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Abstract:
The development of an autonomous mobile robot (AMR) 
with an eye-in-hand robot arm atop for depressing el-
evator button is proposed. The AMR can construct maps 
and perform localization using the ORB-SLAM algorithm 
(the Oriented FAST [Features from Accelerated Segment 
Test] and Rotated BRIEF [Binary Robust Independent  
Elementary Features] feature detector-Simultaneous  
Localization and Mapping). It is also capable of real-time 
obstacle avoidance using information from 2D-LiDAR 
sensors. The AMR, robot manipulator, cameras, and sen-
sors are all integrated under a robot operating system 
(ROS). In experimental investigation to dispatch the AMR 
to depress an elevator button, AMR navigation initiat-
ing from the laboratory is divided into three parts. First, 
the AMR initiated navigation using ORB-SLAM for most  
of the journey to a waypoint nearby the elevator.  
The resulting mean absolute error (MAE) is 8.5 cm on the 
x-axis, 10.8 cm on the y-axis, 9.2-degree rotation angle  
about the z-axis, and the linear displacement from  
the reference point is 15.1 cm. Next, the ORB-SLAM is  
replaced by an odometry-based 2D-SLAM method for 
further navigating the AMR from waypoint to a point fac-
ing the elevator between 1.5 to 3 meter distance, where 
the ORB-SLAM is ineffective due to sparse feature points 
for localization and where the elevator can be clearly 
detected by an eye-in-hand machine vision onboard the 
AMR. Finally, the machine vision identifies the position 
in space of the elevator and again the odometry-based 
2D-SLAM method is employed for navigating the AMR to 
the front of the elevator between 0.3 to 0.5 meter dis-
tance. Only at this stage can the small elevator button 
be detected and reached by the robot arm on the AMR. 
An average 60% successful rate of button depressing by 
the AMR starting at the laboratory is obtained in the ex-
periments. Improvements for successful elevator button 
depressing rate are also pointed out.

Keywords: ROS, AMR, ORB-SLAM, Robot Manipulator, 
Machine Vision.

1. Introduction
With the advent of smart manufacturing in a wide ran-
ge of industries, unmanned factories and automation 
have become the future trend. Therefore, automated 

machines such as AMRs and robot manipulators have 
been utilized to perform multiple tasks within the 
production line, such as the transportation of cargo 
and highly repeated workloads to replace labor reso-
urces, and even reduce cost. Commonly used AMRs 
can be categorized into two different types by guiding 
methods, namely, rail-guided and trackless automa-
ted guided. A rail-guided mobile platform utilizes spe-
cial tracks that are tiled to the floor, which generate 
electromagnetic fields to guide movement. A trackless 
automated guided mobile platform is normally based 
on laser range-finder and camera as the sensor’s data 
input to create a surrounding map and to determine a 
possible route within that map. The designated AMR 
in this report utilizes a trackless automated guided 
mobile platform to address the limitations associated 
with track leading, but has additional freedom of mo-
vement to perform any possible route.

To navigate an AMR, a map is required to appro-
priately define its localization. However, there is con-
siderable causality between map construction and 
localization. For instance, Smith et al. [1] proposed that 
the presentation and calculation of uncertain spatial 
data requires an unbiased map, but such a map requ-
ires accurate location estimation to build. Durrant-
Whyte and Bailey [2,3] proposed a simultaneous 
localization and mapping algorithm (SLAM), which 
has become a core technology in the field of mobile 
robots. SLAM is a solution for mobile robots to facili-
tate motion in an unknown environment. The SLAM 
method has been considered in two dimensions in 
which scanning data is acquired using a 2D laser range-
-finder, and in three dimensions wherein point cloud 
information is acquired via 3D laser range-finder or 
cameras. For 2D-SLAM, commonly used mapping algo-
rithms include GMapping SLAM [4], Hector SLAM [5], 
and Cartographer SLAM [6]. The 3D SLAM method is 
also popular and is utilized in MonoSLAM [7], parallel 
tracking and mapping (PTAM) [8], and ORB-SLAM [9]. 
Each mentioned SLAM algorithm has its own specific 
properties. Whenever an AMR is successfully located 
in a prepared map, it should be navigated and guided 
along an assigned route when a valid destination is set 
as a goal on the map. Hart et al. [10] proposed a heuri-
stic search algorithm, Bostel and Saigar [11] proposed 
the A* algorithm, Koeing and Likhachev [12] propo-
sed the D*lite algorithm, and Fox et al. [13] proposed 
a dynamic window approach (DWA) to achieve these 
objectives.
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In previously published works, it has been shown 
that a robot manipulator integrated with AMR has 
improved utility and working efficiency in the pro-
duction line. For instance, Kousi et al. [14] simulated 
SLAM and navigation to a mobile dual-arm robot un-
der ROS framework for a safe and collision-free path 
during the execution of the different assembly task.

Apart from the AMR and the robot manipulator, 
machine vision is also one of the key technologies 
used for automation, which can replace the vision of 
workers in highly repeated detection tasks by explo-
iting different image processing techniques. Machine 
vision is reliable because the methods and algorithms 
that are used yield consistent and accurate results. 
Therefore, a robot manipulator integrated with ma-
chine vision is a widely implemented technology. For 
instance, Sangeetha et al. [15] developed a low-cost 
eye-in-hand system that included a robot arm and a 
set of stereo cameras. The object position was detec-
ted by the stereo camera based on image processing. 
The inverse kinematics of the robot manipulator were 
solved to perform a pick-and-place task. Similar eye-
-in-hand robotic manipulator architecture has been 
proposed by Shaw and Chi [16] for image-based vi-
sual servoing (IBVS) for fetching moving objects in a 
production line. Hosseininia et al. [17] also employ-
ed machine vision to guide a robot arm for porcelain 
edge polishing. Moreover, a mobile platform can also 
be integrated with machine vision. Laganowska [18] 
investigated the detection of road lines as aids in na-
vigation control.

As previously indicated, this investigation will be 
based on a trackless automated guided vehicle as the 
mobile platform to obviate the need for presetups 
such as specific wiring configurations and limitations 
associated with a particular movement. In our case, 
both the laser range finder and camera are primarily 
used to obtain environmental information, wherein 
the laser scanning data is accurate and the camera 
can provide 3D spatial information. The experimental 
field in this study is the corridor in the building ba-
sement with approximate size 45m × 20m. The goal 
is to navigate the AMR from the laboratory to an ele-
vator and depress the button (as if it is going to take 
the elevator). However for a corridor with this spacio-
us size, the 2D mapping methods such as GMapping, 
Hector, and Cartographer SLAM, might cause several 
types of errors in the selected regions. In this work, 
the ORB-SLAM algorithm, a 3D SLAM method based 
on an RGB-D camera that acquires feature points 
from each frame to facilitate positioning is utilized. 
Nevertheless, calibration of the camera should be 
performed as a precaution since the cameras might 
exhibit radial and tangential distortion in the image. 
Therefore, calibration can modify the camera para-
meters such as the focal length, center of the image, 
and the distortion coefficients [19]. Given that the 
experimental field is vast and the displacement error 
associated with SLAM might lead to navigation failu-
re, a machine vision system is hence built to lead the 
AMR to a precise position at the final stage for depres-
sing the elevator button. In this respect, Zhou and Liu 

[20] installed a camera on a mobile robot to scan a 2D 
barcode and successfully localized the position based 
on the acquired image. The vision-based movement 
control allowed the mobile robot to precisely move 
to an assigned position. Schueftan et al. [21] used the 
KUKA robot arm mobile platform to perform auto-
nomous navigation after the creation of a map using 
LiDAR. Several Vicom cameras were installed around 
the field to observe and determine the moving devia-
tion, and the positioning accuracy was hence secured.

2. System Design
2.1 AMR Construction
The AMR presented in this study was designed and 
built using 30 cm × 30 cm aluminum frames to reduce 
cost and improve strength. The final size of the con-
structed AMR was 60 cm × 60 cm × 90 cm (in length ×  
width × height). A laptop computer was used on the 
AMR to operate the ROS system. The AMR was desi-
gned based on a differential drive control, in which 
two sets of 12V DC motors were utilized and con-
trolled using pulse width modulation (PWM) signals. 
Encoders attached to the DC motors were used for 
motor PID speed control and for measuring the mo-
vement traveled by the AMR as well. Several Arduino 
microcontrollers were connected to the computer via 
USB ports and used primarily for motor control and 
for I/O signals. A SICK LiDAR with better accuracy 
and longer range was attached to the front end of the 
AMR for scanning the environment and RBPF (Rao-
Blackwellized particle filter) in GMapping SLAM [4] 
was applied for constructing a 2D map for navigation. 
Two sets of Hokuyo LiDAR were also installed at the 
front left and rear right of the cart to facilitate 360° 
object detection. They were connected to the com-
puter via USB ports to receive laser data for obstacle 
avoidance during navigation. In order to compensate 
the positioning errors with SLAM, particularly in the 
orientation angle, an inertial measurement unit (IMU) 
sensor was also employed. Kinect v2, an RGB-D came-
ra, was used to obtain 3D point cloud information [22]. 
A Niryo robot served as the 6-degrees of freedom robot 
manipulator and was mounted on the top layer of the 
AMR. It was connected to the computer via Ethernet 
and programmed based on Python code. An IDS-XS 
industrial camera was mounted at the end effector of 
a Niryo robot arm, forming an eye-in-hand system to 
acquire an RGB image. Image processing was perfor-
med using OpenCV libraries for detecting the elevator. 
An NVIDIA Jetson TX2 module was also connected  
to the laptop computer via Ethernet to share the cal-
culation burden during image processing. Figure 1 
shows the constructed AMR and the associated main 
components used in the study.

2.2 ORB-SLAM Method
ORB-SLAM is a 3D SLAM method, which is classified 
as an indirect and sparse mapping procedure based 
on oriented FAST and rotated BRIEF algorithms [9]. 
This approach was developed based on PTAM archi-
tecture [8] by applying the ideas of place recognition, 
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scale-aware loop closing, and covisibility graph, and 
redesigned into a new methodology. The main body 
includes map initialization and closed-loop detection 
functions, optimization of key frame selection, and 
map construction methods, which results in excellent 
processing speed, tracking effect, and map accuracy. 
The features selected by the algorithm are mainly 
based on the FAST feature extraction method, but 
with rotation invariance. It is then converted into a 
binary form using the BRIEF algorithm, which is very 
efficient for both building and matching. ORB-SLAM 
was originally developed for monocular cameras but 
later expanded for application to stereo and RGB-D  
cameras. In this study, the Kinect V2 was utilized as an 
RGB-D camera to generate color images and provide 
depth information to identify valid point clouds for  
feature matching. Figure 2 shows the image proces-
sing result obtained for the ORB-SLAM algorithm and 
the subsequent constructed mapping and localization.

2.3 Mapping and Navigation Methods
In this investigation, both ORB-SLAM and GMapping 
SLAM are used because of their different advantages 
in constructing maps. ORB-SLAM involves the acquisi-
tion of featured key points based on each frame image 
to generate a 3D map, which is mainly used for loca-
lizing the AMR position, and is more appropriate in 
such a long corridor environment. However, a 2D map 
is still needed. The GMapping algorithm generates a 
map from the SICK LiDAR scanning data, which is im-
ported as a static map for the path planner to produce 
a navigating route, and for real-time obstacle avoidan-
ce as well.

GMapping was developed based on the RBPF to 
obtain the correct map. RBPF uses the known initial 
pose of the mobile platform x0, and the map environ-
ment data collected by the sensor m0 to represent 
the map environment information using the Markov 
process as z1:t = z1, z2, …, zt, and the mobile platform 
motion information as u1:t = u1, u2, …, ut. The motion 
trajectory is estimated as x1:t = x1, x2, …, xt, and the 
posterior probability as p. According to Bayes’ the-
orem, the posterior probability of SLAM at time t can 
be expressed as a recursive function of the posterior 
probability, environmental state, and motion state at 
time t-1, as shown in (1) [23]:

 
( ) ( ) ( )− −=1: 1: 1: 1 1: 1: 1: 1 1: 1:p | , p | , p | ,,t t t t t t t tx m z u x z u m x z  (1)

where x1:t is the mobile platform state, z1:t is the  
observed state, and u1:t is the mobile platform input. 
Therefore, from (1), the mobile platform pose x can 
be obtained using the observed state z and the input 
signal u. Subsequently, the map m can be approxima-
ted based on the mobile platform position x and the 
observed state z. The map is then imported as static 
map information for the navigation stacks to deliver a 
global path. The global path planner in the navigation 
stacks is mainly based on a static map to plan an ef-
fective path according to a set target point. Commonly 
used algorithms such as the A* [11] can search for the 
shortest path. The A* algorithm uses an evaluation 
function, as shown in (2):

 = +( ) ( ) ( )F n G n H n  (2)

where F(n) is the evaluation score for reaching the 
endpoint, G(n) represents the actual distance from 
the starting point to the current node, and H(n) is 
the estimated distance from the current node to the 
endpoint. The search direction of all nodes points to 

Fig. 1. Equipment used in the study: (a) AMR; (b) Niryo robot arm; (c) SICK LiDAR; (d) IDS-XS camera; (e) NVIDIA TX2

 

 

Fig. 2. ORB-SLAM algorithm: (a) result of image 
processing; (b) constructed mapping and localization
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the target point, which can remove redundant and un-
necessary paths. Therefore, it takes less time and the 
path is more accurate.

The route generated based on the static map can 
only be applied in the same environment. However, 
there could be obstacles that exist after the map is 
established, and thus are not included in the conside-
ration of global path planning. The dynamic window 
approach (DWA) [13] is hence proposed in local path 
planning in the obstacle layer for real-time dynamic 
obstacle avoidance. Finally, the inflation map layer is 
constructed to prevent the mobile platform from be-
ing too close to obstacles. 

2.4 Image Processing Method
Using an eye-in-hand architecture, an IDS industrial 
camera is installed at the end effector of a Niryo robot 
arm, and machine vision is utilized for leading both 
the mobile platform and the robot manipulator close 
to the elevator and elevator button, respectively. First, 
a 7 × 5 image calibration chessboard is used for ca-
mera calibration. Next, an image of the elevator door 
is acquired and an image processing series is carried 
out to the image, including color space conversion 
from RGB to HSV, filtering using median filter and 
morphology, thresholding, image AND operation, con-
tour detection, area computation, and 3D reconstruc-
tion [24]. The purpose of the image processing is to 
identify the position in space of the elevator and its 
button so that the mobile platform and the robot ma-
nipulator can be guided forward in order to depress 
the button.

2.5 System Architecture
This study is based on the ROS framework to integra-
te both hardware and firmware of the mobile robot. 
Figure 3 shows the system architecture with a laptop 
computer running the core system. A GPU module 
NVIDIA-TX2 is used to receive the image from the IDS 
camera and to perform image processing for detecting 

the elevator. In addition, an Arduino Mega2560 mic-
rocomputer is employed to control the speeds of the 
two driving motors of the mobile platform based on 
the encoder signals using the PID controller, upon 
receiving the velocity commands from the main com-
puter. In navigation the main computer drives the 
mobile platform based on signals from the Kinect v2 
for 3D localization for most of the navigation journey 
and later from motor encoders and IMU for 2D loca-
lization when approaching the elevator, and from the 
Hokuyo LiDAR sensors for dynamic obstacle avoidan-
ce. When the mobile platform arrives to a point facing 
the elevator between 0.3 to 0.5 meter distance where 
elevator button is reachable by the robot arm, the last 
stage SLAM navigation terminates and the IDS camera 
will guide the robot arm trying to depress the button.

3. Experimental Results
3.1 AMR SLAM Navigation to Elevator
The goal in this study is to navigate the AMR from 
the laboratory in the building basement to an eleva-
tor and to depress the button. The basement corridor 
that the AMR can navigate is about 45m × 20m. First, 
a 2D map depicting the floor layout is generated by 
using GMapping SLAM with the SICK LiDAR sensor, as 
shown in Figure 4. In this constructed map, point ‘S’ in 
front of the laboratory is the starting position for AMR 
navigation. West elevator (26.3 m apart) facing point 
‘A’ or east elevator (40 m apart) facing point ‘B’ is the 
elevator to which the AMR can be heading for. The 2D 
map along with the well-known and commonly-used 
2D localization method AMCL (Adaptive Monte Carlo 
Localization) [25] was tested for navigation, and the 
AMR failed to reach either elevator mainly due to the 
long corridor problem where at some locations no 
distin guishable features were available on both sides  
of AMR. Consequently, we resort to the 3D localization 
method of ORB-SLAM. However, due to the limitation 
on Kinec V2 such as detection range and field of view, 

      

USB

Router

EtherNet EtherNet EtherNet

Mobile platform IDS camera

PC NVIDIA TX2 Niryo robot

LiDAR

USBUSB

KinectV2

USB

 

Fig. 3. The system architecture
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AMR cannot be guided too close to the elevator where 
the ORB-SLAM is ineffective due to sparse feature po-
ints for localization. Therefore, point ‘a’ and point ‘b’ 
are the two waypoints chosen for AMR to navigate to 
the west and east elevator, respectively. At such way-
points ‘a’ and ‘b’, ORB localization method termina-
tes. For AMR navigation and obstacle avoidance from 
point ‘S’ to waypoint ‘a’ (or ‘b’), move_base package 
in ROS navigation stack is employed. Figure 5 shows 
the  navigation architecture, where ORB localization is 
adopted and A* and DWA algorithms are used for glo-
bal and local path planner, respectively. The A* algori-
thm plans the route from the current location to reach 
the goal, whereas the DWA algorithm is capable of 
updating a real-time route to bypass obstacles. Note 
that the 2D map in Figure 4 is used here for both path 

planners, data from Hokuyo LiDAR sensor is used in 
DWA algorithm for dynamic obstacle avoidance, and 
3D point clouds from Kinect v2 are employed for ORB 
localization.

Navigation experiments have been carried out 
from point ‘S’ to waypoints ‘a’ and ‘b’, each path for 
30 runs. The resulting positioning errors in x-y pla-
ne for this AMR navigation to waypoints ‘a’ and ‘b’ are 
shown in Figure 6. The mean absolute error (MAE) is 
8.5 cm on the x-axis, 10.8 cm on the y-axis, 9.2-degree  
rotation angle about the z-axis, and the  linear 
 displacement from waypoints ‘a’ and ‘b’ is 15.1 cm. 
It is observed that, due to longer distance and  
non-uniform lighting conditions including area open 
to the sky, navigation to point ‘b’ has larger positio-
ning error than point ‘a’. 

Fig. 4. The constructed 2D map of experiment field

 

 

Fig. 5. The AMR navigation architecture
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For the next continuous journey from waypoint ‘a’ 
to point ‘A’ (and from waypoint ‘b’ to point ‘B’), the 3D 
ORB localization in Figure 5 is automatically replaced 
by an odometry-based 2D localization method using 
signals from the two motor encoders and an IMU. 
Points ‘A’ and ‘B’ are selected facing the two elevators 
between 1.5 to 3 meter distance, at which the AMR 
can see and detect the elevator without difficulty, as 
shown in Figure 7. Experimental results of navigation 
from waypoint ‘a’ to point ‘A’ (and ‘b’ to ‘B’) show MAE 
of 5.25-degree rotation angle about the z-axis and the 
linear displacement 50.0 cm from the target point 
‘A’ or ‘B’. Hence it is easy to see this 2D SLAM has a 
bigger positioning error of 50.0 cm than the first 3D 
ORB-SLAM navigation of 15.1 cm. This is mainly due 
to accumulation errors from the waypoints and from 
integrating motor speed to get displacement informa-
tion as well during this trip. Nonetheless, for all 60 
runs from the start point ‘S’ to points ‘A’ and ‘B’ with 
such positioning errors, the AMR indeed is able to de-
tect the elevator without difficulty so that the third 
AMR journey to get closer to the elevator for depres-
sing the button can be made possible, as will be seen 
in the next section.

3.2 Machine Vision Guided SLAM Navigation
For the third (also the last) stage of the AMR jour-
ney, AMR has to determine its own navigation target, 

unlike the first two journeys at which the target po-
ints are preset on the 2D map by operators. As AMR 
arrives at the first location (namely point ‘A’ or ‘B’) 
in Figure 7(a), the IDS camera will be used to detect 
and determine the true elevator position relative to 
the AMR. When it is done, a target point (as shown, 
the second location in Figure 7(a) between 0.3 to 
0.5 meter distance from the elevator) can be issued 
to the AMR for the last navigation. It is noted that at 
the second location the robot arm atop the AMR with 
R500 mm working space can reach and depress the 
elevator button. Consequently, two steps are involved 
in this stage: IDS camera detects the elevator and the 
AMR moves to the second location. The success rate 
for each step will be summarized in Table 1.

As shown in Figure 7(b), the elevator up button (D) 
is not detected in first priority because it is too small 
and thus unrecognizable in the acquired image when 
the AMR is at the first location. There is, however, a 
yellow sticker below the up button, which can be de-
tected as a valid target. A series of image processing 
algorithms are applied to the acquired image with 
yellow sticker inside, including RGB to HSV model 
transformation (as an example see Figure 8(a)), yel-
low color thresholding (Figure 8(b)), noise removal 
by median filter, and by morphology transformation 
such as closing (Figure 8(c)), and finally contour fin-
ding and the Perspective-n-Point (PnP) transform [26]  

 ‘ ’

 

 ‘ ’

 

Fig. 6. Positioning errors at waypoint ‘a’ and ‘b’ of AMR navigation

 

 

elevator panel 

 

Point ‘A’ or ‘B’

Fig. 7. AMR in front of elevator: (a) AMR location illustration; (b) elevator seen at point ‘A’ or ‘B’
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(Figure 8(d)). The space coordinate of the yellow 
sticker (and hence the elevator) including position  
(x, y, z) and rotation (rx, ry, rz) relative to the camera 
frame is determined, as clearly seen in Figure 8(d). 
For all 30 experiment runs from point ‘S’ to point ‘A’ 
and another 30 runs to point ‘B’, the IDS camera suc-
ceeds in detecting the yellow sticker location every 
time at these locations, with approximate 30 mm  
displacement error in distance.

Once the elevator position and rotation relati-
ve to the camera frame is determined, i.e., sticker

visionT ,  
the target point for AMR to navigate to can be 
obtained from

 = 0 6
0 6

sticker vision sticker
AMR AMR visionT T T T T  (3)

where 0 6
0 6,  ,  vision

AMRT T T  represents respectively the 
homogeneous transformation matrix from robot 
arm base frame to AMR frame, from robot mani-
pulator flange frame to robot arm base frame, and 
from camera frame to robot manipulator flange 

frame. Then the AMR at the first location can be na-
vigated again toward the elevator to the target point 
(namely, the second location shown in Figure 7(a)) 
using the odometry based 2D SLAM technique. 
Experimental results show navigation success rates 
of 90.0% (27/30) and 86.7% (26/30) from point ‘A’ 
and point ‘B’ respectively to the target position. That 
is, three navigations from point ‘A’ and four journeys 
from point ‘B’ fail to reach the second location (in 
fact the AMR collides with the elevator). The failure 
is due to both the navigation error and the limited 
working space of the robot arm (R500 mm), which 
might overlap with the inflation map layer with ra-
dius 400 mm.

3.3 Elevator Button Detection and Depressing
As the AMR has successfully moved forward to the  
second location with 0.3 to 0.5 meter distance from 
the elevator, the IDS camera may see the button clearly  
(for example Figure 9(a)) and hence can guide the ro-
bot arm to depress it. Similar to the previous image 

 

 

 

 

 

 

 

 

Fig. 8. Image processing to the yellow sticker detection: (a) HSV image; (b) color thresholding; (c) noise filtering;  
(d) position and rotation of the yellow sticker identified

Tab. 1. The success rate for each task

From 
position

Yellow sticker detection Moving to second 
location 

Button detection Button depressed Combined success 
rate

‘A’ 100 % (30/30) 90.0 % (27/30) 59.3 % (16/27) 87.5 % (14/16) 46.7 % (14/30)

‘B’ 100 % (30/30) 86.7 % (26/30) 80.8 % (21/26) 85.7 % (18/21) 60.0 % (18/30)
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processing for detecting yellow sticker, Figure 9 de-
picts a series of image operations applied to the sour-
ce image of elevator button and shows some resulting 
samples along the process. It is found that as long as 
the button is inside the captured image, its space co-
ordinates can be correctly determined, as shown in 
Figure 9(f). However, because AMR is driven by the 
differential wheels system, it is difficult to correct 
displacement error in y-axis, especially during such 

a short travel distance from point ‘A’ or point “B’ to 
the second location (about 2 m from point ‘A’ and 3 
m from point ‘B’). Therefore, 59.3% (16/27) and 80.8 
(21/26) success rates are recorded with the elevator 
button lying within the camera FOV for path ‘A’ and 
path ‘B’ respectively when AMR arrives at the second 
location. It is readily seen that with shorter travel di-
stance for path ‘A’, it is not easy to have a large shift 
in y-axis displacement while requiring AMR to face 

 

  

 
 

 

 
 

  

 

erode

Fig. 9. Image processing to the button detection: (top) flow chart; (bottom) sample results
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directly the elevator in the end. More often the up 
buttons are located outside of the camera FOV for 
path ‘A’ than path ‘B’. In Figure 4, it is seen that an 
automobile is parked at lower left of point ‘A’ while 
point ‘B’ has nothing around it. This explains why po-
int ‘A’ is set with a shorter distance to the elevator, for 
safety concerns.

Finally, the robot arm is ready to depress the but-
ton, whose coordinates with respect to the robot base 
frame can be calculated as

 = 6
0 0 6
button vision button

visionT T T T  (4)

The reader is referred to Figure 9(f) for detected 
button position (robot_x, robot_y, robot_z) and rota-
tion (robot_rx, robot_ry, robot_rz) with respect to ro-
bot base frame, as an example. The robot gripper is 
then controlled to depress the target button, as shown 
in Figure 10. In this final task of button depressing by 
robot arm, success rate of 87.5% (14/16) and 85.7% 
(18/21) are achieved for path ‘A’ and ‘B’ respectively. 
It is found the rare depressing failures (five out of 37) 
are all caused by the limited working space of the ro-
bot arm (R500 mm) that could not reach the button 
due to the AMR positioning error.

As a summary for the performance of the deve-
loped mobile AMR to depress the button at west 
elevator (26.3 m away) or east elevator (40 m away), 
Table 1 lists the success rate for each task and the 
overall combined success rate from beginning to 
end. For path A to west elevator, 14 of 30 naviga-
tions beginning at laboratory can finish the button 
depressing resulting in 46.3% success rate, while 18 
of 30 navigations can finish the job with 60% suc-
cess rate for path B to east elevator. Note that 60 
trials for AMR to arrive at point ‘A’ and ‘B’ to detect 
the elevator position were all successful. However, 
for the ensuing tasks, mistakes happened, such as 
AMR bumping into the elevator, the small up but-
ton was not within the camera FOV, and robot arm 
was not long enough to touch the button, etc. To 
improve the success rate and enhance the system’s 
robustness, several possible approaches are propo-
sed: positioning accuracy from the first location to 
the second location could be increased by multiple 
SLAM navigations instead of just one journey; the 

differential drive system of AMR could be replaced 
by omni- directional drive, such as using Mecanum 
wheels for easy maneuvering in short travel distance 
while requiring AMR orientation in the end; scan the 
up button horizontally by robot arm when it is out 
of camera FOV; and lastly, use of longer robot arm 
for larger working space to reach the button, which 
 would also be helpful in avoiding AMR bumping into 
the elevator.

4. Conclusion
A hardware system for a mobile AMR was develo-
ped, including an aluminum mobile platform, a robot 
manipulator with an eye-in-hand IDS industrial ca-
mera, an NVIDIA-TX2 GPU module, some embedded 
Arduino microcontroller units, and several sensors 
such as Kinect v2 RGB-D camera, LiDARs, encoders 
and an IMU. The software framework was based on 
the ROS architecture installed on a laptop running 
Ubuntu 16.1.04. The required functions were imple-
mented using both C++ and Python programming. 
The aim of the study was to navigate the AMR towards 
an elevator and to summon one by depressing the 
button. AMR moving to front of the elevator for button 
depressing was made possible by three consecutive 
SLAM navigations. A 3D map of the experiment field 
for localization purposes by Kinec V2 and a 2D map 
for both localization and path planning by SICK LiDAR 
were constructed and corresponding 3D ORB locali-
zation and 2D odometry-based localization methods 
were employed in the navigation stacks. In addition, 
real time and dynamic obstacle avoidance via DWA 
was also implemented using two Hokuyo LiDARs.

With the developed hardware and software sys-
tems integrated in an AMR, an average 60% success-
ful rate of button depressing by the AMR starting 
at the laboratory was obtained in the experiments. 
Improvements of successful elevator button depres-
sing rate are also pointed out for future work.
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Fig. 10. The elevator button depressing: (a) AMR navigation to the second location and button detection; (b) depressing 
button successfully



34

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  16,      N°  4       2022

(NTUT-NUST-108-01) and by the Ministry 
of Science and Technology, Taiwan (MOST 
111-2218-E-027-001).

AUTHORS
Pan-Long Wu – Nanjing University of Science and 
Technology, China, e-mail: plwu@njust.edu.cn 

Zhe-Ming Zhang – National Taipei University  
of Technology, Taiwan, e-mail: qaz9517532846@
gmail.com .

Chuin Jiat Liew – National Taipei University of Tech-
nology, Taiwan, e-mail: jianjiat@gmail.com

Jin-Siang Shaw* – National Taipei University of Tech-
nology, Taiwan, e-mail: jshaw@ntut.edu.tw 

*Corresponding author

References
[1] R. Smith, M. Self and P. Cheeseman, “Estimating 

uncertain spatial relationships in robotics”.  
In: IEEE International Conference on 
Robot and Automation, Raleigh, NC, USA, 
31 March-3 April 1987, DOI: 10.1109/
ROBOT.1987.1087846.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous 
localization and mapping (SLAM): Part I”, 
IEEE Robot & Automation Magazine, vol. 
13, no. 2, 2006, 99-110, DOI: 10.1109/
MRA.2006.1638022.

[3] T. Bailey and H. Durrant-Whyte, “Simultaneous 
localization and mapping (SLAM): Part II”, 
IEEE Robot & Automation Magazine, vol. 
13, no. 3, 2006, 108-117, DOI: 10.1109/
MRA.2006.1678144

[4] G. Grisetti, C. Stachniss and W. Burgard, 
“Improved techniques for grid mapping with 
Rao-Blackwellized particle filters”, IEEE 
Transactions on Robot, vol. 23, no. 1, 2007,  
34-46, DOI: 10.1109/TRO.2006.889486.

[5] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, 
U. Klingauf and O. von Stryk, “Hector open 
source modules for autonomous map-
ping and navigation with rescue robots”, 
Robot Soccer World Cup, 2013, 624-631,  
DOI: 10.1007/978-3-662-44468-9_58.

[6] W. Hess, D. Kohler, H. Rapp and D. Andor, 
“Real-time loop closure in 2D LIDAR SLAM”.  
In: IEEE International Conference on Robot 
and Automation. Stockholm, Sweden, 16-
20 May 2016, 1271-1278. DOI: 10.1109/
ICRA.2016.7487258.

[7] A. J. Davison, I. D. Reid, N. D. Molton and O. 
Stasse, “MonoSLAM: real-time single camera 
SLAM”, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 29, no. 6, 2007, 
1052-1067, DOI: 10.1109/TPAMI.2007.1049.

[8] G. Klein and D. Murray, “Parallel tracking and map-
ping for small AR workspaces”, In: Proceedings 
of the 2007 6th IEEE and ACM International 
Symposium on Mixed and Augmented Reality, 
Nara, Japan, 13-16 November 2007, 225-234, 
DOI: 10.1109/ISMAR.2007.4538852.

[9] R. Mur-Artal, J. M. M. Montiel, J. D. Tardós, 
“ORB-SLAM: a versatile and accurate monocu-
lar SLAM system”, IEEE Transactions on Robot, 
vol. 31, no. 5, 2015, 1147-1163, DOI: 10.1109/
TRO.2015.2463671.

[10] P. E. Hart, N. J. Nilsson and B. Raphael, “A formal 
basis for the heuristic determination of mini-
mum cost paths”, IEEE transactions on Systems 
Science and Cybernetics, vol. 4, no. 2, 1968,  
100-107, DOI: 10.1109/TSSC.1968.300136.

[11] A. J. Bostel and V. K. Saigar, “Dynamic control 
systems for AGVs”, IEEE Trans. Computing & 
Control Engineering, vol. 7, no. 4, 1996, 169-176, 
DOI: 10.1049/cce:19960403.

[12] S. Koenig and M. Likhachev, “Fast replan-
ning for navigation in unknown terrain”, IEEE 
Transactions on Robot, vol. 21, no. 3, 2005,  
354-363, DOI: 10.1109/TRO.2004.838026.

[13] D. Fox, W. Burgard and S. Thrun, “The dynamic 
window approach to collision avoidance”, IEEE 
Robot & Automation Magazine, vol. 4, no. 1, 
1997, 23-33, DOI: 10.1109/100.580977.

[14] Kousi N, Gkournelos C, Aivaliotis S, et al. Digital 
twin for adaptation of robots’ behavior in flexible 
robotic assembly lines, Procedia Manufacturing, 
2019, 28: 121-126.

[15] G. R. Sangeetha, N. Kumar, P. R. Hari and  
S. Sasikumar, “Implementation of a stereo vision 
based system for visual feedback control of ro-
botic arm for space manipulations”, Procedia 
Computer Science, vol. 133, 2018, 1066-1073, 
DOI: 10.1016/j.procs.2018.07.031.

[16] J. Shaw and W. L. Chi, “Automatic classification 
of moving objects on an unknown speed pro-
duction line with an eye-in-hand robot manipu-
lator. Journal of Marine Science and Technology, 
vol. 26, no. 3, 2018, 387-396, DOI: 10.6119/
JMST.2018.06_(3).0010.

[17] S. J. Hosseininia, K. Khalili and S. M. Emam, 
“Flexible automation in porcelain edge polish-
ing using machine vision”, Procedia Technology, 

mailto:plwu@njust.edu.cn
mailto:qaz9517532846@gmail.com
mailto:qaz9517532846@gmail.com
mailto:jshaw@ntut.edu.tw


35

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  16,      N°  4       2022

35

vol. 22, 2016, 562-569, DOI: 10.1016/ 
j.protcy.2016.01.117.

[18] M. Laganowska, “Application of vision systems 
to the navigation of the mobile robots using 
makers”, Transportation Research Procedia, 
vol. 40, 2019, 1449-1452, DOI: 10.1016/ 
j.trpro.2019.07.200.

[19] Y. M. Wang Y. Li and J. B. Zheng, “A camera cali-
bration technique based on OpenCV”. In: The 
3rd International Conference on Information 
Sciences and Interaction Sciences, Chengdu, 
China, 23-25 June 2010, DOI: 10.1109/
ICICIS.2010.5534797.

[20] C. Zhou and X. Liu, “The study of applying the 
AGV navigation system based on two dimen-
sional bar code”. In: International Conference 
on Industrial Informatics - Computing 
Technology, Intelligent Technology, Industrial 
Information Integration (ICIICII), Wuhan, 
China, 3-4 Dec. 2016, 206-209, DOI: 10.1109/
ICIICII.2016.0057.

[21] D. S. Schueftan, M. J. Colorado and I. F. M. Bernal, 
“Indoor mapping using SLAM for applications 
in flexible manufacturing systems”. In: IEEE 2nd 
Colombian Conference on Automatic Control 

(CCAC), Manizales, Colombia, 14-16 Oct. 2015, 
DOI: 10.1109/CCAC.2015.7345226.

[22] A. S. Sabale, “Accuracy measurement of depth us-
ing Kinect sensor”. In: Conference on Advances 
in Signal Processing (CASP), Pune, India, 9-11 
June 2016, DOI: 10.1109/CASP.2016.7746156.

[23] J. P. M. dos Santos, SmokeNav - simultaneous lo-
calization and mapping in reduced visibility sce-
narios. MSc thesis, Department of Electrical and 
Computer Engineering, University of Coimbra, 
Coimbra, Portugal,  September 2013. http://hdl.
handle.net/10316/26963

[24] M. Rahchamani, “Developing and evaluating 
a low-cost tracking method based on a single 
camera and a large marker”. In: 25th National 
and 3rd International Iranian Conference on 
Biomedical Enginnering (ICBME). Tehran, 
Iran, 29-30 November 2018, DOI: 10.1109/
ICBME.2018.8703592.

[25] B. P. Gerkey. AMCL package, http://wiki.ros.org/
amcl.

[26] Perspective-n-Point (PnP) transform, https://
docs.opencv.org/master/dc/d2c/tutorial_real_
time_pose.html.

https://ieeexplore.ieee.org/xpl/conhome/5510903/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5510903/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5510903/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7822826/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7822826/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7822826/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7822826/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7331565/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7331565/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7331565/proceeding

