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Abstract: A new method for computation of positive 
realizations of given transfer matrices of linear discrete-
time linear systems is proposed. Sufficient conditions 
for the existence of positive realizations of transfer 
matrices are given. A procedure for computation of the 
positive realizations is proposed and illustrated by an 
example.
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1. Introduction 
A dynamical system is called positive if its trajecto-

ry starting from any nonnegative initial state remains 
forever in the positive orthant for all nonnegative in-
puts. An overview of state of the art in positive sys-
tems theory is given in the monographs [2, 11]. Varie-
ty of models having positive behavior can be found in 
engineering, economics, social sciences, biology and 
medicine, etc. [2, 11].

The determination of the matrices A, B, C, D of the 
state equations of linear systems for given their trans-
fer matrices is called the realization problem. The 
realization problem isa classical problem of analysis 
of linear systems and has been considered in many 
books and papers [9, 10, 20, 22]. A tutorial on the pos-
itive realization problem has been given in the paper 
[1] and in the books [2, 11]. The positive minimal re-
alization problem for linear systems without and with 
delays has been analyzed in [3, 5-7, 11-15, 18, 19, 21]. 
The existence and determination of the set of Metzler 
matrices for given stable polynomials have been con-
sidered in [8]. The realization problem for positive 
2D hybrid systems has been addressed in [17]. For 
fractional linear systems the realization problem has 
been considered in [16, 20, 22].

In this paper a new method for computation of 
positive realizations of linear discrete-time systems 
is proposed. It can be considered as an extension to 
discrete-time systems of the method presented in [4].

The paper is organized as follows. In section 2 
some definitions and theorems concerning the posi-
tive discrete-time linear systems are recalled. A new 
method for computation of positive realizations for 

single-input single-output linear systems is proposed 
in section 3 and for multi-input multi-output systems 
in section 4. Concluding remarks are given in sec-
tion 5.

The following notation will be used: ℜ  – the set of 
real numbers, ×ℜn m  – the set of n × m real matrices, 

×
+ℜn m  – the set of n × m  real matrices with nonnega-

tive entries and ×
+ +ℜ = ℜ 1n n , In – the n × n identity ma-

trix.

2. Preliminaries
Consider the discrete-time linear system

 + = +1i i ix Ax Bu , (2.1a)

 = +i i iy Cx Du ,  (2.1b)
where ∈ℜn

ix , ∈ℜm
iu , ∈ℜp

iy  are the state, input 
and output vectors and ×∈ℜn nA , ×∈ℜn mB , ×∈ℜp nC , 

×∈ℜp mD .
Definition 2.1. [2, 11] The system (2.1) is called 

(internally) positive if +∈ℜn
ix  and +∈ℜp

iy , +∈i Z  for 
any initial conditions +∈ℜ0

nx  and all inputs +∈ℜm
iu , 

+∈i Z .
Theorem 2.1. [2, 11] The system (2.1) is 

positive if and only if

 
× ×× ×

+ + + +∈ℜ ∈ℜ ∈ℜ ∈ℜ, , ,p n p mn n n mA B C D  (2.2)

The transfer matrix of the system (2.1) is given by

 = − +( ) [ ]T z C I z A B D . (2.3)

Definition 2.2. [1, 22] The matrices (2.2) are 
called a positive realization of T(z) if they satisfy the 
equality (2.3).

Definition 2.3. [1, 22] The system (2.1) is called 
asymptotically stable if the matrix A is a Schur matrix.

Theorem 2.2. [1, 22] The positive realization (2.2) 
is asymptotically stable if and only if all coefficients of 
the polynomial

 
−

−= + − = + + + +1
1 1 0( ) det[ ( 1) ] ...n n

A n np z I z A z a z a z a  
(2.4)

are positive, i.e. > 0ia  for i = 0,1,...,n – 1.
The positive realization problem can be stated as 

follows. Given a proper transfer matrix T(z) find its 
positive realization (2.2).

Theorem 2.3. [22] If (2.2) is a positive realization 
of (2.3) then the matrices

 
− −= = = =1 1, , ,A PAP B PB C CP D D  (2.5)
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It is assumed that the denominator

 

−
−= + + + + =

= − − −

1
1 1 0

1 2

( ) ...
( )( )...( )

n n
n

n

d z z d z d z d
z z z z z z  (3.4)

has only nonnegative zeros z1, z2, …, zn (not necessar-
ily distinct).

In this case it can be written in the form

 
− − −

− − −= − + − + + −1 2 3
1 2 3 0( ) ... ( 1)n n n n n

n n nd z z d z d z d z d , 
(3.5a)

where

 

−

− −

= + + +
= + + +

=


1 1 2
2 1 2 1 3 1

0 1 2

... ,
...

... .

n n
n n n

n

d z z z
d z z z z z z

d z z z  (3.5b)

Lemma 3.1. If

 

×
+

 
 

= ∈ℜ 
 
  





     



1
2

3

0 0 0 0
1 0 0 0
0 1 0 0

0 0 0 1

n n

n

z
z

A z

z ,  

 
×

+= ∈ℜ

1[0 0 1] nC  (3.6)

then

are also a positive realization of (2.3) if and only if the 
matrix ×

+∈ℜn nP  is a monomial matrix (in each row 
and in each column only one entry is positive and the 
remaining entries are zero).

Proof. Proof follows immediately from the fact 
that − ×

+∈ℜ1 n nP  if and only if P is a monomial matrix. □

3. Positive Realizations of Transfer Functions
In this section a method for computation of posi-

tive realizations (A, B, C, D) of the given transfer func-
tion

 

−
−

−
−

+ + + +=
+ + + +

1
1 1 0

1
1 1 0

...( )
...

n n
n n

n n
n

m z m z m z mT z
z d z d z d

. (3.1)

will be proposed.
Using (2.4) we obtain the matrix

 →∞
= =lim ( ) n

z
D T z m

 
(3.2)

and the strictly proper transfer function

 

−
−

−
−

+ + += − =
+ + + +

1
1 1 0

1
1 1 0

...( ) ( )
...

n
n

n n
n

m z m z mT z T z D
z d z d z d ,  

(3.3a)
where

 = −k k n km m m d  for = −0,1,..., 1k n . (3.3b)

 

−

−

−

= − − − − − −
− − −



1

1 1 2 1 2 1
1 2

[ ]
1 [1 ( )( ) ( )( )...( )]

( )( )...( )

n

n
n

C I z A

z z z z z z z z z z z z
z z z z z z   (3.7)

Proof. Using (3.6) we obtain

 

−

−

−

− 
− − 

− = − − 
 
 − −  

= − − − − − −
− − −





 

     





1
1

21
3

1 1 2 1 2 1
1 2

0 0 0 0
1 0 0 0

[ ] [0 0 1] 0 1 0 0

0 0 0 1
1 [1 ( )( ) ( )( )...( )]

( )( )...( )

n

n

n
n

z z
z z

C I z A z z

z z

z z z z z z z z z z z z
z z z z z z  

(3.8)

since

 −− = − − − − − −1 1 2 1 2 1[ ] [1 ( )( ) ( )( )...( )]n ad nC I z A z z z z z z z z z z z z  
and (3.7) holds. □

Theorem 3.1. There exists the positive realization

 

×
+

 
 

= ∈ℜ 
 
  





     



1
2

3

0 0 0 0
1 0 0 0
0 1 0 0

0 0 0 1

n n

n

z
z

A z

z

,

  

+

 
 = ∈ℜ 
  


1
2 n

n

b
bB
b

,

  

×
+= ∈ℜ

1[0 0 1] nC ,

  

= nD m

 

(3.9)

of the transfer function (3.1) if the denominator (3.4) 
has nonnegative zeros z1, z2, …, zn, ≥ 0km , k = 0,1,..., 
n – 1 (at least one > 0km ) and ≥ 0nm .

Proof. If ≥ 0kz , k = 0,1,...,n then ×
+∈ℜn nA . To sim-

plify the notation let us assume that n = 4. Using Lem-
ma 3.1 for n = 4 we obtain
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−
−   
− −   − = − −   

− −      
 
 = − − − − − −  
  

= − + − + − + + + +
+ −



1 1
1 2 2

4
3 3

4 4

1
2

1 1 2 1 2 3
3
4

1 1 2 1 2 3 1 2 3 4 2 1 2 3 1 2 3 2 3 4

3

0 0 0
1 0 0[ ] [0 0 0 1] 0 1 0

0 0 1

[1 ( )( ) ( )( )( )]

[ ( ) ( ( ) ) ]
[ (

ad

z z b
z z bC I z A B z z b

z z b

b
bz z z z z z z z z z z z b
b

b z b z z b z z z b b z z b z z z z z b
b + + +

= + + +

2 3
1 2 3 4 4

3 2
3 2 1 0

) ]z z z b z b z
m z m z m z m  (3.10)

where =2 1m , =1 0.8m , =0 0m  and =1 0.4z , =2 0.6z , 
=3 0.8z .
In this case we have

 

  
= = =  

     

1
2

3

0.4 0 00 0
1 0 1 0.6 0 , [0 0 1]
0 1 0 1 0.8

z
A z C

z ,  
(3.17)

and

 

−−       
− − = − =      

            
  

= =   
     

1 1 2 1 1
1 2 2 2

3 3

0
1
2

1 0.4 0.241
0 1 0 1 1
0 0 1 0 0 1

0
0.8 .
1

z z z b b
z z b b

b b

m
m
m

  
(3.18)

Solving (3.18) we obtain

 

  
= =   

     

1
2
3

0.48
1.8
1

b
B b

b
. (3.19)

The positive asymptotically stable realization of 
the transfer function (3.14) is given by (3.17), (3.19) 
and (3.15).

It is easy to check that the matrices

 

  
= =   

     
 

= = 
  

1
2

3

0.4 1 01 0
0 1 0 0.6 1 ,
0 0 0 0 0.8

0
0 , [0.48 1.8 1]
1

z
A z

z

B C
 

(3.20)

are also the positive asymptotically stable realization 
of (3.16).

In general case we have the following theorem.
Theorem 3.2. There exists positive realization

 

×
+

−

+

×
+

 
 

= ∈ℜ 
 
  

 
 = ∈ℜ 
  

= ∈ℜ =





     









1
2

1

1
1 2

1 0 0 0
0 1 0 0

,   
0 0 0 1
0 0 0 0

0
0 ,
1

[ ] ,   

n n

n
n

n

n
n n

z
z

A
z

z

B

C c c c D m  (3.21)

of the transfer function (3.1) if the denominator (3.4) 
has nonnegative zeros z1, z2, …, zn, ≥ 0km , k = 0,1,...,n – 1  
(at least one > 0km ) and ≥ 0nm .

and

 

− −     
− − + +     =− − −     

         

1 1 2 1 2 3 1 0
1 2 1 2 3 2 3 2 1

3 21 2 3
4 3

1
0 1 ( )
0 0 1
0 0 0 1

z z z z z z b m
z z z z z z z b m

b mz z z
b m

.

 
(3.11)

Multiplying the second row of (3.11) by z1 and 
adding to its first row, then multiplying third row by 
z1 + z2 and adding to its second row we obtain

 

 − − +  
   − − + =   − − −
     

+ 
+ + =  

  

2 2
2 31 1 1

2
21 2 31
31 2 3
4

0 1 1
1 1 2 2

2
3

1 0 ( )
0 1 0 ( )
0 0 1
0 0 0 1

( )

z z z z b
bz z z z
bz z z
b

m z m
m z z m

m
m  

(3.12)

From (3.12) it follows that

 

= ≥
= + + + ≥

= + + + + + ≥
= + + ≥

4 3

3 2 1 2 3 3
2

2 1 1 2 2 1 2 3 31
2 2

1 2 2 3 31 1

0,
( ) 0,

( ) [ ( ) ] 0,
( ) 0

b m
b m z z z m

b m z z m z z z z m
b z m z z z m  (3.13)

and the matrix +∈ℜ4B . By assumption = ≥ 0nD m . 
Therefore, there exists the positive realization (3.9) 
of the transfer function (3.1) if the denominator (3.4) 
has nonnegative zeros and ≥ 0km , k = 0,1,...,n – 1, 

≥ 0nm . □
Remark 3.1. The positive realization (3.9) is as-

ymptotically stable (Schur) if < 1kz  for k = 0,1,...,n.
Example 3.1. Compute the positive realization 

(3.9) of the transfer function

 

− + −=
− + −

3 2

3 2
2 2.6 2.88 0.384( )

1.8 1.04 0.192
z z zT z
z z z

. (3.14)

Using (3.2) and (3.14) we obtain

 →∞
= =lim ( ) 2

z
D T z

 
(3.15)

and

 

+= − = =
− + −

+=
− − −

+=
− + −

2

3 2

2
2 1

3 2
2 1 0

0.8( ) ( )
1.8 1.04 0.192

( 0.8)
( 0.4)( 0.6)( 0.8)

,

z zT z T z D
z z z

z z
z z z

m z m z
z d z d z d   

(3.16)
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Proof. The proof is similar (dual) to the proof of 
Theorem 3.1.

4. Extension of the Method to MIMO Systems
In this section the method presented in section 3 

will be extended to multi-input multi-output (MIMO) 
linear systems. To simplify the notation two-input 
two-output systems will be considered.

The problem can be stated as follows. Given the 
proper transfer matrix

 

−
−

 =   
+ + +=

+ + + +
=

11 12
21 22

1 0
1

1 1 0

( ) ( )( ) ,( ) ( )
...( ) ,

...
, 1,2

n
ikn ik ik

ik n n
ikn ik ik

T z T zT z T z T z
m z m z mT z

z d z d z d
i k  (4.1)

find its positive realization (A, B, C, D) such that

 
−= − +1( ) [ ]nT z C I z A B D . (4.2)

Using

 →∞
= lim ( )

z
D T z

 
(4.3)

find the matrix ×
+∈ℜ2 2D  and the strictly proper trans-

fer matrix

 

−

 
 
 = − = − =
 
 
 

11 12

1 11

21 22

2 2

( ) ( )
( ) ( )

( ) ( ) [ ]
( ) ( )

( ) ( )

n

m z m z
d z d z

T z T z D C I z A B
m z m z
d z d z  

(4.4a)
where 

 
−

−= + + + + =1
1 1 0( ) ... , 1,2n n

i in i id z z d z d z d i  
(4.4b)

is the least common denominator of Tk(z), i,k = 1,2 
and zi1, zi2, …, zin, i = 1,2 are nonnegative zeros of 
(4.4b) and

 
−

−= + + + + =1
1 1 1 0( ) ... , 1,2n

ik ikn ik ik ikm z m z m z m m i .  
(4.4c)

The matrix A of the desired positive realization 
has the form

 

 
= = 

 
1

1 2
2

0
blockdiag[ ]

0
A

A A A
A

,  (4.5a)

where

 
 
 
 = =
 
 
  

     

0 0 0 0
1 0 0 0

, 1,2
0 0 0 0
0 0 0 1

in

in

A i

 

(4.5b)

The matrices B and C have the forms

+

 
    = = ∈ℜ =      
 



1

211 12

21 22
, , , 1,2i

i

ik

ik n
ik

ikn

b
bB B

B B i k
B B

b  

(4.6a)

and

 
×

+

=

= ∈ℜ =

1 2
1

blockdiag[ ],
[0 0 1] , 1,2in

i

C C C
C i . (4.6b)

The entries of Bik, i,k = 1,2 can be calculated in the 
same way as the entries of B in section 3. Therefore, 
we have the following theorem.

Theorem 4.1. There exists the positive realization 
given by (4.5), (4.6) and (4.3) of the transfer matrix 
(4.1) if

1) ×
+∈ℜ2 2D  (defined by (4.3)); (4.7a)

2) The denominators (4.4b), i = 1,2 have 
nonnegative zeros.  (4.7b)
Proof. If ≥ 0ikz , i = 1,2, k = 0,1,...,n then 

+ × +
+∈ℜ 1 2 1 2( ) ( ) .n n n nA  In a similar way as in proof of The-

orem 3.1 it can be shown that + ×
+∈ℜ 1 2( ) 2n nB  if the de-

nominators (4.4b), i = 1,2 have nonnegative zeros. 
The matrix C defined by (4.4b) has always nonnega-
tive entries. Therefore, the realization given by (4.5), 
(4.6) and (4.3) is positive if ×

+∈ℜ2 2D . □
If the conditions of Theorem 4.1 are satisfied then 

the following procedure can be used for computa-
tion of the positive realization for given transfer ma-
trix (4.1).

Procedure 4.1.
Step 1.  Knowing T(z) and using (4.3) and (4.4a) 

compute the matrix D and the strictly proper 
transfer matrix ( )T z .

Step 2.  Compute the zeros zij, i = 1,2, j = 1,...,n of the 
polynomials (4.4b) and find the matrix (4.5).

Step 3.  Using the procedure presented in section 3 
compute the matrix + ×

+∈ℜ 1 2( ) 2n nB .
Step 4.  Write the desired positive realization given 

by (4.5), (4.6) and (4.3).

Example 4.1. Compute the positive realization of 
the transfer matrix

 

 − +
 − + =

+ 
 − 

2

2
2 1.2 1

1.1 0.3( )
3 0.8

0.4

z z
z zT z

z
z

.  (4.8)

Using Procedure 4.1 we obtain the following:
Step 1. Using (4.3), (4.2) and (4.8) we obtain

 

+ 
 − += − =  
 
 − 

2
0.4

1.1 0.3( ) ( )
2
0.4

z
z sT s T s D

z  

(4.9)

and
 .  (4.10)
Step 2. The zeros of the polynomial

 = − +2
1( ) 1.1 0.3d z z z   (4.11a)

are z11 =0.5, z12 =0.6 and the polynomial

 = −2( ) 0.4d z z   (4.11b)

has only one zero z21 =0.4.
Therefore, the matrix A has the form

 

 
   = =       

1

2

0.5 0 0
0

1 0.6 0
0

0 0 0.4

A
A

A
. (4.12)
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Step 3. In this case

 

   
= = =   

   
1 11

1 2 13
2 12

, , [ ]
B b

B B B b
B b  

(4.13a)

and

 

−−         
= = =         

         
=

1
11 10

1
11

2

1 1 0.5 0.4 0.9
,

0 1 0 1 1 1
2.

z m
B

m
B  (4.13b)

Thus, we have

 

 
 =  
  

0.9
1
2

B

 

and 
   

= =   
   

1

2

0 0 1 0
0 0 0 1

C
C

C
.
  
(4.14)

Step 4.  The desired positive realization of (4.8) is 
given by (4.12), (4.14) and (4.9).

It is easy to verify that the matrices

 

   
   = =   
      

   
= =   

   

0.5 0 0 0
1 0.6 0 , 1 ,
0 0 0.4 1

0.9 1 0 2
,

0 0 2 3

A B

C D
 

(4.15)

are also the (dual) positive realization of (4.8).
Remark 4.1. To the presented method the dual 

method based on the least common denominator for 
each column of T(z) can be also applied.

Remark 4.2. By Theorem 2.3 if the matrices A, B, 
C, D are a positive realization of T(z) then the matrices 
PAP–1, PB, CP–1, D are also its positive realization for 
any monomial matrix P.

5. Conclusion
A new method for computation of positive real-

izations of transfer matrices of discrete-time linear 
systems has been proposed. Sufficient conditions for 
the existence of the positive realizations have been 
established (Theorems 3.1, 3.2 and 4.1). A procedure 
for computation of the positive realizations has been 
proposed and illustrated by a numerical example (Ex-
ample 4.1). The presented method can be extended to 
linear fractional systems.
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