
Abstract:

1. Introduction
The purpose of analog circuit design is to produce

a sized circuit schematic starting from a set of circuit
requirements. Given a circuit schematic and the circuit’s
performance specifications, the sizes and biasing of all
devices have to be determined such that the circuit meets
the specifications at some optimal cost. This is a difficult
and critical step for several reasons: 1) most analog
circuits require a custom optimized design; 2) the design
problem is typically underconstrained with many degrees
of freedom; and 3) it is common that many (often
conflicting) performance requirements must to be taken
into account, and tradeoffs must be made that satisfy the
designer [1].

Optimizations tools appear, naturally, as the key fac-
tor for the tremendous effort of finding the design
parameters, which satisfy a complex, high-dimensional,
multi-objective and multi-constrained problem [2]. An
optimization algorithm for analog circuit design has
three key components: formulation of the optimization
problem, performance evaluation engine, and optimi-
zation engine.

Research efforts on circuit synthesis involving a bro-
ad spectrum of computational intelligence (CI) techni-
ques have begun to appear in the literature over the past
few years. Fuzzy sets are used to formulate the objective
functions, getting this way the possibility to consider
different degrees for requirement achievements and
acceptability degrees for a particular solution. One
approach [3] - [6], is to consider that the membership
degree μ represents the degree of fulfillment of the fuzzy
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objective. A value means that the objective is fully
satisfied, while a value means that the objective is
not satisfied at all. This method has a disadvantage in the
case of equality requirement, no information being avail-
able regarding the relation between the requirement and
the actual performance. An accurate estimation of the
circuit performances requires the use of complex models
leading to an excessively large computation time in the
iterative optimization process. One way to reduce the
computation time is to use more simple models of circuit
performances. In order to satisfy both main requirements
(accuracy and speed), many researches proposed several
CI-based methods to evaluate circuit performances. For
example least-square support vector machines are invol-
ved in [7] - [9]. Fuzzy systems are very useful to model
the circuit performances because they imply just a few
simple mathematical operations and can model any com-
plex, multivariable and nonlinear function at any level of
accuracy. Such fuzzy models are used in [10] - [13].

The optimization engine (the way to compute new
parameter values) is the heart of the optimization
algorithm. It should be chosen so that the optimization
will converge to an optimal solution in a reduced number
of iterations. This task is not an easy one due to complex
relations between design parameters and circuit perfor-
mances. A parameter affects more than one circuit per-
formance at a time, so when a parameter is modified to
improve a performance it can worsen another. To search
the whole solution space, a powerful global optimization
technique should be considered. Genetic algorithms (GA)
are based on the Darwinian principle of natural selection
and the concepts of natural genetics. GAs have many
desirable characteristics and offer significant advantages
over traditional methods. They are inherently robust and
have been shown to efficiently search large solution
spaces containing discrete or discontinuous parameters
and non-linear constraints, without being trapped in
local minima. GAs do not require initial guesses or deri-
vative information and have often found non-intuitive
solutions to engineering problems. Genetic algorithms
have already been employed in many CAD applications
[10], [14] - [17].

The objective of this work is to develop an efficient
algorithm based on computational intelligence techni-
ques for design optimization of analog circuits. Our
approach tries to combine the best qualities of these
techniques: flexibility in formulation the objective
functions and a known range of their values using fuzzy
sets; accuracy and low computational complexity of cir-
cuit performance models based on neuro-fuzzy systems;
and a powerful global optimization engine based on
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genetic algorithm.
The reminder of the paper is organized as follows. We

begin in Section 2 with an overview of the CI-based
optimization algorithm used in the design optimization
of analog modules. The techniques used in the key phases
of the algorithm are presented here. Section 3 focuses on
the utilization of our proposed algorithm and results
obtained for design optimization of a CMOS amplifier.
In the end, in Section 4, some conclusions and further
research directions are discussed.

Design optimization of an electronic circuit is a tech-
nique used to find the design parameter values (length
and width of MOS transistors, bias current, capacitor va
lues etc.) in such a way that the final circuit perfor-man
ces (dc gain, gain-bandwidth, slew rate, phase margin
etc.) meet as close as possible the design requirements.
As stated in [18] there are two basic modalities to deal
with the analog design: knowledge based approaches and
optimization based approaches. In the present paper we
are centered on the last one.

The optimization algorithm begins with the formu-
lation of optimization objectives and optimization pro-
blem, followed by the initialization of the design para-
meters. During iterations an evaluation engine computes
the actual circuit performances based on the actual
design parameter values. If the objectives are fulfilled,
the solution consists in the set (or sets - in the case of
a real multiobjective optimization) of the actual design
parameter values and the algorithm is stopped. If not,
new design parameter values are to be computed by the
optimization engine and the optimization loop is covered
once again.

The novelty introduced in this paper is the utilization
of different CI techniques in all phases of optimization
algorithm, as it is shown in Fig. 1.

2. CI-based Optimization Algorithm

-
-

2.1. Overview of the Optimization Algorithm

Fig. 1. CI-based optimization.

Fuzzy sets are used to define the objective function in
formulation of the optimization problem. Neurofuzzy sys-
tems address the performance evaluation issue (evalua-
tion engine). Finally, in the optimization engine, a gene-
tic algorithm is responsible for the evolution of the po-
pulation to finally produce the (near) optimum solution.

To solve a multiobjective optimization problem, as is
the design optimization of analog circuits, the optimi-
zation problem can be formulated in one of the following
two ways [14]:
1) As a single-objective, constrained optimization pro-

blem, where different performance objectives are
combined to form a single scalar objective, and which
produces one solution.

2) As a multiobjective optimization problem, where the
concept of Pareto-optimality is used to produce mul
tiple tradeoff solutions on a design decision surface.

Usually, for an analog circuit optimization problem
with three or more objectives, the first approach appears
to be computationally cheaper than the second appro-
ach. As a consequence this paper takes the single-objec-
tive approach.

To formulate the design objectives for a real design is
not always a simple task. Often, it is not clear what pre-
cise values should be given to each objective. In fact,
design objectives are often better expressed in real world
terms than in precise numbers. The designers usually can
accept a certain degree of fulfillment of the design
objectives.

The fuzzy techniques used to define the optimization
objectives suppose the fuzzification of the requirements,
getting this way the possibility to consider different
degrees for requirement achievements and acceptability
degrees for a particular solution.

The authors proposed the utilization of fuzzy sets to
define the objective functions in previous papers [19]
and [20]. By contrast with the existing approaches where
membership degree represents the degree of fulfillment,
in our approach the membership degree represents the
error degree in the fulfillment of the objective. A value

means the objective is not satisfied at all, while
a value means that the objective is fully satisfied.
With this approach we know the range of possible values
for objective functions as being [0, 1]. When the value of
a certain objective function (unfulfillment degree - )
is 0, we know that the corresponding requirement is
fulfilled, no further effort being necessary to improve the
associated performance.

The membership degree represents the error degree
in the fulfillment of the fuzzy objective. A value
means the objective is not satisfied at all, while a value

means the objective is fully satisfied.

As an example, the requirements “greater or equal”
and “equal” have the corres-

ponding fuzzy objective functions presented in Fig 2.
where:

the vector of the design parameters;
- the performance function;

2.2. Formulation of the Optimization Problem
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iterative process (see Fig. 1) that requires a large number
of performance evaluations. Analog circuits are difficult
and time-consuming for a proper evaluation. Even in the
case of basic characteristics of a simple circuit (amplifier
gain, gain-bandwidth, slew rate etc) the performance in
question can be a complex function of many parameters.
In a realistic case, a performance model will be in general
a non-linear function over a high dimensional space of
circuit parameters [9].

Even a small cell requires a mix of ac, dc and transient
analyses. An accurate estimation of the circuit perfor-
mances requires the use of complex models leading to an
excessively large computation time. One way to reduce
the computation time is to use more simple models of
circuits and devices.

Fuzzy systems are very useful to model the circuit
performances because they imply just a few simple
mathematical operations and can model any complex,
multivariable and nonlinear function at any level of
accuracy. The author synthesized a method to build
neuro-fuzzy models and used it for some analog modules
[19], [21], [22]. These models are automatically built up
using an input-output data set, using the ANFIS
(Adaptive Neuro-Fuzzy Inference System) framework [23]
to develop first order Takagi-Sugeno fuzzy systems.
A common way to apply a learning algorithm to a fuzzy
system is to represent it in a special artificial neuronal
network (ANN) like architecture. In the ANFIS framework,
six-layer architecture for ANN is used. ANFIS makes use of
a mixture of back propagation to learn the premise para-

Fig. 3. Modeling procedure for circuit performance.

- the requirements;
- the current value of the design parameters vector.

The fuzzy objective functions are.

(1)

where is the range of possible values for .
indicates the error degree in accomplishing

the requirement, so we will call it “unfulfillment
degree” ( ). A value means full achievement of
fuzzy objective, while a value means that the fuzzy
objective is not achieved at all. This occurs when
takes an unacceptable value. Fig 2 shows the corres-
ponding value of the unfulfillment degree for the
current value of the variables vector . With this appro-
ach we know the range of possible values for objective
functions as being [0, 1]. When the value of a certain
objective function ( ) is 0, we know that the corres-
ponding requirement is fulfilled, no further effort being
necessary to improve the associated performance, as usu-
ally happens in typical minimization-type optimization.

The formulation of the multiobjective optimization
problem became:

Find that minimizes
(2)

where is the number of requirements.

For our single-objective optimization approach, we
have to combine the individual objective functions into
a cost function by means of a weighted sum:
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Fig. 2. Fuzzy objective functions: a) ; b)

Find that minimizes (3)

where is the relative preference or weight associated
with the objective function. The requirement of the
optimization, to satisfy all the objectives at the end of
the optimization run, suggests that all the different
objectives be weighted equally. On the other hand, for
a given problem, some of the objectives may be more
difficult to attain than some others. Thus, if a classifi-
cation among the objectives is possible on grounds of
relative difficulty of attainment, one would like to give
higher numerical weights to the difficult objectives than
the others.

The design process of an electronic circuit is an

th

2.3. Evaluation Engine
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meters and least mean square estimation to determine
the consequent parameters [23], [24].

The full modeling procedure is explained in Fig. 3. The
ranges of the parameter values are established so that
irrespective of the parameter values combinations, the
circuit will operate in the desired region. For example, in
an amplifier the transistors should be maintained in their
active regions. The parameter set (the combination of
the parameter values) should be chosen to be represen-
tative for the function to be modeled (covers the space of
the parameters and embeds all the specific characte-
ristics of the function).

For each input vector (one combination of the para-
meter values), the function value has to be found, in our
case by SPICE simulation. Two data sets, a training set
and a checking set are generated.

The training set is then subdued to a subtractive clus-
tering procedure resulting an initial first order Takagi-
Sugeno fuzzy system. Next, the initial fuzzy system is
trained using ANFIS and the training and checking data
sets.

The resulting neuro-fuzzy model is tested from the
accuracy point of view. If the accuracy is unacceptable,
the procedure must be resumed by generating a new ini-
tial fuzzy system or even by determining new data sets.
If the accuracy is acceptable, the modeling procedure
stops and provides the desired fuzzy model of that circuit
performance.

The main advantage of fuzzy models is that there are
no restrictions in the kind of functions that can be mode-
led, as far as neuro-fuzzy systems are universal approxi-
mators.

The heart of the whole algorithm is the optimization
engine. A genetic algorithm (GA) is responsible for the
exploration of solution space in quest of the optimal
solution. Generally, the best individuals of any popula-
tion tend to reproduce and survive, thus improving
successive generations [25]. However inferior individuals
can, by chance, survive and reproduce. In our case, the
individuals consist of different versions (same topology,
but different parameter values), which can evolve until
a solution is reached (in terms of requirements accom-
plishment).

Central to all genetic algorithms is the concept of the
chromosome. The chromosome contains all information
necessary to describe an individual. In nature, chromo-
somes are composed of DNA. In a computer, a long binary
or character string is used. Chromosomes are composed
of genes for the various characteristics to be optimized
and can be any length depending on the number of para-
meters to be optimized. Basically, in a genetic algorithm
each chromosome is potentially a solution of the opti-
mization problem. Encoding defines the way genes are
stored in the chromosome and translated to actual pro-
blem parameters.

A generic chromosome employed in our algorithm is
shown in Fig. 4, where each gene represents a design
parameter.

The “alphabet” used in the representation of genes
can, in theory, be any finite alphabet. Thus, rather than

2.4. Optimization Engine

use the binary alphabet of 1 and 0, one can use an
alphabet containing more characters and numbers [26].

Fig. 4. Format of a generic chromosome.

Fig. 5. GA procedure.

Because the design parameters are real variables we
chose real numbers to compose our alphabet. This way
our population individuals are real valued vectors, rather
than bit strings, thus simplifying the development of GA
implementation.

The underlying procedure of our GA is shown in Fig. 5.

Seeding the population with random values, with
a uniform probability, commonly does population ini-
tialization. It is sometimes feasible to seed the popu-
lation with “promising” values that are known to be in
the hyperspace region relatively close to the optimum
[26]. Our implementation uses random at uniform
initialization.

Each individual in the selection pool receives a repro-
duction probability depending on the own objective
value and the objective value of all other individuals in
the selection pool. This fitness is used for the actual
selection step afterwards. Our implementation uses rank-
based fitness assignment with linear ranking [27].

Consider the number of individuals in the popu-
lation, the position of an individual in this popu-
lation (least fit individual has , the fittest indi-
vidual ) and the selective pressure. For
example, in the case of a minimization-type optimization
problem first position is allocated to the individual with
highest value of the objective function. The fitness value
for an individual is calculated as:

(4)

Linear ranking allows values of selective pressure in
[1.0, 2.0].

For the selection our approach uses the roulette-
wheel method. This is a stochastic algorithm and involves
the following technique. For each individual a selection
probability is computed as:

(5)
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The individuals are mapped to contiguous segments
of a line, such that each individual's segment is equal in
size to its selection probability. A uniformly distributed
random number is generated and the individual whose
segment spans the random number is selected. The pro-
cess is repeated until the desired number of individuals is
obtained (called mating population). This technique is
analogous to a roulette wheel with each slice propor-
tional in size to the fitness.

Recombination produces new individuals in combi-
ning the information contained in two or more parents
(parents - mating population). This is done by combining
the variable values of the parents. Depending on the re-
presentation of the variables different methods must be
used. For our real valued variables the intermediate
recombination method was chosen. Offspring are produ-
ced according to the rule [27]:

(6)

where represent the variable of the offspring,
represent the variable of the first parent, while
represent the variable of the second parent. The

scaling factor is chosen uniformly at random over an
interval for each variable anew.

Intermediate recombination is capable of producing
any point within a hypercube slightly larger than that de-
fined by the parents.

By mutation, individuals are randomly altered. Muta-
tion of real variables means that randomly created values
are added to the variables with a low probability. Thus,
the probability of mutating a variable (mutation rate)
and the size of the changes for each mutated variable
(mutation step) must be defined.

The probability of mutating a variable is inversely
proportional to the number of variables (dimensions).
The more dimensions one individual has, the smaller is
the mutation probability. Different papers reported re-
sults for the optimal mutation rate. In [28] it is shown
that a mutation rate of ( : number of variables of an
individual) produced good results for a wide variety of
test functions. That means that per mutation only one
variable per individual is changed/mutated. Thus, the
mutation rate is independent of the size of the popu-
lation.

The size of the mutation step is usually difficult to
choose. The optimal step-size depends on the problem
considered and may even vary during the optimization
process. It is known that small steps (small mutation
steps) are often successful, especially when the indivi-
dual is already well adapted. However, larger changes
(large mutation steps) can, when successful, produce
good results much quicker. Thus, a good mutation opera-
tor should often produce small step-sizes with a high
probability and large step-sizes with a low probability.

Such an operator [27] was considered for our algo-
rithm:

1/n n

(7)

The range of mutation is given by the value of the
parameter and the range of the variables. The parameter

(mutation precision) defines indirectly the minimal
possible step-size and the distribution of mutation steps
inside the mutation range. The smallest relative
mutation step-size is , the largest . By changing
these parameters ( and ) very different search
strategies can be defined.

Our GA uses the pure reinsertion scheme: produce as
many offspring as parents and replace all parents by the
offspring. Every individual lives one generation only.

The proposed CI-based design optimization algorithm
is implemented in the Matlab environment. It accepts
three types of requirements: “greater than”, “equal”, and
“smaller than”. The user should provide numerical values,
types and weights for all the requirements.

We used our algorithm for the design optimization of
a CMOS simple operational transconductance amplifier
(SOTA), shown in Fig. 6.

The design parameters of the circuit are the
dimensions of the transistors and the bias current

. The input transistors and must be identical,
therefore resulting the first parameter

. The transistors and (active
load) must be paired, resulting , so our
second parameter will be . For the
current mirror, and , we consider the current ( )
equal trough both transistors so . In
order to keep a minimal area, we have taken so we
obtained our third parameter . The
fourth and final parameter is .

Applying the previously described procedure, we built
the neuro-fuzzy models of circuit performances with a set
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3. Design Optimization of a CMOS Amplifier

Fig. 6. Simple operational transconductance amplifier.
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of 850 data pairs (700 training pairs and 150 checking
pairs).

The design optimization is illustrated here for the set
of requirements presented in Table 1, for equal weighted
objective functions. The optimization was run several
times, for a population of 100 individuals. The algorithm
proved to be a robust one, always a solution being found
that fulfills all the requirements. Different number of
iterations is necessary to search for the optimum solution
depending on the initial population and on the evolution
process. Table 1 gives the final performances of the
circuit after four different optimization runs, while Table
2 shows the solutions (the values of the design
parameters). The solutions appear to be slightly different
from each other. At a closer look we can see that the
values of the design parameters are calculated with two
decimals. In practical implementations these values
should be rounded toward some discrete values, so we
can consider that our resulted solutions are in fact small
variations around one solution - our solutions are near
optimum solutions.

Table 1. Requirements and performances optimizing SOTA
in four optimization runs.

Table 2. Solutions optimizing SOTA in four optimization
runs.

Fig. 7. Minimum and average cost function evolution for
.run1

Fig. 8. Dynamic behavior of performances in .run1

(run1)For the first optimization run , the dynamic
behavior of the algorithm is presented in Fig. 7. In the
first iterations (up to 10), due to a high diversity of
individuals, a new population does not contain always
a fittest individual than in the previous population (mini-
mum value of the cost function increases). On the other
hand, the population as a whole is improved conti-
nuously, the average value on the entire population of
the cost function decreasing in time. As the population
improves during evolution, all individuals moves toward
the optimal solution, decreasing both the minimum and
average values of cost function.

The evolution of all performance functions during
optimization is presented in Fig. 8.

4. Conclusions
A new computational intelligence-based optimiza-

tion algorithm for analog circuit design was presented.
The proposed algorithm was used to optimize the design
of a CMOS simple transconductance amplifier, with very
promising results. In a reduced number of iterations
(63 to 94) it was able to always find an optimal solution,
regardless the initial starting point (initial population),
proving its robustness. The multiobjective optimization
problem, specific to the analog circuit design, was refor-
mulated as a single-objective optimization. For each
optimization run the proposed algorithm produces one
optimum solution. A further research direction is to use
a real multiobjective optimization method to produce
solutions on the Pareto front.
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