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Abstract:

This paper proposed an I/Q imbalance compensation
algorithm based on neural networks, suitable for low-IF
receivers. First, the low-IF receiver architecture and the
phenomena of I/Q imbalance (also referred as image
interference) are described. The standard solution - using
a complex LMS adaptive filter, which separates the desired,
and image signals - is limited in that the recovered signal
remains affected by the I/Q imbalance; the filter proposed
here corrects this drawback. The functionality, convergence
and stability of the neural network based filter are demons-
trated through extensive computer simulations. A sizing
example is also given - deduction of the number of sample
necessary in order to achieve a -60 dB image rejection -
along with the time domain behaviour of the resulting
neural network.

Keywords: low-IF receiver, 1/Q imbalance compensation,
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1. Introduction

In the last two decades, increased consumer interest
in wireless communication devices has resulted in signi-
ficant technical developments. Nowadays rigorous ef-
forts are invested in development of multistandard recei-
vers with low cost, single chip implementation, low po-
wer consumption, etc. The main contenders for title of
most popular architecture for integrated receivers in this
century have been so far the zero-IF and low-IF receivers.
Both architectures are suitable for integration and have
been used to develop complex SoC, combining analog
front-ends and digital base-band signal processing on
a single chip. However, each of these architectures has
serious drawbacks, such as: for the low-IF receiver, non-
idealities inherent to physical implementations result in
amplitude and phase mismatches between the I and Q
signal paths; thus the desired signal is degraded by
interferences (“leakage”) from the adjacent band signal,
making it mandatory to use image rejection filters. The
desired signal in zero-IF receiver is degraded by time
variant (low-frequency) DC offsets caused by self-mixing
and leakages between the local oscillator and the RF
path; such errors are very difficult to eliminate or com-
pensate for.

Numerous image rejection algorithms and filters for
low-IF receivers are described in the literature. An inte-
resting solid state circuit solution has been recently pro-
posed in [1]: an adaptive filter based on the sign detec-
tion LMS algorithm that allows for a simple hardware
implementation at the cost of lower estimation accuracy.
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Depending on the quantization noise, it can achieve an
image to signal ratio (ISR) of approximately 60dB.
Reference [2] presents a non-data-aided image rejection
algorithm. Exploring the mutual independence property
of the desired and image signals the measure of the
interference can be determined and the initial signals
restored. By using the simulation model presented in [2],
one can see that the desired signal expression comprises
a scaling factor that is phase mismatch dependent, thus
making the filter vulnerable to phase errors. A similar
problem limits the solution proposed in [3]: there a mo-
dified complex LMS filter is used in order to reject the
image frequencies; the amplitude errors are corrected but
the phase errors are not fully cancelled. Reference [4]
shows how a small phase mismatch can reduce the ISR
achieved by an LMS filter down to 30 dB. Other solutions
are based on blind source (or signal) separation [5].

The earliest implementations make use of a calibra-
tion tone signal applied at the front-end of the low-IF
receiver [6]. These solutions are becoming obsolete, as
they required additional calibration time and hardware
for the tone generation.

The image rejection filter proposed here is based on
the one described in [3]. As mentioned above, the major
drawback of this implementation is its relatively large
sensitivity to phase errors and mismatches between I and
Q signal paths, highlighted by the presence of a phase
mismatch dependent in the expression of the resulting
wanted signal. The solution presented here aims at
correcting this problem by using neural networks to
implement the LMS adapting function, thus eliminating
the scaling factor. Note that although there are several
noise sources in a low-IF receivers (noise introduced by
the analog mixer, quantization noise due to the analog-
digital conversion, image interference, etc.), this paper
analyses only the effect of image interference.

In Section 2 and 3 the low-IF receiver architecture
and the image interference - also referred as I/Q imba-
lance - are briefly presented. Section 4 describes the en-
hanced image rejection filter based on a neural network.
For a better understanding, the combination of two
neurons resulting in the filter studied in [3] and [4] is
first presented. Then the newly proposed combination of
four neurons, that realizes the enhanced image rejection,
is described. Section 5 contains simulation results ob-
tained in Simulink; last but not least, conclusions are
drawn in Section 6.

2. The low-IF receiver architecture
Fig. 1 presents the generic low-IF receiver architec-
ture. The radio frequency (RF) signal captured by the
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antenna is filtered by the band-select filter BPF and am-
plified by the low-noise amplifier LNA. Image cancel-
lation can be achieved at this point, but requires narrow
band filtering and thus increases significantly the com-
plexity and cost of the device. The RF signal is down con-
verted to an intermediary frequency (IF) by using a qua-
drature local-oscillator signal x; ); this way a complex
low-IF signal is generated, which can be represented by
in-phase and quadrature signals, usually named 7 and Q
(I(t) and Q(t)). The IF signals are low-pass filtered by the
LPFs then sampled by the ADCs, resulting in the I(n) and
Q(n) strings. The base band demodulation and image
rejection are done in the digital domain. It should be
noted that some implementations - not discussed in this
paper - use image-rejecting complex LPFs.

Fig. 1. The low-IF receiver architecture.

Let us consider that the RF signal r(z) at the input of
the receiveris given by:

r(t) =z(1)- ¢+ 2 (1) - e (1)

where the carried signal z(¢) is a combination of the desi-
red signal s(?) and the interferer i(¢) from the adjacent
band:

z(t) =s(t)- e i) e "

The filtered intermediary frequency signal is sampled
by the ADC resulting in:

rpe(n) = s(n)- & wi(n)- e (3)

The low-IF receiver will produce two output signals.
The first one, d(n), is the intermediary frequency signal
demodulated on the cosine carrier and filtered. The se-
cond signal, v(n), results from the intermediary frequen-
cy signal by demodulation with the sine carrier. Their
expressions are:

d(n) zé[s(n)+i(n)] @

v(n) =~ [s(n) ~i(n)]
2

3. I/Q imbalance in low-IF receivers

In a real-life implementation the local oscillator sig-
nal, x; ., is affected by amplitude and phase errors than
can be expressed by:

X,0(t) =cos(2r f,,t) — j- g -sin(2r [, +¢) (5)

where g is the amplitude and ¢ the phase errors. These
errors have a slow variation in time, so during the signal
processing they can be considered constant. At down-

conversion these errors will cause interferences between
the I/Q paths; phase and amplitude mismatches between
the I/Q signal paths (LPF and ADCs) are additional causes
of such interferences. This effect is usually called I/Q im-
balance. In order to simplify the mathematical expres-
sions one can introduce the I/Q imbalance parameters,
defined as follows:

l+g-e”
2

The IF signal can now be expressed using the I/Q im-
balance parameters:

k, = e, =128 (6)

1)+ jO(t) = LPF{r(t)-x,,} =k, -2()+ ky- ' (t) (7)

where LPF stands for the low-pass filtering function. The
IF signal spectrum is depicted in Fig. 2b. After the ADC
sampling and conversion, the digitised IF signal is down-
converted into the base band, yielding the following com-
plex signals:

d(n)y=d (n)+ jd,(n) = LPF{I(n)-e”™/""" } =
=k, -s(n)+k,-i (n)

v(n)=v,(n) + jv,(n) = LPF{Q(n)- "/ */r""} =
=k -i(n)+k,-s (n)

(8)

Note thats(rn) and i(n) are complex signals, as well.
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Fig. 2. a) Spectrum of the RF signal. b) Spectrum of IF
signal. c) Spectrum of the mixture signal d(n). d) Spectrum
of the mixture signal v(n). e) Spectrum of desired signal
s(n). f) Spectrum of interferer signali(n).

The signal d(n), depicted in Fig. 2c, contains the
desired signal s(n) (spectrum shown in Fig. 2e and the
conjugate of the interfereri*(n). Likewise v(n), depicted
in Fig. 2d, contains the interferer signal i(n) (spectrum
shown in Fig. 2f) and the conjugate of the desired signal
s*(n). Therefore they are called “mixture” signals.

The equations (6) can be written in compact matrix
form as follows:

dmy ] [k k] [ sn) ©)
V| |k K|

4. Image rejection filter

The signal flow chart in Fig. 3 corresponds to the
operation of a standard LMS image rejection filter, such
as the one proposed in [3]; it has two outputs, one for the
desired and one for the interfering signal. In this case
the neurons are not performing an LMS adaptation but
an adaptive prediction operation. Thus one can write two
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cost functions to force the outputs to represent the desi-
red and interfered signals:

€ = E{lrl(n) —wy -xl(n)lz}

6, = E{ jo(m) — - ()] }

By substituting in equation (8) the desired signals
ri(n) and ry(n) with the corresponding values of d(n)
and v¥(n) and the pair of input signal x,(n) and x,(n)
withv*(n) andd(n) it results:

¢, =E { |don=wi v | } S i'(n)
E,=E { |v*(n)—w1*-d(n)|2} —s(n)

(10)

(11)
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Fig. 3. Signal flow graph of image rejection filter.

For implementing a recursive process similar to LMS
weight adaptation several considerations have to be
made: 1. One pair of adapting neurons implies the usage
of two weight values. 2. Because the neuron performs
a prediction operation, the input signalx;(n) and x,(n)
should be replaced by the errors e,(n), respectively
e (n), representing the values that are rejected. The
resulting recursive process for the neurons coefficients is
described by the following expressions:

{wl(m) =w(n)+2- 1, ¢ (n)-€,(n) (12)
wy(n+1) = wy(n) +2- 11, -e5(n)-¢(n)

When w, and w, are adapted the following conditions
are fulfilled:

{kz = Wf(”)'k; (13)
k' =w,(n)-k,

For the predicted signals the corresponding expres-
sions are:

n(n) = (k= wy(m)-) - () (14)
() = (ky —w) (n)-k,) ()

The imbalance parameters k; and k, still contain the
phase error introduced in the mixing stage, but the sig-
nals are successfully separated. Equation (14) is equiva-
lent to the result obtained in [3].

Fig. 4 presents the enhanced image rejection filters
flow chart: one can observe that the filter contains four
neurons, thus four cost functions will be processed. Two
neurons are following the rules represented by equation
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(15) while the complementary neurons aim to adapt in
order to reach the following objective:

£, =E {|d(n)—wf1 -v*(n)r} Si'(n)
e =E{ I - wiy-dtnf } - st -
£, =E {ld(n)— W,, -v*(n)lz} — s(n)

o= E{ P (m—wa-d ] } > i)

X11(n) %
/'\\\\

d(n)

i"(n)

v(n)

Fig. 4. Signal flow graph of proposed filter.

Based on same considerations, the neuron coeffi-
cients for the recursive processes result:

wy, (n+1) = wy, (n)+2- 1, -e,,(1n) - ¢, (1)
wy, (1 +1) = wy, (n)+ 2+ 1y, e, (1) - e, (n)
Wy (n+1) = wy, (1) =2+ 1y, - 5, (1) - €3, (1)

Wy (n+1) = w,, (1) =2 iy, - €0,(1) - €5, (1)

(16)

Similarly, for the predicted signals one obtains the
expressions:
(17)

()= (ky =wiy(m)- k5 Y i*(m); 9, () = (ks —wiy(n)- & )rs(n)
yz](n) = (kl - sz(l’l) 'kz*)'s(n);yzz(n) = (k1* _W21(n) 'kz)'i*(n)

From this point on the recovery of the desired signal
consists in a gain correction given by the weight values;
since k; +k, =k, +k =1 itresults:

v, (n) Vr(n) (ke + 1)V ):4* )
T=wi () - wiy(m) - 1=wy (n)° ek} =re (18)

(1) V(1) () _
1_Wl*l(n)'Wl*z(’l)Jr(17W22(n)2) (1+ Z)S(n) s(n)

5. Simulations

Since the presented image rejection filter is an adap-
tive one, stability, convergence and performance issues
need to be carefully analysed. Extensive simulations have
been run using Simulink models. In the example presen-
ted here the desired signal s(rn) is an 8-QAM coded while
the interferer (adjacent-channel) i(n) is 6-QAM. The
d(n) and v(n) mixtures applied to the filter are obtained
from the linear combination of s(n) and i(n) considering
relative large values for the amplitude and phase errors:
g=12and @=10° (see equations 6 and 9). Note that in
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Fig. 5. a) Number of samples necessary to achieve a given ISR, as a function of the learning rate; b) ISR evolution in time

for u=0.0005.

nowadays-integrated radios the amplitude mismatch
between the I/Q branch is 1-2% and the phase mismatch
is well bellow 5°.

Fig. 5a gives the number of samples necessary to
reach a target ISR (-20, -40 and -60 dB) for different lear-
ning rates. From this graph an optimum value for the lear-
ning rate can be chosen, making a trade off between
adaptation time and performance.

By analysing these plots one can conclude that by de-
creasing the learning rate, the time to reach a given ISR
increases exponentially. On the other hand, by decrea-
sing the learning rate a higher precision filtering is
achieved.

The convergence of this system has not been proven
mathematically but extensive simulations over a large
range of conditions have shown that the filter always
converges. Fig. 5b presents a typical example of such
simulation: it shows the evolution of ISR from the first
sample until the filter is adapted. The learning rate value

was set to u=0.0005 based on previous simulation re-
sults. One can observe that at the beginning the filter is
not stabilized, it does not reject the image signals, and
the ISR values are meaningless; after about 18 K samples
the adaptation begins and the ISR value is decreasing
monotonously; after approximately 70 K samples the fil-
ter hits a resting point, and the ISR tends to vary bet-
ween two values. This is because the weight values of the
neurons can move around the optimal solution with the
freedom given by the learning rate.

6. Conclusions

This paper proposed an I/Q imbalance compensation
algorithm using neural networks, able to increase signi-
ficantly the image rejection ratio of low-IF receivers. The
new algorithm was based on an LMS filter solution propo-
sed in the literature but solves a significant drawback of
that filter, its sensibility to phase imbalances. This im-
provement was achieved by implementing an additional
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adaptive loop using neural networks.

A Simulink model was developed and extensive simu-
lations were run in order to demonstrate the effective-
ness of the proposed algorithm and study its dynamic
behaviour and convergence. They shown that the system
converges over a wide range of conditions and it can pro-
vide ISRs better than 60 dB, even if the analog front-end
introduces significant (larger than usual) amplitude and
phase imbalances. There is a trade off between ISR and
the learning rate/adaptation time.

Further developments consist of implementing the
proposed filter on an FPGA. The FPGA integration will be
helped by the fact that the Simulink model was created so
that it can serve like an RTL description of the filter. Ano-
ther direction is to speed up the learning process by the
usage of variable learning rate or other similar methods.
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