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Abstract:
Medical history highlights that myocardial infarction is 
one of the leading factors of death in human beings. 
Angina pectoris is a prominent vital sign of myocardial 
infarction. Medical reports suggest that experiencing 
chest pain during heart attacks causes changes in facial 
muscles, resulting in variations in patterns of facial ex-
pression. This work intends to develop an automatic fa-
cial expression detection to identify the severity of chest 
pain as a vital sign of MI, using an algorithmic approach 
that is implemented with a state-of-the-art convolution-
al neural network (CNN). The advanced object detection 
lightweight CNN models are as follows: Single Shot De-
tector Mobile Net V2, and Single Shot Detector Inception 
V2, which were utilized for designing the vital signs MI 
model from the 500 Red Blue Green Color images pri-
vate dataset. The authors developed cardiac emergency 
health monitoring care using an Edge Artificial Intelli-
gence (“Edge AI”) using NVIDIA’s Jetson Nano embedded 
GPU platform. The proposed model is mainly focused on 
the factors of low cost and less power consumption for 
onboard real-time detection of vital signs of myocardial 
infarction. The evaluated metrics achieve a mean Aver-
age Precision of 85.18%, Average Recall of 88.32%, and 
6.85 frames per second for the generated detections.

Keywords: Vital Signs, Myocardial Infarction, Facial Pain 
Expression, Computer Vision, Medical Assistance, Convo-
lution Neural Network

1. Introduction
The primary cause of human death across the globe is 
heart disease, specifically ischemia, and angina pecto-
ris (chest pain) is its most common symptom [1]. Pain 
is a distressing experience, with actual or potential 
tissue damage associated with sensory, emotional, 
cognitive, and social components [2]. Pain is a pub-
licly displayed visible event (usually demanding at-
tention) and the facial expressions allow the observer 
to appropriately respond. Characteristics may be 
discovered on the observational scale of pain (sharp, 
intense or unusual) that may help to identify a warn-
ing signal as a potential danger threat. The patterns 
in facial pain expression induce social responses such 
as care, empathy, and nursing [3, 4]. Without pain, 
the total lifespan of human beings will be reduced  

drastically [5]. Pain is a multi-dimensional represen-
tation that incorporates behavioral, physiological,  
sociocultural, cognitive, and affective characteristics [6].

Clinicians perform their initial investigation 
through the patient’s self-report, taking into consi-
deration such as location, severity, sensory quality, 
temporal features, and aspects that escalate or di-
minish pain. A conscious verbal patient’s self-report 
gathering can be adapted by different modes like 
verbal communication, gestures, nodding the head 
for a question, or writing. A non-verbal patient’s self- 
report information collection can include searching 
for causes of pain, keen observation of patient beha-
vior, the report from the patient caretaker, or through 
an analgesic trial. In a manual process, there are chan-
ces of missing certain information in a short interval 
of time due to high patient density in hospitals, mi-
scommunication, late detection, and human reading 
errors leading to a faulty diagnosis. It is very neces-
sary for the patient’s diagnosis process to develop an 
accurate and automatic pain detection model that can 
eliminate all these human errors during the pain mo-
nitoring period [7]. 

Chest pain is an evident clinical attribute of my-
ocardial ischemia during the suspected acute phase 
of myocardial infarction [8]. Both cardiac functional 
failure and pain fall under myocardial ischemia, cau-
sed by the imperative pumping of the heart against 
hypertensive pressure. It is almost certain that severe 
angina pectoris can occur in the presence of myocar-
dial hypertrophy or preexistence of coronary artery 
disease [9]. One study tried to establish a relation-
ship between MI pain duration and the mortality rate, 
and reports suggested that the highest mortality rate 
existed among the patients who succumbed to the 
longest duration of pain [10]. An investigation by rese-
archers found a common pattern in facial expression 
of patients with chest pain diagnosed with necrosis or 
cardiac ischemia [11].

Pain is an individual experience and proves to be 
a complex phenomenon for automatic precise me-
asurement and effective medical diagnosis using fa-
cial expressions. In recent decades, researchers have 
shown keen interest in exploring the challenges and 
problems of facial expression recognition (FER) in 
the growing medical allocation area of research such 
as computer vision and artificial intelligence doma-
ins [12]. The existing clinical practices in diagnosing 
chest pain treatment are time-consuming and involve 
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costly procedures in the treatment process that need 
to be adapted. A focus has been made by researchers 
to develop more effective methods for evaluating 
chest pain caused by myocardial infarction. This idea 
helped us begin developing an edge-based AI model 
that interprets the expressions of the face to evalu-
ate the intensity of angina pectoris. Therefore, the 
patients with high complications with MI who need 
immediate attention can be called in for an emergen-
cy procedure and be admitted to the hospital at the 
earliest possibility.

The research community has been constantly 
exploring integral solutions for remote monitoring 
of patients by generating reports to the clinicians 
for more than a decade. The primary motivation is 
to address healthcare issues at all levels: pediatric 
care, disease monitoring, elderly supervision, emer-
gency patients handling, fitness, and private health 
management. 

In recent years, efficient combinations of cloud 
computing and effective Internet of Things architec-
tures, along with algorithmic approaches of artifi-
cial intelligence (AI), have been exploited to develop 
a product model for real-time smart health care ap-
plications. Data captured by embedded sensors, we-
arable devices, smartphones, and Internet of Things 
devices may help to explore the habits and patterns 
of a person and be effectively utilized in the health-
care domain to solve existing problems through sta-
te-of-the-art AI-based approaches [13]. The concept 
of edge intelligence (“Edge AI”) is to “provide AI for 
every person, anytime, anywhere at all concerns.” 
The Edge IoT devices were developed with built-in 
AI models to acquire the sensor data and decode 
its behavior to make accurate decisions and near-
-precise predictions. IoT devices with Cloud-based 
architecture disadvantages exhibit qualities such as 
non-safety, low latency, and soft real-time abilities, 
which are critical for IoT healthcare applications. 
However, considering the critical conditions of the 
patients under time-bound emergency conditions, 
those criticalities need high robustness, low laten-
cy, high bandwidth, and a large degree of reliable 
systems to avoid fatal consequences. Traditional 
cloud computing techniques based on IoT devices 
pose bigger challenges in health monitoring appli-
cations, such as bandwidth issues and reliability, la-
tency, and privacy problems.  In order to overcome 
these challenges, the concept of Edge AI has been 
introduced [14]. 

Presently, there are mainly three edge computing 
platforms, namely: i) on-device computation, in which 
AI computations are done locally on the end device; 
ii) edge-server architecture, in which the edge server 
does the computation task after gathering data from 
the edge devices called nodes; and iii) edge-cloud- 
based joint computation. Recently, considerable work 
has been carried out in the healthcare segment on 
edge platforms. Ghulam Muhammad et al. developed 
a voice disorder detection and classification system in 

smart health frameworks [15]. The acquisition of vo-
ice signals was carried out through IoT smart sensors. 
Processing and computing were done through edge 
computing and a cloud platform. J. Pena Queralta et al. 
proposed an LSTM Recurrent Neural Network tech-
nique for a fall detection system utilizing the state- 
of-the-art Low Power Wide Area Network (LPWAN). 
The authors utilized the state-of-the-art low power 
wide area network technology to overcome the ne-
twork limitations in Edge AI [16]. Xiangfeng, Dai, et 
al. presented a mobile health platform for skin cancer 
detection, developing an inferencing platform on the 
device by combining deep learning and mobile health 
technology into a single technique for cancer detec-
tion and classification [17]. 

In this work, we have implemented an automatic 
facial pain recognition system using an embedded 
edge GPU platform, Jetson Nano; this was also to eva-
luate the state-of-the-art CNN lightweight architec-
tures, SSD Inception V2 and Mobile Net SSD V2, by 
considering the following performance metrics: pre-
cision, recall, and frames per second. In this research 
work, the aim is to classify the severity of pain states 
of MI expressed as the vital sign exhibited in facial 
expressions as: normal, mild, and severe levels.

Our major contributions in this research paper 
are: (i) to create a chest pain facial expression dataset 
following the benchmark metrics of the Facial Action 
Coding System (FACS) along with suitable annotation; 
(ii) to choose a suitable real-time detection model, 
considering DCNN models SSD- MobileNetV2 and 
SSD Inception Net V2  for embedded platforms; and 
(iii) model optimization and performance tests being 
performed using NVIDIA Jetson NANO, and evaluating 
the inference speed during the real-time detection 
model on an embedded platform.

This research work is organized as follows. Sec-
tion 2 explores the recent research works carried out 
in automatic pain expression extraction from facial 
expressions. Section 3 explains the overview of our 
proposed work and our Facial Action Coding System, 
and describes our dataset and the performance me-
trics used for evaluation. Section 4 elaborates and 
discusses the obtained simulation results. Lastly, Sec-
tion 5 describes the overall conclusion.

2. Related Work
Scientific analysis of automatic facial expression 
analysis systems has been around for three decades. 
Early attempts failed to work for spontaneous facial 
expression detection and perform under a real-time 
environment due to a lack of powerful algorithms, 
capturing of quality datasets, and efficient hardware 
to process large datasets [18]. The recent revolution 
in computer vision techniques has made it possible 
to extract and analyze various health indicators 
from facial expressions, such as mental state, as well 
as physiological parameters like respiratory rate, 
blood pressure, ECG signals, etc. Automatic facial 
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detection has high relevance and has attracted con-
siderable interest in many applications like medi-
cal diagnosis, biometrics, forensics, defense, and 
surveillance. Automatic pain recognition requires a 
minimum of one sensory input channel, called mo-
dality, for extracting relevant information from the 
patient, and the same data is utilized for further pro-
cessing in an embedded device or computer. It could 
be a behavioral feature or physiological feature of 
the person during observation. Behavioral features 
are based on body movements (head movements or 
restlessness), facial expressions, paralingual vocal-
izations (moaning or crying), or speech. Physiologi-
cal modalities might be an electro-dermal activity, 
cardiovascular activity signal (ECG), or brain signal 
(EEG). A recognition system can be a unimodal or 
multimodal system [19]. Table 1 provides informa-
tion related to 4 different metrics that have been 
incorporated by different authors using machine 
learning models.  

One of the main hurdles in automatic pain detec-
tion (APD) research has been the widely accepted 
scientific dataset until 2009. Later, when a publicly 
available UNBC-McMaster Shoulder Pain Expression 
Dataset was released, there was increased interest in 
this field as well, which noteworthy publications have 
featured. However, compared to AFER research, APD 
related works are few, and still in their infancy [19]. 
Some of the benchmark datasets designed particular-
ly for pain-related research, which have encouraged 
research in automatic pain detection and classifica-
tion techniques, are specified in Table 2.

The UNBC-McMaster database comprises 200 vi-
deos captured from 25 patients suffering from shoul-
der pain. The video frames were labeled based on the 
golden standard for facial expressions: Facial Action 
Coding System (FACS), which was originally invented 
by Prkachin and Solomon [26]. Various approaches 
have been adopted by researchers considering the 
context of Automatic Pain Detection (APD), ranging 
from the traditional handcrafted feature extraction 
techniques of supervised learning to the recent AI 
algorithmic approaches [25]. A few supervising lear-
ning techniques like linear, logistic regression, and de-
cision trees are least often used as learning methods. 
Other popular supervised machine learning techniqu-
es, like Support Vector Regressor (SVR) and Multiple 
Kernel SVM, are widely used. Semi-supervised lear-
ning methods have never been used until now [19].

Apart from AI-based approaches, several traditio-
nal approaches have been proposed by researchers. 
These methods are developed as emergency-based 
models by combining several facial descriptors such 
as shape appearance, facial texture, geometry, etc. 
Yang et al. presented a novel approach based on ap-
pearance-based facial descriptors in automatic pain 
assessment by analyzing the role of spatio-temporal 
information. Two pieces of descriptor information, 
namely, spatial texture features and spatio-temporal  
features, are extracted from video frames and vi-
deo sequences respectively. The spatial descriptors 
extracted are mainly those that consist of binarized 
statistical image features (BSIF), binary patterns 
(LBP), and local phase quantization (LPQ) analyzed 

Tab. 1. Various pain recognition modalities and approaches

Paper Modality For 
Facial Expression

Clinical Context Age Stimuli Model Samples

Adibuzzaman [20] Smartphone Breast cancer 35-48       ------ SVM-KNN 454+513

Ashouri [21] Inertial sensor Lower back pain 20-50 Trunk motion SVM 52

Haque [22] RGB, depth, thermal    - 22-42 Electrical CNN+LSTM 2k

Rivas [23] Hand movement, finger 
pressure

Stroke patients Adult Rehabilitation 
exercises 

Semi-naïve Bayesian 
classifier

6K 

Yang [24] Physiological data ICU Adult      ------- Boltzmann machine 1K

Tab. 2. Publicly available pain recognition databases

Sl No Database Subjects Stimuli

1 UNBC-McMaster shoulder pain [27] Shoulder pain patients: 25 adults 200 range of motion tests with affected 
and unaffected limbs. 

2 EmoPain [28] 22 adults with chronic lower back pain 
aged 50, 28 healthy adults aged ~37

Physical exercises (therapy scenarios)

3 BioVid Heat Pain [29] 90 healthy adults aged between 18-29 14k emotion elicitation heat pain; 41 
posed expression cold pressor emotion 

elicitation

4 IIIT-S ICSD [30] 33 infants aged between 3-24 months Immunization pain causes; non painful 
cry causes

5 BP4D Spontaneous [31] 41 healthy adults aged between 18-29 41 cold pressor tasks; emotion elicitation

6 Sense Emotion [32] 45 healthy adults aged around 26 8k heat pain (3 intensities x 30 
repetitions x 2 stimulus sites x 45 

participants)
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from the videos utilizing Three Orthogonal Planes 
[33]. Juho Kannala et al. advocated an approach for 
constructing local image descriptors in order to enco-
de textual information which would be suitable for hi-
stogram-based representation of image regions. This 
method generates binary code for each pixel, inspired 
by local binary pattern and local phase quantization, 
and provides advancement in overall performance 
compared to LBP and LPQ techniques [34].

Almost all of the research approaches have focu-
sed on facial pain evaluation where an input signal is 
either images or video samples. Initially, the prepro-
cessing techniques are implemented using normali-
zation or localization techniques for each input frame 
considered. In the later stage, characteristic feature 
extraction is carried out based on facial Action Units 
(AU), or extracting various fiducial points choosing 
specific facial landmarks. Finally, different algorith-
mic approaches are utilized to optimize a specific in-
ference model. Lately, especially this decade, the most 
widely used unsupervised approaches have included 
Deep Neural Networks such as Recurrent Neural Ne-
tworks (RNN), Conventional Neural Networks (CNN), 
and Long Short-Term Memory (LSTM), which have de-
livered high accurate results. Ghazal Bargshady et al.  
implemented an improvised deep neural network 
structure with four threshold levels for facial pain 
intensity detection. The VGG pre-trained model was 
adopted for feature extraction technique from the 
UNBC-McMaster Shoulder Pain Archive Database, and 
the principal component analysis dimensional reduc-
tion method was applied to improve efficiency. A hy-
brid approach of the deep learning CNN-BiLSTM model 
was incorporated for pain classification to achieve an 
accuracy of 90% and AUC of 98.4% [35]. Jing Zhou et 
al. proposed a novel technique for real-time automa-
tic frame-level pain intensity estimation with an RNN 
technique by using regression framework. This work 
demonstrates the sliding window technique to acqu-
ire fixed-length input samples for RNN. The regressor 
approach of RNN provides a continuous score for the 
pain classification problem instead of discrete labels 
[36]. Marco Bellantonio et al. highlighted three major 
factors during the implementation of automatic pain 
detection: spatial information, temporal axis infor-
mation, and variation in face resolution during the 
pain expression variations in video frames. A fusion 
of deep learning networks (CNN and RNN) was used 
to extract the features of pain patterns for the UNBC-
-McMaster Shoulder Pain database, using a super-
-resolution algorithm to generate the video frames 
of facial expression through a downsampling process 
with different resolution setups [37]. Paul et al. explo-
red pain detection techniques to improve the medical 
diagnosis process with high accuracy and less com-
puting time using the UNBC master shoulder pain da-
tabase. The mechanism adapted to ensure improved 
metrics performance like accuracy, AUC, subject exc-
lusive, and nonexclusive settings with a trained deep 
CNN model for estimating the percentage of pain  

level using RNN. These results showed a much better 
metrics performance during the evaluation process 
for the database as compared to the analysis report 
of the CK+ facial motion recognition database. The re-
sult of the aligned crop LSTM approach shows much 
better accuracy with an emotion classifier built on top 
of CNN. The results also highlight the correct classi-
fication with and without pain frames, with different 
facial gestures under various pain conditions for 
each subject, achieving the classification error [38]. 
Mohammad Tavakolian et al. adopted the facial pain 
frames as a compact binary code for intensity level 
classification by dividing the facial videos in terms of 
overlapping sequences. Feature extraction of frames 
was carried out using a CNN algorithm and aggrega-
ted as low-level structural information and high-level 
patterns [39]. Patrick Thiam et al. explored the spatial 
and temporal features of pain facial expression using 
attention networks and a mechanism of feeding the 
sequence of Motion Optical Flow Images (OFIs) and 
History Images (MHIs) to an attention networks-hybrid 
CNN and Bidirectional Long Short-Term Memory Re-
current Neural Network (BiLSTM RCNN) for the clas-
sification task. Performance analysis was carried out 
on the BioVid Heat pain database, sensing emotion 
database points, and achieving an improved perfor-
mance compared to state-of-the-art methods [40]. 
Xiaojing Xu et al. established a three-stage DNN ap-
proach to evaluate the visual analog scale (VAS) for a 
video-level measure of pain intensity. The three-stage 
model includes i) a VGG Face neural network model 
for predicting the frame-level PSPI, ii) a fully connec-
ted neural network for estimating the sequence level 
pain score, and iii) a linear combination of multidi-
mensional pain estimation of VAS [41]. Frerk Saxen 
et al. adopted lightweight CNN architectures for au-
tomatic face attribute detection systems for deploy-
ing the models on smartphones. NasNet-Mobile and 
Mobile-NetV2 models were used for classifying the 
custom facial dataset to achieve better accuracy with 
speed and ease to implement on mobile devices com-
pared to other state-of-the-art methods [42].  From 
the extensive literature survey, the majority of the 
current research works on deep learning have adop-
ted the Keras Tensorflow library for facial condition 
diagnosis.  There are alternative powerful libraries in 
the Python and the C++ programming language, such 
as Microsoft CNTK, Theano, Caffe, Torch, and Sci-kit 
Learn, that can be adopted for facial pain analysis.

During recent years, various types of DCNNs have 
been utilized in object detection architectures, drama-
tically increasing performance with object detection 
algorithms. CNN-based object detectors have solved 
complex real-world problems, e.g., medical imaging, 
autonomous navigation, video surveillance, and ma-
chine vision [43]. Jiaxing Li designed a facial recogni-
tion system using the Faster R-CNN object detection 
algorithm [44]. Facial image feature extraction was 
carried out using a CNN layer, which was passed to 
the Region Proposal Networks for generating region  
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proposals, and the classification layer consisting of So-
ftMax and regression layer. The efficient Faster RCNN 
network with the Chinese Linguistic Data Consortium 
(CLDC) dataset’s video data for facial expression clas-
sification performed to achieve a better mean Average 
Precision (mAP) of 0.82 [44]. In spite of the significant 
progress in APD through facial expressions, more ef-
forts should be made to collect an accurate pain da-
tabase and to improve modelling for its effectiveness 
in real time clinical practices. From the literature su-
rvey, it was found that less attention is paid to chest 
pain-related facial expressions being used for pain 
detections. In this research work, we utilize Deep Co-
nvolution Neural Network object detection networks 
SSD Mobile Net V2 and SSD Inception V2 to extract 
more effective real-time performance on an embed-
ded platform with limited computing resources. CNN 
lightweight models with high capacity have been ad-
opted in feature selection and feature extraction and 
also effective transfer learning, thereby implementing 
automatic pain recognition model using facial expres-
sion images.

Recently, some researchers have worked on MI and 
cardiovascular diseases as medical emergency condi-
tions to automatically detect the early symptoms in 
humans and prevent mortality. A deep learning-based 
artificial intelligence algorithm (DLA) has been adop-
ted to detect MI using six-lead electrocardiography. A 
novel idea for a variational autoencoder was develo-
ped using the TensorFlow library for enhancing the 
performance of DLA. The results highlight that MI can 
be detected with high accuracy even with a 6-lead 
ECG device [45]. Mandair et al. utilized logistic regres-
sion and DNN algorithmic techniques for predicting 
MI from the known risk factors. ML packages such as  
sci-kit-learn and Keras were effectively utilized and 
implemented on a Google Cloud platform. Compared 
to the DNN algorithm, the traditional method of logi-
stic regression offered better benefits in evaluating 
the disease factor from harmonized EHR data [46].  
A novel work was advocated by Kwon et al. for estima-
ting the risk strategy for the mortality of patients with 
acute MI. The authors identified the potential limita-
tions of traditional methods and employed the deep 
learning-based approach using a multilayer percep-
tron built through the Tensorflow library. The predic-
tion performance of the deep learning model designed 

for AMI patient outcomes was excellent [47]. A unique 
approach of the wearable ECG MI classifier was de-
veloped using CNN and recurrent neural networks 
with only a single lead recording. A stacking decoding 
method was adopted for the classification scheme 
of “MI,” “healthy,” “other,” and “noisy” ECG signals to 
achieve superior performance [48]. Jyoti Metan et al. 
uniquely adapted an automatic detection technique 
based on a sandpiper-optimized CNN for detecting 
cardiovascular disease using cardiovascular magnetic 
resonance imaging [49].

3. Methodology
3.1. Overview of the Proposed Model
This work implements two high-performing deep 
learning CNN architectures merged into a single ar-
chitectural model for an efficient implementation into 
a computationally intensive embedded platform.

3.1.1. Single Shot Detector (SSD) 
The Single Shot Detector (SSD) model is devised to 
perform localization and classification tasks simulta-
neously. The SSD architectural framework consists of 
two stages: a backbone structure and SSD head. The 
first stage is the backbone structure with a pre-trained 
CNN network, which acts as an image feature extractor. 
The backbone structure is pre-trained on a large-scale 
benchmark dataset like COCO. ImageNet provides a 
solution to train a rich set of various features. In this 
work, Mobile Net V2 [50] and Inception V2 models 
were pre-trained from the COCO dataset for feature 
extraction or object prediction. The second stage ex-
tracts the semantic information from the image with-
out losing the spatial information for classification. 
Here, the SSD-multi-box approach’s core objective is to 
convert the bounding boxes into a set of default boxes 
with different aspect ratios and scales [51].

The SSD predicts the objects of different classes 
even though overlapped bounding boxes exist. Du-
ring the prediction of objects in an image, the mo-
del creates scores in presence of each default box 
and produces adjustments to the box for better ob-
ject shape matching. To achieve better detection, the 
model merges the predictions from multiple featu-
re maps with different resolutions of various sizes 
of the objects. Figure 1 shows the generated default 

Fig. 1. Generated default boxes from the SSD Model
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boxes for various aspect ratios vs. cell sizes. The 
adaptation of SSD–Mobile-Net V2 architecture, as 
shown in Figure 2, consists of a base CNN network as  
Mobile-Net V2 for image feature extraction, an SSD 
module for bounding box regressions, and a final clas-
sification step for accurate facial pain detection.

3.2. The Proposed Method 
A block diagram of the advocated architectural frame-
work in the present research is shown in Figure 3. 
The methodology incorporates three modules to 
improvise the efficacy of the proposed algorithm. 
Three stages are i) input stage, ii) training stage, 
and iii) detection or output stage. In the first stage, 
RGB original images from the chest pain dataset are 
transferred to the preprocessing stage wherein the 
cropping and resizing technique is applied. In the 
subsequent step, the region of interest of the facial 
expression is marked and prepared for the next 
feature extraction and model training phase. Dur-
ing the second stage, a pre-trained CNN network 
SSD Mobile-Net V2 and SSD Inception-Net V2 are 
selected for feature extraction and training the cus-
tom data. The training process is carried out in the 
workstation as more powerful hardware is required 
for training the deep neural network models. Later, 
the trained model is transferred to the Jetson Nano 
embedded GPU board, and real-time detection is 
carried out in the final detection stage for obtaining 
three distinctive classes of the vital signs of MI as 
chest pain facial expressions.

3.2.1. Facial Action Coding System (FACS) 
The Facial Action Coding System (FACS), designed by 
Ekman and Friesen in 1976, is the most widely ac-
cepted set of standard criteria for facial expression 
research. FACS was proposed to provide a set of fine-
grained, unified criteria for 6 basic emotions: surprise, 
joy, fear, sadness, disgust, and anger. The Action Units 
(AUs) defined can be used for all possible human facial 
anatomical expressions, and gave the researchers a new 
analytic powerful tool [18]. The investigation report by 
researchers has revealed that even a pain-related AU 
can be formulated. The pain evaluation metric PSPI is 
derived by Prkachin and Solomon [26], and using Equa-
tion 1, the metric PSPI is computed from different pain-
related AU facial expression intensities. 

 
( )

( )
= +

+ +

4 max 6; 7
max 9; 10 43

PSPI AU AU AU
AU AU AU  (1) 

Intensity values of AUs are measured (0-5 from 
the weakest trace to maximum intensity). With the 
closing of eyes, AU43 is evaluated for the score values 
(either 0 or 1).

Here, the researchers adopt either frequency oc-
currences or pain baseline criteria to differentiate the 
patients with pain or without pain expression,

i) Frequency of occurrence criterion: The critical fre-
quency level is being marked for a particular AU 
and, if exceeding the normal range, may be around 
5-10%.

Fig. 2. Proposed SSD Mobile-Net V2 Architectural Model designed for facial expression chest pain detection

Fig. 3. Method for Training and Detecting Real-Time Vital Signs of Myocardial Infarction
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ii) Pain baseline criterion: There is a painful baseline 
condition being set. The AU is defined as pain- 
related when it occurs more frequently in pain pa-
tients compared to non-pain patients [52].

From this private chest pain facial expression PM 
dataset, 11 AUs with a more relevant and believable 
connection to chest pain facial expression [14] are 
expressed in Table 3. All pain-related studies deviate 
in selecting the possible AUs for their specific medical 
application. Only a few AUs are listed here. Figure 4 
shows the simulated chest pain facial expression ta-
ken from the PM private dataset, considering a few 
AUs chosen from Table 3 [11, 52].

Tab. 3. Pain Related Action Units 

FACS  Action 
Units

Description Muscular Basis

AU4 Eyebrow lowering Depressor glabellae, 
Depressor supercilii, 
Corrugator supercilli

AU6 Cheek raising Orbicularis oculi; pars 
obitalis

AU7 Eyelid tightening Orbicularis oculi; pars 
palebralis

AU9 Nose wrinkling levator labii superioris 
alaeque nasi

AU10 Upper lip raising Levator labii superioris; 
caput infraorbitals

AU20 Lip stretching Risorius

AU26 Jaw dropping Masetter; temporal  
and internal pterygoid 

relaxed

AU27 Mouth stretching Pterygoids, digastric

AU43 Eyes closing Relaxation of levator 
palpebrae superioris

AU51 Head turning left Sternocleidomastoid

AU55 Head tilting left Sternocleidomastoid

3.2.2. Dataset
One of the major challenges researchers face in auto-
matic pain recognition is the availability of suitable 

publicly available datasets. Pain-induced or simu-
lated facial expressions as custom-made datasets 
are hard to collect. An optimal dataset has to include 
high-quality annotations, be multimodal, and also 
have other relevant states to access specificity corre-
sponding to pain against the false alarm rate trade-off 
[54]. The UNBC-McMaster database is a challenging 
dataset, where in some cases it is difficult to predict 
whether a person is in pain or not, even for medical 
professionals [55]. Facial expression analysis mod-
els that are designed for young adults would not also 
generalize to older age groups [19]. Thus, a dataset of 
participants aged more than 65 years old has been in-
cluded for evaluating performance for the age group 

of 16-80 years. Table 4 indicates the classification 
scheme with different pain score levels for the private 
PM database.

Tab. 4. Different pain intensity levels in the proposed 
work database

VAS Score/ PSPI 
Score

Pain Level Number of Images

0 No Pain/ Normal 160

0-3 Mild Pain 165

3-5 Severe Pain 175

While acquiring our custom-made chest pain 
dataset PM, the Action Units mentioned in Table 3 
and following points were considered: i) FACS co-
ding pattern for pain fulfilling the critical frequency 
level, ii) male and female subjects being considered 
in equal proportion, iii) the participants’ age group 
being from 16–80 years, and v) the type of pain. The 
images were captured using the OnePlus 5 smart-
phone camera with a resolution of 16 MP of original 
frame size 4608x3456. The images are scaled down 
to lower dimensionality (1067x800 pixels) to mini-
mize computational complexity, in turn enhancing 
the processing speed. The pain facial expressions si-
mulated are ensured to look like real-time scenarios 
of a heart attack for the observer. The present work 
dataset consists of three classes: i) normal pose, ii) 

Fig. 4. Facial expression related to pain from PM dataset
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mild pain pose, and iii) severe pain pose, as shown 
in Figure 5.

3.2.3. Hardware Description
With advancements in complex architectures of deep 
learning networks for performing object detection 
and classification tasks, high speed parallel comput-
ing architectures play a major role. The choice of an 
edge device and AI algorithm for a specific applica-
tion are coupled with each other. A careful analysis 
has to be made while choosing hardware-based ar-
chitecture models on certain factors, such as cost, 
energy consumption, accuracy, and throughput. To 
enrich the optimal performance of computing deep 
learning models, Nvidia Corporation has developed 
GPU-enabled parallel processing Cuda core architec-
ture-based embedded boards in recent years. A low-
cost, powerful Nvidia Jetson Nano embedded system 
platform is adopted with the cutting-edge technology 

of Edge AI in this research work to achieve high ac-
curacy and throughput. Utilizing Jetson Nano’s full 
potential involves an optimization of effective algo-
rithms, as well as hardware, to achieve impressive 
real-time performance. Figure 6 shows the Jetson 
Nano board and system interfacing. 

3.2.4. Training
The lightweight Deep Convolution Network models 
in this proposed work are: SSD InceptionNet V2 and 
SSD MobileNet V2, which were downloaded from the 
TensorFlow model Zoo, and are pre-trained networks. 
The pre-trained weights were initialized by training 
the model using the COCO dataset. Our PM dataset is 
organized into three main facial expression classes: i) 
normal, ii) mild pain, and iii) severe pain. The data-
set consists of 350 training images and 150 test im-
ages. Training a Deep Neural Network model requires 
high-performance systems with GPUs for effective ad-

Fig. 5. Chest pain facial expression dataset consisting of i) normal, ii) mild, iii)   severe expressions

Fig. 6. a) Jetson Nano b) Jetson Nano board configuration
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vanced training with a high computation speed. With 
the help of the class labels mentioned, the goal is to 
train a DCNN model which predicts chest pain facial 
expression detection directly from video sequences. 
Hyper-parameter tuning of the neural network mod-
els is based on the evaluation of training/validation 
learning curves. The number of epochs, training time, 
and stopping criteria for training the model were de-
cided based on the careful examination of learning 
curves.

3.2.5. Performance Evaluation Metrics
COCO evaluation object detection metrics have been 
used in this work to validate the effectiveness of CNN 
models [56]. The classification problem of chest pain 
facial expressions as normal, mild, and severe con-
ditions have been evaluated, and SSD Inception/
MobileNet model performance has been tested us-
ing COCO performance metrics.  The mean Average 
Precision (mAP), Average Recall (AR) and F1 score 
are used in this evaluation process. The frames per 
second parameter is also used as a key element in 
the evaluation process to implement the real-time 
embedded applications. The bounding box location 
and class confidence are defined as the predicted 
outputs.

Intersection of Union (IOU) indicates the scaling 
factor at which the predicted bounding object box 
matches with the ground truth box. It brings the rela-
tion between the common intersection area over the 
summation of their areas. 

 
∩

=
∪

    A BIoU
A B  (2)

For evaluation, the preferred performance metrics 
in object detection algorithms are: precision (P), Ave-
rage Precision (AP), mean Average Precision (mAP), 
Average Recall (AR), and F1 Score. The criteria for 
performance optimization are designed to find out 
mispredictions, wrong localization, and any duplica-
tions involved during object detection.

Considering the test for the object detection 
problem, for the i-th image and j-th prediction, the 
algorithm is expected to find a predicted bounding 
box bij. Denoting the confidence value as cij and thre-
shold of confidence as t, sij = 1, if cij = t; otherwise,  
sij = 0. The value zij = 1, if the confidence value exce-
eds the threshold t when the detection prediction j 
on image i matches a ground truth box; otherwise,  
zij = 0. Four metrics are defined as follows.

Recall (Rot) is indicated by a proportionality constant 
of perfect predictions with respect to total number 
objects in the images for any object classification.  Re-
call Rot given by equation 3.
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where ot - object threshold value, Ni - number of im-
ages, Nij - total number of detections on image i, and 
N - maximum number of objects in s given class con-
sidering total images.

Precision (Pot ) is a scaling factor expressed in terms 
of exact predictions of object over total predictions. 
Precision Pot is given by equation 4 as
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Here, sij is set at 1 when the algorithm determi-
nes that detection j in image i is an object in the given 
class, and zij indicates if it is a correct object under the 
same class.

Average Precision (AP) for multiple object detec-
tion, the precision factor is inversely proportional 
to recall threshold value. Thus, the metric Aver-
age Precision is generally adopted to evaluate by  
using Equation (5). It is an integral function of preci-
sion with respect to the recall over a boundary [0-1] 
(where r stands for recall). Average Precision (AP_ is 
given by Equations 5 and 6.

 ( )= ∫AP precision r dr
1

0
   (5)

Under practical considerations, Average Pre-
cision is calculated on different recall levels. Let 
us assume the difference between two close recall  
levels to be dr. Then Average Precision can be defi-
ned as a`verage of precision results over different 
recall levels.
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Mean Average Precision (mAP) the total number of 
classes of objects in measured images is To.  mAP is 
defined as the mean of APs over total number of class-
es To. mAP is adopted as the main metric for object 
detection applications. mAP is defined as the average 
of AP taking into consideration all  classes. mAP is 
given by equation 7 as
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The mAP metric evaluates the algorithm’s perfor-
mance over all recall levels and all classes.

Losses (L) the total loss consists of two main losses: 
localization loss and confidence loss. The localization 
loss gives an estimate of the mismatch between the fi-
nal predicted bounding box and the ground truth box.  
The SSD model mainly adopts the predictions from 
positive matches, which are closer to ground truth 
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boxes, and the negative matches are ignored. The con-
fidence loss is a value while performing the class pre-
diction. It is a measure of the confidence of a network 
while estimating the objectness  score of the comput-
ed bounding box . 

Let p
ijx  = {1, 0} be an Indicator for matching the −

thi
default box to the −

thj  ground truth box of category P. 
In this matching strategy, If ≥∑ 1p

iji
x . The overall 

loss function is a weighted sum of the localization 
(loc) and the confidence loss (conf):

 ( ) ( ) ( ) + ∝ conf locx c l g L L x l g
N
1, , ,  = ,  , ,L x c  (8)

where N - number of matched default boxes.
If N = 0, The loss value is set to 0.
The localization loss is a smooth L1 loss betwe-

en the predicted box (l) & the ground truth box 
(g) parameters. Considering offsets for the center  
(Cx, Cy) of the default bounding box (d), width (w), and 
height (h).
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The confidence loss is the softmax loss over multi-
ple classes’ confidences (c).
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where the weight term ∝ is set to 1 by cross  
validation.

4. Results and Discussion
The self-exploratory modelling experiments were 
performed to analyze the efficacy of the DCNN pro-
posed models and implemented using Intel(R) core 
(TM) i7-7700 CPU @3.60GHz and 12GB DDR4 RAM. 
The current work implements the algorithmic mod-
el from Tensorflow object detection API, and the 
prototype model was developed using the Python 
programming platform. A powerful deep learning li-
brary, Tensor-Flow, and Keras were used for easy and 
faster prototyping. Figure 7 shows the experimental 
results of the trained CNN SSD Inception V2 model. 
The ground truth boxes and the predicted box scores 
are displayed in the image section of the Tensor board  
visualization.

Figure 8 depicts three facial expressions captured 
from the camera. The Tensor board visualization to-
olkit is designed as a scalar dashboard that is utilized 
for visualizing the performance metrics. Here, the 
TensorFlow object detection model is user-friendly;  
APIs are used for visualizing the evaluated metrics 
like mean Average Precision, Average Recall, loss 
function, test images ground truth, and predicted 
values. Figure 9 shows the mAP graph plotted using 
the Tensor Board window.

4.1.  Precision, Average Recall and F1 Score 
Evaluation

The parameter metrics are visualized graphically in 
regular intervals of checkpoints on the Tensor board 
and the same results are updated. The IOU param-
eter helps in evaluating the detection to be correct 
or incorrect with a given threshold. The IOU ratio is 
equal to 0.5, which indicates the overlapping area 
of the ground truth box with the bounding. Preci-
sion indicates whether the object detection model 
is identifying relevant objects in a given class, and 
gives correct positive predictions in terms of per-
centage. Average Precision elucidates maximum 
detections per image, considering the predefined 
standard areas defined in Common Objects in Con-
text metrics, like i) Smaller sized objects <=  pixels, 
ii) Medium-sized objects >  to <=,  and iii) Larger 
sized objects >  pixels.  According to standard COCO 
metrics, AP and mAP represent the same identity. 
Figure 9a shows a set of mAP values plotted in the 
range of IOU values from 0.5 to 0.95, with step size 
of 0.05. The main classes considered are: normal, 

Fig. 7. Predicted simulated results of SSD Inception V2 for 3 classes of chest pain facial expression detection
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mild pain, and severe pain cases. Average Recall 
shows the ability of this proposed model to deter-
mine the correct positive predictions against all 
proposed ground truths in a given class and is ex-
pressed as a percentage value. Figure 9 (b) shows a 
set of Average Recall values plotted over categories 
and IoUs.

From the results obtained for Precision and Recall 
metrics, they were used to classify the performance of 
model detections into 3 types: i) Maximum number of 
detections – High Precision and High Recall, ii) Maxi-
mum detected objects are incorrect indicating maxi-
mum false positives – High Recall and Low Precision, 
and iii) All predicted boxes are correct and maximum 
faulty ground truth objects indicating false negatives –  
Low recall and High Precision. The model’s aim is to 
achieve high recall and High Precision Condition as a 
high-performing system. Table 5 gives the values of 
mean Average Precision, Average Recall, and F1 Score 
in terms of percentage.

Tab. 5. Measurement of mean Average Precision, Recall 
and F1 Score values of SSD MobileNet V2 and SSD 
Inception V2

Convolutional 
Neural Networks

Mean Average 
Precision

Average 
Recall

F1 
Sore

SSD Inception V2 
COCO

85.18 88.32 86.72

SSD Mobilenet V2 
COCO

82.7 85.5 84.07

4.2. Loss Function Evaluation
The total loss of SSD Inception V2 and SSD Inception-
Net V2 models occurring at different stages of the 
training process is framed into three main losses: clas-
sification, regularization, and localization loss. The 
four possible cases of loss functions were simulated 
using the Tensor-flow framework whose simulated 
results in four cases were represented in Figure 10a-c,  
and the overall loss function arealso represented in 

 

Fig. 8. Real-time detection of facial pain expression

 
Fig. 9. Mean Average Precision and Average Recall values of SSD InceptionNet V2 COCO a) mean Average Precision b) 
Average Recall (large)
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Figure 10d. Table 6 gives the different loss values ob-
tained from simulation results for two different CNNs.

Tab. 6. Various loss factors measured by SSD Inception V2

Loss Type Loss Loss value

A Classification loss 1.36578

B Regularization loss 0.25272

C Localization loss 0.124921

E Final total loss 1.7434

4.3. Training Time Comparison
Training time infers total time taken in training the 
deep learning model. Training for 12,000 numbers of 
steps took approximately 49 hours for SSD MobileNet 
V2 COCO. The training time of SSD InceptionNet V2 
COCO took lesser time when compared with SSD Mo-
bilenet V2 COCO. Table 7 shows the evaluation results 
for the training period vs. the number of steps for dif-
ferent DCNN SSD COCO models.

Tab. 7. Measurement of training time v/s number of 
steps for different SSD models

Convolution Neural 
Networks

Training Time 
(Hrs)

Number of Steps 
(x1000)

SSD Inception V2 COCO 35 12

SSD MobileNet V2 
COCO

49 12

4.4. Embedded Implementation
After training the model in a high-performance sys-
tem, it was deployed to the Jetson Nano GPU board. 

The accuracy of the proposed chest pain face detec-
tion CNN model was estimated by the evaluation of a 
custom-made chest pain dataset and inference speed 
on Jetson Nano board, which is tested to verify real-
time performance on an EDGE-AI embedded device. 
The results highlight that the CNN models tested en-
sure balanced performance in inference speed and 
also in terms of accuracy in embedded system plat-
forms. Figure 4 shows the experimental setup for 
inference evaluation of the model. Table 8 shows Jet-
son Nano’s performance considering inference speed 
measured in terms of frames per second.

Tab. 8. Measurement of Frames per Second for 2 CNN 
models

Device CNN Model Power 
Consumption 

(Watts)

Frame per 
Second (FPS)

Jetson 
NANO

SSD Mobile-
Net V2

10 6.85

5 3.32

SSD Inception 
V2

10 6.26

5 3.18

4.5. Results Comparison With Other Work
Even though authors of different papers may have 
used identical databases, comparing the results of 
different papers is not generally a good approach. 
The limitations leading to incomparability are due 
to some of the following differences: i) using subsets 
of custom-made data, ii) evaluating with different 
performance measures, iii) evaluation methodolo-
gies followed, and iv) prediction tasks. As per the ex-
tensive literature survey by the authors, none of the 

Fig. 10. Loss curves of SSD Inception V2 model
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pain facial expression databases have been evaluated 
using object detection CNN models. However, facial 
expression recognition has been carried out using 
the popular object detection Faster RCNN algorithm.  
Table 9 shows the comparison of performance met-
rics of our proposed work with the results of Jiaxing 
Li [44].

Tab. 9. Measurement of mAP metric of this proposed 
work

Paper Model Dataset mean 
Average 

Precision

Jiaxing Li [44] Faster RCNN 
with VGG 16 

backbone

Chinese 
Linguistic 

Data 
Consortium 

[CLDC]

81.6

Proposed 
work

SSD inception 
V2

Custom chest 
pain database

85.18

4.6. Discussion
Automatic pain detection is a much-anticipated rem-
edy to the prevailing acute and chronic pain man-
agement in the expert medical domain. Computer 
vision-based analysis offers a promising viable solu-
tion for chest pain facial expression for efficient pain 
detection. In this work, the author has endeavored to 
evaluate the two state-of-the-art DCNN algorithms, 
SSD InceptionNetV2 and SSD Mobile Net V2, for 
chest pain facial expression being considered as a vi-
tal sign of heart attacks. It considers the image data-
set from custom-made RGB chest pain facial expres-
sion images from a high-resolution camera. Three 
main vital sign postures of facial expression images 
have been contemplated manually and evaluated 
in interpreting the severity of the pain as a sign of 
heart attack detection. In order to evaluate the CNN 
algorithm, this experiment was carried out to find 
the best training model incorporating the best test-
train configuration ratio for satisfying minimum loss 
criteria. The process of automatic feature extraction 
from the training images is an advantage compared 
to traditional facial expression feature extraction 
algorithms. The main limitation is a lack of publicly 
available standard databases for chest pain facial ex-
pression, and it was a challenging task to gather the 
custom-made dataset, annotate it, and build an ac-
curate pain-based facial recognition system for the 
object detection algorithm.

5. Conclusion 
Automating pain detection and estimating the 
pain intensity level based on facial images via suit-
able pain management strategies can emerge as a 
lifesaver in medical health informatics. The artifi-
cial intelligence approach adopted in this research 
plays a significant role for researchers and medical  

professionals working with pain management prac-
tices. The authors have developed a real-time chest 
pain-based facial expression pain detector that guar-
antees a pain estimator and detection solution un-
der myocardial infarction emergency conditions to 
save lives. Two deep conventional neural networks 
were developed based on algorithmic implemen-
tation: SSD InceptionNetV2 and SSD Mobile Net, 
which have been deployed to evaluate the chest pain 
facial expression recognition task using CNN net-
works. The results have been shown to accomplish 
a state-of-the-art performance using the classifica-
tion task in TensorFlow object detection-API. Train-
ing a CNN model end to end achieved better metrics, 
with a mean Average Precision of 85.18% and Recall 
88.32%. An embedded GPU platform, Jetson Nano, 
estimates the real-time performance using an object 
detection algorithm, and the results achieved 6.85 
frames per second in the pain detection technique. 
In the future, this can lead to a road map for re-
searchers by incorporating knowledge-based ideas 
to develop an embedded system solution that can 
be designed based on our model as an emergency 
alarm indicator based on the severity of the pain 
score during potential life-threatening cardiac ar-
rest situations.
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