their search
was conducted on May 4, 2018, covered a period of
10 years, and yielded 95 studies, of which only 12
contributions addressed monolith to microservice
migration strategies. Of those, five articles focused on
extraction techniques: Chen et al. (2017), Escobar et
al. (2016), Baresi et al. (2017), Jamshidi et al. (2017),
and Aiello et al. (2016).

We decided to build on these findings, limited our
search to the period May 2018 through August 2020,
again refined the search strategy, and performed our
final search in the repositories listed above on Sep-
tember 1st 2020. Furthermore, we searched Scopus
and Web of Science as well as ResearchGate to assure
we did not miss relevant contributions. 48 sourc-
es were identified, of which 11 were categorized as
highly relevant. Two sources provided a comprehen-
sive migration approach: Maisto et al. (2020) and Me-
gargel et al. (2020). Another nine sources addressed
various extraction methods: Taibi and Systä (2020), Li
et al. (2019), Abdullah et al. (2019), Ma et al. (2019),
Nunes et al. (2019), Bucchiarone et al. (2020), Alwis
et al. (2019a), Pigazzini et al. (2019), and Henry and
Ridene (2020).

Articles74

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

In total, the literature review performed by Silva
Filho and Figueiredo Carneiro and our own search
yielded 16 highly relevant sources as summarized in
table 1 and 4:

Tab. 1.: General Migration Approaches (own
illustration)

General Migration
Approaches

Authors

Three phases
Six phases

Maisto et al. (2020)
Megargel et al. (2020)

General migration approaches provide a compre-
hensive, sequential phase model, which describes
each stage of the migration from monolith to mi-
croservice.

Maisto et al. (2020) proposes a three-step model,
starting with the decomposition phase, in which the
application´s source code is analyzed and candidates
for microservices are identified. Next, in the microser-
vice production and ranking phase, designers receive a
set of guidelines and a priority index. Communication
stubs provide designers with development propos-
als for microservices, re-engineering the monolith´s
functionalities. After all microservice candidates are
defined, the new architecture is established, existing
code is modernized, and new microservices are gen-
erated. Finally, the new microservices architecture is
evaluated and services are deployed to the cloud [34].

Megargel et al. (2020) take a broader perspective,
presenting a six-phase model, consisting of 14 steps
as summarized below:

Tab. 2. Six migration phases proposed by Megargel et al. (2020)

Phase 1: Decoupling Monolith
1. Add Service Layer / Façade
2. Add Service Mediation Layer

Phase 4: Deploy Microservices to Cloud
 9. Implement API Gateway
10. Deploy Microservices

Phase 2: Develop Local Microservices
3. Identify Microservices
4. Develop Interface Definitions
5. Develop Microservices

Phase 5: Implement Microservices on Cloud
11. Migrate Data to Cloud
12. Parallel Run in Cloud
13. Swing Channels to API Gateway

Phase 3: Implement Local Microservices
6. Migrate Data
7. Testing / Parallel Run
8. Swing Channels to Microservices

Phase 6: Decommission Monolith
14. Unplug Monolith

First, the monolith is decoupled by introducing a
layer between the frontend user interface layer and
the backend business logic layer. The service media-
tion layer is added to provide run-time control over
the channel-to-service mapping. With this capability,
it is possible to swing the entire channel to consume
microservices. Next, local microservices are pro-
grammed using standard development and testing
tools. In addition, design time governance tools to
manage the microservices design lifecycle are recom-
mended. As a result, microservices reflect the same
business logic and data scheme as the original func-
tion within the monolith. Implementation of local mi-
croservices starts with data migration, such that the

channel invokes monolith and microservices, allow-
ing both running in parallel. Reconciling data generat-
ed by both systems is used for testing each microser-
vice before swinging the channel to exclusively invoke
the microservice. This loop is repeated for every sin-
gle microservice or a batch of services until all are
implemented locally. The “swing” to microservices
can be effected without changing a single line of code,
because both use exactly the same interface [35]. The
remaining phases relate to cloud deployment and im-
plementation as well as the eventual decommission-
ing of the monolith.

Both migration models are summarized below
and condensed into five migration phases:

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Articles 75

Tab. 3. General Migration Approaches (own illustration)

Maisto et al. (2020) Megargel et al. (2020) Migration Phase

Decouple monolith Decouple

Decomposition
Identify microservice candidates via decomposition

Develop local microservices
Extract

Microservice production and ranking

Develop

Define architecture
Develop interface definitions

Create documentation describing all functionalities
Ranking / prioritizing
Re-engineering

Develop microservices

Cloud deployment Implement local microservices

Test / deploy

Migrate data
Testing / parallel run

Evaluation of microservice architecture
Swing channels to microservice
Deploy microservices to cloud
Implement microservices on cloud

Decommission monolith Decommission

Maisto et al. (2020) focus on the extraction and
development phase. They recommend extracting
process information from code by identifying class-
es and methods that make up the project, assuming
that for each class a corresponding microservice
can exist. In contrast, Megargel et al. (2020) place
emphasis on the testing and deployment phase,
even though they state that identifying microser-
vice candidates in the extraction phase “… is both
the most tedious step and the most critical step in
the entire migration process.” [35]. Irrespective of

the different emphasis both contributions place on
various steps of the process, we derived five stag-
es, which describe the steps to follow in a migration
project: decouple, extract, develop, test/deploy and
decommission.

The remaining highly relevant sources discuss ex-
traction methods. By analyzing existing code, gran-
ular information on business logic can be extracted
in order to generate microservices via code reverse
engineering, providing the same functionality as the
monolith:

Tab. 4. Extraction Methods (own illustration)

Extraction Method Author

Data Flow Driven
•	 via business process mining
•	 via dataflow-driven semi-automatic decomposition approach
•	 via detailed dataflow diagram
•	 a black-box approach that uses the application access logs and unsupervised machine-learning algorithm

Taibi and Systä (2020)
Li et al. (2019)
Chen et al. (2017)
Abdullah et al. (2019)

Graph Dependencies
•	 via GSMART
•	 via Java-call-graph
•	 via visualising dependencies between components or layers.

Ma et al. (2019)
Nunes et al. (2019)
Escobar et al. (2016)

Sematic Similarities
•	 via semantic similarity of functionalities
•	 via a text-based meta-modelling framework

Baresi et al. (2017)
Bucchiarone et al. (2020)

Pattern Driven
•	 pattern-driven Architecture Migration (V-PAM)
•	 structure the architecture by software functions and their interactions

Jamshidi et al. (2017)
Alwis et al. (2019a)

Tool Supported
•	 Arcan
•	 Service Cutter
•	 Blue Age Analyzer

Pigazzini et al. (2019)
Aiello et al. (2016)
Henry and Ridene (2020)

Articles76

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Data flow-driven extraction methods build on
transaction data generated by the monolith. Data
analytics combined with pattern recognition help
to identify service candidates. Several contributions
are based on this principal idea: a data flow-driven
semi-automatic decomposition method using fine-
grained Data Flow Diagrams (DFD) to cluster ser-
vice candidates [31] [12]; a black-box approach that
uses application access logs and unsupervised ma-
chine-learning algorithms to map URL partitions with
similar performance and resource requirements [1];
and a method using business process mining to iden-
tify service candidates [43].

Graph dependencies methods provide a visual rep-
resentation of the dependencies between elements
of the code to identify service candidates. Java-call-
graphs are generated by collecting data using a static
code analyzer, and then assessing communication rates
in order to identify classes that have a high coupling.
The architect generates a dendrogram using hierarchi-
cal clustering algorithms. The generated information is
then visualized to assist the architect in informed ex-
perimentation until a fair balance is achieved between
the microservices service covered and the communi-
cation rate [37]. GSMART (Graph-based and Scenar-
io-driven Microservice Analysis, Retrieval and Testing)
generates a different type of visual representation,
while Service Dependency Graphs (SDG) visualize re-
lationships and accelerate the development of new mi-
croservices [33]. Alternatively, dependencies between
components or layers of applications (business and
data layer) can be visualized [15].

Semantic similarity-based extraction methods
use algorithms trained to detect linguistic patterns
in order to identify relationships between sections
and lines of code, using a text-based metamodeling
framework [11] or a reference vocabulary, to identify
potential candidates as groups of cohesive operations
and associated resources. This should help in decom-
posing the monolith and also generate insights about
granularity and cohesiveness of obtained microser-
vices [7].

Pattern-driven methods use empirical data gener-
ated by observations from prior migration projects.
Cloud architecture migration patterns, migration pro-
cess frameworks, and variability models are comple-
mented by secondary source analysis and derived to
compose a migration plan (Jamshidi et al. 2017). Al-
ternatively, the architectual structure of the monolith
can be decomposed using queuing theory and busi-
ness object relationship analysis [3].

Finally, various software tools are available to sup-
port architects in decomposing mostly Java-based ap-
plications. These tools use a variety of methods dis-
cussed above: “Arcan” analyses the monolith´s static
structure, generates dependency graphs, and uses al-
gorithms to detect and extract specific topics from the
code without human supervision. These topics could
help identify service candidates. Algorithms, such as
Latent Dirichlet Allocation (LDA), Seeded Latent Dir-
ichlet Allocation (SLDA), and a semi-supervised vari-
ant of the original LDA algorithm, extract topics [40].

“Service Cutter” extracts coupling information and
engineering artefacts, such as domain models and
use cases, to find and score densely connected clus-
ters. The resulting candidate service cuts promise to
reduce coupling between, and promote high cohesion
within, services [2]. “Blue Age Analyzer” uses queuing
theory and business object relationships to identify
candidates. It automatically identifies all entry points
into the system and organizes the dependencies into
concentric rings. Microservice candidates appear as
local trees starting from the outside [19].

In summary, except for the comprehensive three-
phase approach presented by Maisto and the six-
phase approach put forward by Megargel, all other
contributions focus on extraction methods rather
than a holistic view of the migration process.

4. Evaluation of Migration Approaches and
Extraction Methods

Next, we may address the second research question
on the benefits and challenges associated with each of
the approaches summarized in the previous chapter:

 General migration approaches as put forward
by Maisto et al. (2020) and Megargel et al. (2020)
provide a comprehensive model on how to approach
migration projects. Their phased model provides in-
sight on how to perform the steps associated with
each phase. However, the extraction phase is the most
challenging and critical, but the authors only offer
limited guidance on how to identify and implement
microservices. The value of both approaches predom-
inantly lies in the comprehensive framework and the
orientation it provides for migration projects. Howev-
er, the critical extraction phase would need to be com-
plemented by extraction methods summarized above,
or by leveraging RPA technology, such as a novel RPA
use case we present in section 5.

Most research on migration projects focuses on
extraction methods. Data-driven extraction methods
are business-focused and provide quick information
on processes and variants as they are performed in
the organization. However, this black box approach
does not detect hidden business logic and the quality
of the analysis greatly depends on the input data. In
addition, the architectural structure of the code is dis-
regarded and there is no reuse of code. Graph depend-
encies depict the architectural structure and provide
transparency on input-output relationships; however,
this requires a lot of manual input. Semantic-based
extraction is highly automated; however, results also
need substantial manual rework, especially if cod-
ing and naming conventions of the legacy system are
inconsistent. Pattern-driven approaches are solely
based on professional experience in comparable mi-
gration projects and, therefore, are highly subjective
in nature. There is no transparency on how architec-
tural, business, and process perspectives guide the
migration effort. Finally, dedicated extraction tools
often feature a combination of different methods and
work best with Java, though dedicated tools only pro-
vide limited assistance to architects.

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Articles 77

In essence, the idea of extracting business logic
from the legacy code base is appealing, since recreat-
ing and documenting business processes, even when
equipped with dedicated extraction tools, is a tedious
task developers are ill equipped to perform. Since
business logic needs to be documented on the most
granular (click) level, only process owners and dedi-
cated staff would be able to provide this input. There-
fore, code reverse engineering potentially speeds up
the project and reduces the need for developers to
interview and solicit input from domain and process
experts. In addition, the potential reuse of existing
code is helpful and works best if the monolith is com-
parably small and of limited complexity. Taking a look
“under the hood” of the monolith may provide a good
starting point for these tasks and reduce the need of
having to revert to business personnel to mine for
business logic and recreate detailed process docu-
mentation.

Even though there is a wide range of extraction
methods, all but the data driven approach require ac-
cess to the source code of a legacy system. This is not
always possible, as many legacy systems were made
from off-the-shelves software packages, bought many
years ago. Vendors no longer support these applica-
tions. Some legacy ERP or CRM systems are run as
terminal solutions. Therefore, the extraction methods
discussed above typically are limited to proprietary
software, where developers have access to code.

In addition, legacy systems are usually outdated,
and their features and functionality do not reflect cur-
rent and anticipated business requirements. There-
fore, re-engineering, i.e., recreating outdated business
logic and software functionality by using a new archi-
tectural style, does not address the full potential of a
major migration effort.

Ultimately, code reverse engineering is building a
new structure on an existing, presumably outdated
foundation. There is the potential to save time and re-
sources if existing elements of code are reused; how-
ever, on the flip side are limitations in terms of out-
dated structures hampering progress and innovation
in designing the new microservice-based application.

5. Integrating RPA into the Migration
The above evaluation of migration approaches has re-
vealed substantial challenges; therefore, we may now
address our last research question: What alternative
solution or modifications may help reduce uncertainty
and risk of failure in migration projects? We propose a
novel approach, in which RPA bots mimic microser-
vices. This requires certain modifications to standard
RPA design principles (section 5.1). We propose a
new systematic framework on how to integrate RPA
into the standard migration process (section 5.2). The
following is our evaluation as to whether the integrat-
ed migration approach helps reduce uncertainty and
risk of failure (section 5.3).

5.1. Modifications to traditional RPA
For a seamless integration of RPA bots into the migra-
tion process and the ultimate replacement of the bot
by a corresponding microservice, we propose modifi-
cations to the RPA process:

Tab. 5. Standard RPA approach and required
modifications for bots to mimic microservices (own
illustration)

RPA Approach Modifications

Identification
Process identification based
on business and technical
criteria

Description
Detailed process
documentation

Split processes and define
interfaces

Development
Iterative implementation,
testing, technical and
commercial acceptance

Apply microservice principles
to bot architecture

Deployment
Roll out bot to vendor-
specific RPA platform, test
against productive systems

Control via RESTful API,
parallel testing

Decommission Swing bot to microservice,
decommission bot

The first step in RPA projects is process identifi-
cation, which is supported by technical tools such as
Process Mining, Task Mining, and Process Discovery
(Reinkemeyer 2020, p. 185). If RPA technology facili-
tates the migration to microservices, process identifi-
cation does not require any modification.

Next, processes selected for automation are ana-
lyzed and documented via vendor tools such as AM
Muse [5] or UI Task Capture [45]. The resulting pro-
cess descriptions and additional information on
application programming interfaces form the basis
for creating the bots. Discussions between applica-
tion managers and IT may result in amendments to
the development roadmap. In the case of synergies
or redundancies, tasks or parts of a process can be
automated by using existing interfaces or simple ex-
tensions to the interface. However, since monoliths
usually do not provide technical interfaces, bots can
simulate the interface and thus allow for quick auto-
mation. Furthermore, the process documentation as
well as transaction data generated by the bot is useful
for developing microservices.

Bot development is mission critical. Since the bot
will mimic a microservice, and eventually be replaced
by one, adoption of microservice architectural princi-
ples to bot creation is essential. Important character-
istics of this architectural design style are: capsuled,
deployable sequence of application logic, sharing as
little as possible, independence from other services,

Articles78

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

and lightweight communication mechanisms [16]
[17] [24]. Key microservice design principles compa-
re with RPA as follows:
•	 Microservice architecture is based on a share-

nothing philosophy [18]. This is a challenge for RPA
since bots access an application such as a human
user via the presentation layer. Therefore, the
bot always requires a predetermined state of an
application as a start and end. For example, each
bot first must log on to an application before it can
execute tasks within the application. Due to the
share-nothing principle, the log-on routine cannot
be shared between different bots.

•	 Microservices should contain only limited
application logic to allow for independent
deployment. It should be small enough that a team
of developers can build and maintain it. A single
person should be able to understand the full
context of the microservice. Ideally, it should have
less than a few hundred lines of code [35].

•	 The principle of independence calls for a system
of services which consists of independent
microservices (slices) that are mostly independent
to each other [22]. This should be the case if
services are individually deployable, run as self-
contained units, and encompass an operating
system along with the necessary runtimes,
frameworks, libraries, and code [10].

•	 Microservices need to tolerate the unavailability of
the services they access [10] and minimize fallout
from unexpected constellations [16].
These design principles are addressed in the bot

development phase as follows:
•	 Processes are split into small, distinct tasks.

Some tasks are performed multiple times within
one process. These standard tasks are assigned
to microbots, small reusable bots designed to
perform a single dedicated task only. Microbots
have a defined starting and ending state, as well as
defined input and output parameters. Since bots
invoke microbots, the underlying business logic is
implemented only once.

•	 For bots to be independently deployable and
resilient against unavailability of services, they
need to have a predetermined starting and
ending point with clearly defined properties. In a
Windows environment, this is the login window,
because this is where the operating system will
return after the computer reboots in the case of
unforeseen events.

•	 Bots should execute a transaction one case at a
time and only start the next case if the last run
is successful. Batch processing is incompatible
with microservice architectural principles. For
example, a purchase order confirmation issued by
a bot must be completed by one business process
instance before the bot is restarted and the next
purchase order is manipulated [24].

•	 Bots perform tasks in a sequential fashion. If
an application is not responding, this creates a
roadblock for process execution. Rather than

aborting the sequence, the bot should pause
and restart automatically after a pre-set amount
of time has lapsed. This results in higher rate of
successfully completed processes.
After successful development, bots are deployed.

Microservices communicate through lightweight
mechanisms, often a RESTful API [17]. The same
mechanism should control the bot. Many RPA ven-
dors offer this feature in their product. It is important
to define input and output parameters according to
RESTful API standards, since both bot and microser-
vices use this interface. According to the open-close
principle [23], the bots and subsequent microservic-
es should be open to extension, but closed to modifi-
cation. This implies that adding new functionality to
software should not affect existing code. Stability on
the interface level safeguards the eventual migration
from bot to microservice.

In classical RPA, the decommissioning of bots is
rarely discussed, as they are used for as long as they
function properly and serve a purpose. The value of
a bot predominantly lies in its encapsulated process
knowhow, which may become obsolete if underly-
ing business models or processes change. Therefore,
decision-making on the decommissioning of bots is
mostly discussed in the context of creating superior
automation solutions, which then render the bots su-
perfluous. In this context, bots are decommissioned
once the microservice fully functions and parallel
tests are completed.

5.2. RPA in the Migration Approach
We established that bots can mimic microservices if
certain design principles are observed. Next, we will
demonstrate how to integrate RPA technology into
the migration process. For simplicity reasons, the
flow chart does not depict process loops necessary to
address the great number of different processes in a
migration project:

Fig. 1. RPA integrated into the Migration Process (own
illustration)

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Articles 79

First, the monolith is decoupled by introducing a
façade layer between the user interface and the busi-
ness logic layer [35]. A service mediation layer pro-
vides run-time control. The refactoring towards mi-
croservices should be done in small parts [28].
Next, monoliths are decomposed by identifying mi-
croservice candidates. If the code base is accessible,
developers can use standard extraction methods as
outlined in Section 3. Alternatively, RPA technology
can extract business logic via Process Mining, Task
Mining, and Process Discovery, described and docu-
mented via RPA vendor tools, and complemented by
additional information on application programming
interfaces. As a result, developers create a ranking of
microservice candidates based on technical (e.g.., out-
dated code ratio) and commercial criteria (e.g., cost
benefit ratio).

Starting with top-ranked microservice candidates, a
decision as to whether or not a bot should be created is
made. When a service does not perform updates on the
database or call other services [19], or when it performs
complex calculations, it is recommended to develop mi-
croservices without creating bots first. Some examples
are rewards services from an online shop which exclu-
sively uses customer information or authentication ser-
vices [19]. For all other service candidates, a business
case determines whether to build the bot.

If yes, the existing process documentation and
interface definitions are the basis for the bot. Since
the bot shall mimic a microservice, and eventually re-
place it, adoption of microservice architectural prin-
ciples as outlined above is essential. Running the bot
generates transaction data, which helps identify pro-
cess variants that were potentially overlooked in the
description phase. RPA developers can develop and
test bots in parallel to software architects focusing on
reengineering microservices. Therefore, having two
teams with different skill sets working towards the
same goal should expedite the migration process.

If no, the microservice architecture mirrors infor-
mation derived by extraction methods as discussed
earlier. In addition to business logic extracted via de-
composing existing code, the process documentation
represents valuable information to software archi-
tects and is helpful for reengineering and developing
microservices.

Good test coverage is required due to the risk of
new bugs ending up in the existing features [34];
therefore, the required data of the monolith must be
migrated into the new data structure of the microser-
vice, unit tested, and deployed for each service.

If there is no bot to test, developers need to write
unit tests. After successful tests, the microservice
runs parallel to the monolith until no errors occur. If
there is a bot, it is orchestrated via microservice-com-
patible mechanisms. Both the bot and microservices
run in parallel and perform the same request with
identical input data. If the output is identical, the test
was successful.

The monolith is decommissioned if test results
confirm the full set of features of the monolith is cov-
ered by microservices [35].

5.3. Evaluation and risk mitigation
Leveraging RPA in a migration context is helpful be-
cause it provides an alternative solution in case there
is no access to the code base and most extraction
methods do not work. In addition, in many cases, it is
easier and quicker for software architects to draw on
business resources to extract business logic, via pro-
cess identification and description, to obtain detailed
guidance for developing microservices. Especially in
large and complex monoliths it is tedious and difficult
for software architects to extract business logic from
code [28].

Software architects often are in short supply;
therefore, leveraging business resources for provid-
ing input to the developer saves time by easing re-
source bottlenecks. It is quick and comparatively sim-
ple to document processes and create bots via RPA
software even for non-IT staff lacking coding skills.
Furthermore, not being bound to a potentially outdat-
ed structure of the legacy application provides devel-
opers with a higher degree of freedom.

In the testing phase, bots are also beneficial, since
automatic testing by running bots and microservices
in parallel is a safe and fast way to validate that the
software does what it needs to do [28].

After completion of the testing, bots are decom-
missioned. This alleviates potential maintenance
problems associated with RPA. Since bots are bound
to the presentation layer of legacy applications, any
change to the presentation layer (for instance, due to
updating to a new release) requires bot modification.
This is more likely to happen the longer a bot is in use.
In the integrated migration approach, we propose to
use bots only temporarily until microservices take
over. Therefore, bot maintenance should not turn out
to represent technical debt.

On the other hand, RPA technology is non-invasive
and mandates no changes to existing application sys-
tems [6]. Therefore, bots build on existing, often out-
dated applications, which may turn out to be a limit-
ing factor, potentially reducing flexibility.

In summary, based on the above evaluation, ap-
plying RPA technology in migration projects is advan-
tageous and conducive to mitigating migration risks,
especially in the extraction and testing phase.

6. Conclusion
Almost 90% of business leaders in the U.S. and U.K.
expect IT and digital technologies to make an increas-
ing strategic contribution to operations in the coming
decade [20]. This technology-induced change involves
improvements to existing processes, exploration of
digital innovation, and potentially a transformation
of the business model [9]. Managing change success-
fully provides organizations with opportunities to
create value. IT contributes to value creation through
automation effects (productivity improvements, la-
bor savings and cost reductions), informational ef-
fects (collected, stored, processed, and disseminated
information improves decision quality) and trans-
formational effects (facilitate and support process

Articles80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

innovation and transformation) [27]. Therefore, IT
strategies need to ensure efficient management of IT
infrastructure and application systems. In particular,
keeping IT systems aligned with business models
and processes underscores the need for IT to become
more agile and business-centric [20].

It Is not surprising that leading tech companies
like Amazon or Netflix have transitioned from creat-
ing and running monolithic applications to applying
microservice design principles to their software ar-
chitecture because of flexibility, scalability, complex-
ity, agility, and maintainability considerations. Still,
many organizations operate and maintain legacy
monolith systems despite the compelling advantages
of microservices, and migrations to microservices are
still rare [35]. Helping organizations to keep IT sys-
tems up to date and aligned with changing business
models by facilitating a smooth migration to micro-
services offers substantial potential to create value.
We, therefore, researched state-of-the-art migration
approaches and discovered weaknesses, especially in
the extraction phase.

In search of alternative solutions, we realized that
instead of extracting business logic from code, RPA
draws on business resources to understand business
processes and requirements. This represents a novel
use case for RPA technology in a migration context.
We proposed to integrate RPA into the migration
process and determined design principles for bots to
mimic microservices. Once microservices are parallel
tested and operational, bots are decommissioned, and
microservices replace the monolith. Based on logical
reasoning, we showed that our integrated approach
is conducive to reducing migration risk. This should
provide IT management and software engineers with
guidance on how to manage migration projects.

The key limitation of this paper is a lack of empir-
ical evidence, as the feasibility of the integrated mi-
gration approach is yet to be tested in practice. With
this paper, we promote the idea to leverage RPA tech-
nology in the migration to microservices. However,
empirical findings from real-life applications of this
approach are as yet outstanding.

AUTHORS
Burkhard Bamberger* – ISM International School
of Management GmbH, 44227 Dortmund, Germany,
email: Burkhard.Bamberger@ism.de.

Bastian Körber – ISM International School of
Management GmbH, 44227 Dortmund, Germany,
email:bastian.koerber@outlook.de.

REFERENCES
[1] M. Abdullah, W. Iqbal, A. Erradi, “Unsupervised

learning approach for web application auto-de-
composition into microservices”, Journal of Sys-
tems and Software, 151, 2019, pp. 243–257. DOI:
10.1016/j.jss.2019.02.031

[2] M. Aiello, E.B. Johnsen, S. Dustdar, I. Georgievski,
(Eds.), Service-Oriented and Cloud Computing.
Cham: Springer International Publishing (Lectu-
re Notes in Computer Science), 2016.

[3] A. A. C. de Alwis, A. Barros, C. Fidge, A. Polyvy-
anyy, “Availability and Scalability Optimized Mi-
croservice Discovery from Enterprise Systems”,
in H. Panetto, C. Debruyne, M. Hepp, D. Lewis,
C. A. Ardagna, R. Meersman (Eds.), On the Move
to Meaningful Internet Systems: OTM 2019 Con-
ferences, vol. 11877, Cham: Springer Interna-
tional Publishing (Lecture Notes in Computer
Science), 2019, pp. 496–514.

[4] A. A. C. de Alwis, A. Barros, C. Fidge, A. Polyvy-
anyy, “Business Object Centric Microservices
Patterns”, in H. Panetto, C. Debruyne, M. Hepp,
D. Lewis, C. A. Ardagna, R. Meersman (Eds.), On
the Move to Meaningful Internet Systems: OTM
2019 Conferences, vol. 11877. Cham: Springer
International Publishing (Lecture Notes in Com-
puter Science), 2019, pp. 476–495.

[5] Another Monday Intelligent Process Automation
GmbH, AM Muse, Version 1.35: Another Monday
Intelligent Process Automation GmbH, 2020.
https://www.anothermonday.com/products/
am-muse

[6] G. Auth, C. Czarnecki, F. Bensberg, “Impact of Ro-
botic Process Automation on Enterprise Archi-
tectures”, in Lecture Notes in Informatics (LNI),
2019. DOI: 10.18420/INF2019_WS05

[7] L. Baresi, M. Garriga, A. de Renzis, “Microservi-
ces Identification Through Interface Analysis”, in
F. de Paoli, S. Schulte, E. B. Johnsen (Eds.): Servi-
ce-Oriented and Cloud Computing, vol. 10465.
Cham: Springer International Publishing (Lectu-
re Notes in Computer Science), 2017, pp. 19–33.

[8] L. Bass, I. M. Weber, L. Zhu, DevOps, A software
architect’s perspective, New York: Addison-We-
sley Professional (The SEI series in software en-
gineering), 2015.

[9] S. Berghaus, A. Back, “Stages in Digital Business
Transformation: Results of an Empirical Matu-
rity Study”, MCIS 2016 Proceedings, 22, 2016.
https://aisel.aisnet.org/mcis2016/22, checked
on 2/19/2020

[10] F. Boyer, X. Etchevers, N. de Palma, X. Tao, “Ar-
chitecture-Based Automated Updates of Distri-
buted Microservices”, in C. Pahl, M. Vukovic,
J. Yin, Q. Yu (Eds.): Service-Oriented Computing,
vol. 11236, Cham: Springer International Pu-
blishing (Lecture Notes in Computer Science),
2018, pp. 21–36.

[11] A. Bucchiarone, K. Soysal, C. Guidi, “A Model-
-Driven Approach Towards Automatic Migration

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Articles 81

to Microservices”, in Jean-Michel Bruel, Manuel
Mazzara, Bertrand Meyer (Eds.): Software En-
gineering Aspects of Continuous Development
and New Paradigms of Software Production and
Deployment, vol. 12055, Cham: Springer Inter-
national Publishing (Lecture Notes in Computer
Science), 2020, pp. 15–36.

[12] R. Chen, S. Li, Z. Li, “From Monolith to Microse-
rvices: A Dataflow-Driven Approach”, in 2017
24th Asia-Pacific Software Engineering Con-
ference (APSEC), 2017 24th Asia-Pacific So-
ftware Engineering Conference (APSEC), Nan-
jing, 04/12/2017 - 08/12/2017: IEEE, 2017,
pp. 466–475.

[13] C. Czarnecki, P. Fettke, “Robotic Process Au-
tomation: De Gruyter”, 2021. https://doi.
org/10.1515/9783110676693

[14] T. H. Davenport, The new industrial engineering:
information technology and business process
redesign” in Sloan management review, 1954
(1990).

[15] D. Escobar, D. Cardenas, R. Amarillo, E. Castro,
K. Garces, C. Parra, R. Casallas, “Towards the un-
derstanding and evolution of monolithic applica-
tions as microservices” in 2016 XLII Latin Ame-
rican Computing Conference (CLEI), 2016 XLII
Latin American Computing Conference (CLEI),
Valparaíso, Chile, 10/10/2016 – 14/10/2016:
IEEE, 2016, pp. 1–11.

[16] M. Fowler, J. Lewis, „Microservices: Nur ein we-
iteres Konzept in der Softwarearchitektur oder
mehr“, in Journal of Systems and Software, 2015,
pp. 14–20.

[17] M. Garriga, “Towards a Taxonomy of Microservi-
ces Architectures”, in Software Engineering and
Formal Methods, 2018, pp. 203–218.

[18] J. Ghofrani, D. Lübke, “Challenges of Microservi-
ces Architecture: A Survey on the State of the
Practice”, 2018.

[19] A. Henry, Y. Ridene, “Migrating to Microservices”, in
A. Bucchiarone, N. Dragoni, S. Dustdar (Eds.), Mi-
croservices. Science and engineering, Cham: Sprin-
ger International Publishing, 2020, pp. 45–72.

[20] T. Hess, C. Matt, A. Benlian, F. Wiesboeck,
“Options for formulating a digital transforma-
tion strategy”, in MIS Quarterly Executive (15),
2016, pp. 123–139.

[21] A. R. Hevner, “A Three Cycle View of Design
Science Research”, Scandinavian Journal of In-
formation Systems, Volume 19, Issue 2, 2007,
pp. 87-92.

[22] M. Hilbrich, “In Microservices We Trust – Do
Microservices Solve Resilience Challenges?”,

Tagungsband des FB-SYS Herbsttreffens 2019.
Bonn: Gesellschaft für Informatik e.V., 2019.
DOI: 10.18420

[23] A. Hochrein, “Anatomy of a Microservice”, in
Akos Hochrein (Ed.): Designing microservices
with Django, An overview of tools and practices,
1st edition, [S.l.]: Apress, 2019, pp. 49–68.

[24] A. Hochrein, “From Monolith to Microservice”, in
Akos Hochrein (Ed.): Designing microservices
with Django, An overview of tools and practices,
1st edition, [S.l.]: Apress, 2019, pp. 111–137.

[25] J. Holmström, M. Ketokivi Mikko, A.-P. Hameri,
“Bridging Practice and Theory: A Design Science
Approach”, in Decision Sciences Volume 40, Is-
sue 1, 2009, pp. 65-87.

[26] P. Jamshidi, C. Pahl, N. C. Mendonça, “Pattern-
-based multi-cloud architecture migration”, in
Software Practice and Experience 47 (9), 2017,
pp. 1159–1184. DOI: 10.1002/spe.2442

[27] J. Mooney, V. Gurbaxani, K. L. Kraemer, “A Process
Oriented Framework for Assessing the Business
Value of Information Technology”, Forthcoming
in the Proceedings of the Sixteenth Annual In-
ternational Conference on Information Systems,
2001.

[28] M. Kalske, N. Mäkitalo, T. Mikkonen, “Challenges
When Moving from Monolith to Microservice
Architecture”, in I. Garrigós, M. Wimmer (Eds.):
Current Trends in Web Engineering, Cham:
Springer International Publishing, 2018, pp. 32–
47.

[29] R. Khadka, A. Saeidi, S. Jansen, J. Hage, G. P. Haas,
“Migrating a large scale legacy application to
SOA: Challenges and lessons learned”, in 2013
20th Working Conference on Reverse Engine-
ering (WCRE), 2013 20th Working Conference
on Reverse Engineering (WCRE), Koblenz, Ger-
many, 14/10/2013 - 17/10/2013: IEEE, 2013,
pp. 425–432.

[30] M. C. Lacity, L. P. Willcocks, “What Knowled-
ge Workers Stand to Gain from Automation”,
Harvard Business Review, 2015. https://hbr.
org/2015/06/what-knowledge-workers-
stand-to-gain-from-automation, last checked
23.08.2021

[31] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li et al.,
“A dataflow-driven approach to identifying
microservices from monolithic applications”,
Journal of Systems and Software 157, 2019,
p. 110380. DOI: 10.1016/j.jss.2019.07.008

[32] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, S. Pal-
lickara, “Serverless Computing: An Investigation
of Factors Influencing Microservice Performan-

Articles82

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

ce”, in 2018 IEEE International Conference on
Cloud Engineering (IC2E), 2018 IEEE Interna-
tional Conference on Cloud Engineering (IC2E),
Orlando, FL, 17/04/2018 - 20/04/2018: IEEE,
2018, pp. 159–169.

[33] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, C.-W. Lan,
“Graph-based and scenario-driven microservice
analysis, retrieval, and testing”, Future Genera-
tion Computer Systems, 100, 2019, pp. 724–735.
DOI: 10.1016/j.future.2019.05.048

[34] S. A. Maisto, B. Di Martino, S. Nacchia, “From
Monolith to Cloud Architecture Using Semi-au-
tomated Microservices Modernization”, in L. Ba-
rolli, P. Hellinckx, J. Natwichai (Eds.): Advances
on P2P, Parallel, Grid, Cloud and Internet Com-
puting, vol. 96, Cham: Springer International
Publishing (Lecture Notes in Networks and Sys-
tems), 2020, pp. 638–647.

[35] A. Megargel, V. Shankararaman, D. K. Walker,
“Migrating from Monoliths to Cloud-Based Mi-
croservices: A Banking Industry Example”, in
M. Ramachandran, Z. Mahmood (Eds.), Softwa-
re Engineering in the Era of Cloud Computing,
Cham: Springer International Publishing (Com-
puter Communications and Networks), 2020,
pp. 85–108.

[36] S. Newman, “Building microservices. Designing
fine-grained systems”, Sebastopol, CA: O’Reilly
Media, 2015.

[37] L. Nunes, N. Santos, A. R. Silva, “From a Monolith
to a Microservices Architecture: An Approach
Based on Transactional Contexts” in T. Bures,
L. Duchien, P. Inverardi (Eds.): Software Archi-
tecture, vol. 11681, Cham: Springer Interna-
tional Publishing (Lecture Notes in Computer
Science), 2019, pp. 37–52.

[38] A. M. O’Brien, C. Mc Guckin, The Systematic Li-
terature Review Method: Trials and Tribulations
of Electronic Database Searching at Doctoral Le-
vel, 2016.

[39] A. J. Onwuegbuzie, N. L. Leech, K. M. T. Collins,
“Qualitative Analysis Techniques for the Review
of the Literature”, The Qualitative Report, 17,
2012, pp. 1–28.

[40] I. Pigazzini, F. A. Fontana, A. Maggioni, “Tool Sup-
port for the Migration to Microservice Architec-
ture: An Industrial Case Study”, in T. Bures, L. Du-
chien, P. Inverardi (Eds.): Software Architecture,
vol. 11681, Cham: Springer International Pu-
blishing (Lecture Notes in Computer Science),
2019, pp. 247–263.

[41] H. C. da Silva Filho, G. de Figueiredo Carneiro,
“Strategies Reported in the Literature to Migrate
to Microservices Based Architecture”, in Shah-

ram Latifi (Ed.): 16th International Conference
on Information Technology-New Generations
(ITNG 2019), vol. 800, Cham: Springer Interna-
tional Publishing (Advances in Intelligent Sys-
tems and Computing), 2019, pp. 575–580.

[42] H. A. Simon, “The Sciences of the Artificial, Third
Edition”, 2019.

[43] D. Taibi, K. Systä, “A Decomposition and Metric-
-Based Evaluation Framework for Microservi-
ces”, in D. Ferguson, V. Méndez Muñoz, C. Pahl,
M. Helfert (Eds.): Cloud Computing and Services
Science, vol. 1218, Cham: Springer International
Publishing (Communications in Computer and
Information Science), 2020, pp. 133–149.

[44] J. Thones, “Microservices”, In IEEE Softw., 32(1),
2015, p. 116. DOI: 10.1109/MS.2015.11

[45] UiPath (2020): UI Task Capture: UiPath. Availa-
ble online at https://www.uipath.com/product/
task-capture, checked on 5/25/2020.

[46] W. M. P. van der Aalst, M. Bichler, A. Heinzl, “Ro-
botic Process Automation, Bus Inf Syst Eng,
60(4), 2018, S. 269–272. DOI: 10.1007/s12599-
018-0542-4

