
Abstract:

1. Introduction

.

Keywords: mobile robotics, path planning, rough mereo-
logy, potential field, Player/Stage system.

Path planning is one of the most vital problems in mo-
bile robotics; it falls into general province of planning,
however, due to specificity of the subject of mobile robo-
tics, it has emerged as a discipline with its own solu-
tions. Among many methods of probabilistic, geometrical
and topological nature, the methodology of potential fields
introduced by Krogh (1984) and Khatib (1985), based on
physical analogies with gravitational or electromagnetic
fields, has emerged. We adhere to this methodology, how-
ever, contrary to the practice of building the potential on
the basis of Coulomb, or gravitational force fields, we apply
the novel idea of building the potential function by means
of mereological distance over a juxtaposition of grids of
fixed diameter, i.e., over a discrete structure. We describe
our implementation of the relevant mereological functors
in the Player/Stage system as SQL predicates accessible in
Player/Stage cooperating with PostgreSQL database. We
present also the results of simulations with mobile robots

per se

Tasks of mobile robotics like path planning, naviga-
tion, localization, require for their effective performing
adequate representation of the robot environment inclu-
ding obstacles, landmarks, beacons, other robots, along
with other static or dynamic features as well as an effec-
tive reasoning scheme. Mobile robotics avails itself to
this aim with many ideas and methods known in relevant
areas of Computer Science and Artificial Intelligence and
it does make use of graph methods and algorithms like A*
in search or planning [1], topological (graph) represen-
tations in map building [1], [25], Markov models in navi-
gation and localization [25] etc. In this work, we propose
a new method of constructing a potential field [15] by
which to delineate a path for a mobile robot. Our method
is based on reasoning scheme for spatial objects develo-
ped in the framework of rough mereology [18]. Our po-
tential field inherits the basic property of potential
fields, see e.g., [1], i.e., the density of the field does in-
crease in the direction to the target, reaching at the tar-
get the maximum value (which in classical cases is infi-
nity). We leave the technical exposition to the following
consecutive sections in which we discuss: basic princi-
ples of spatial reasoning by mereological predicates, the
idea of a potential field along with details of our con-
struction, the description of the Player/Stage system
along with SQL predicates implementing basic relevant

mereological relations [19], and finally, results of simu-
lations with mobile robots.

The part relation between objects e.g., solids is a rela-
tion p such that (1) it is not true that for any ,
(2) if and then .

the relation of strict containment is a part
relation.

The relation of an element (ingredient) is defined
as: if and only if or .

the relation of non-strict containment is
an element relation induced by the part relation .

The part, or element, relations give a strict hierarchy
of objects consisting of "smaller" objects and so on. How-
ever, it was desirable to measure a degree of closeness
between e.g. solids not necessarily in the part relation.
This was proposed in the frame of rough mereology [18].

The basic relation/predicate of rough mereology [18],
is a rough inclusion , where , which
means: " ". The predicate
captures our basic intuitions about the nature of contain-
ment to a degree and accordingly we impose the following
restrictions on it [20]:
(1) if and only if where el is a chosen

element relation of a mereology.
(2) if then [if then] for

each .
(3) if and then .

2. Mereological spatial reasoning
It is well-known [23] that relations among geome-

trical objects like solids in 3D or planar figures, are best
expressed in the language of parts rather than in the lan-
guage of set theory: one accepts the statement: "

" but one would reject the
statement: " "; in
the first statement one would accept " " in place
of " " and indeed, the relation of a subset is a parti-
cular instance of the relation of part.

The part relation is a basic relation of mereology - the
theory of sets/concepts [16] proposed by S. Lesniewski
(1916) and adopted to formalize elementary geometry of
solids [23]. Due to this fact, one may expect that mereo-
logy based constructions will prove useful in mobile robo-
tics tasks. We offer a concise introduction to this area.

the
circle is a part of the closed disc

the circle is an element of the closed disc
a subset

a part

2.1. Mereology

2.2. Rough mereology

p(A, A) A
p(A, B) p(B, C) p(A, C)

el
el(A, B) p(A, B) A = B

μ(A, B, r) r
A B r μ

μ(A, B, 1) el(A, B)

μ(C, A, r) μ(C, B, r)
C

μ(A, B, r) s < r

Example:

Example:

�

�

�

� [0, 1]

μ(A, B, s)

is a part of to a degree of

μ(A, B, 1)

ON PATH PLANNING FOR MOBILE ROBOTS:
INTRODUCING THE MEREOLOGICAL POTENTIAL FIELD METHOD

IN THE FRAMEWORK OF MEREOLOGICAL SPATIAL REASONING

Paweł Ośmiałowski

Received 24 June 2008; accepted 29 S .th th eptember 2008

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

Articles24

As far as solids or planar figures are concerned, we
apply the rough inclusion defined as if and
only if

(1)

where is the Euclidean volume of in 3D case, or area
in 2D case.

Qualitative Reasoning aims at studying concepts and
calculi on them that arise often at early stages of problem
analysis when one is refraining from qualitative or metric
details, cf., [5] as such it has close relations to the de-
sign, cf., [3] as well as planning stages, cf., [7] of the mo-
del synthesis process. Classical formal approaches to spa-
tial reasoning, i.e., to representing spatial entities
(points, surfaces, solids) and their features (dimensio-
nality, shape, connectedness degree) rely on Geometry or
Topology, i.e., on formal theories whose models are spa-
ces (universes) constructed as sets of points; contrary to
this approach, qualitative reasoning about space often
exploits pieces of space (regions, boundaries, walls, mem-
branes) and argues in terms of relations abstracted from
a commonsense perception (like

). In this approach, points appear as
ideal objects (e.g., ultrafilters of regions/solids [23]).

Mereological ideas have been early applied toward
axiomatization of geometry of solids, cf., [14], [23]. Me-
reological theories dominant nowadays come from ideas
proposed independently by Stanislaw Lesniewski and Al-
fred North Whitehead.

Mereological theory of Lesniewski is based on the
notion of a part (proper) cf., [16]. Mereology based on
connection gave rise to spatial calculi based on topo-
logical notions derived there from (mereotopology), cf.,
[5], [6], [8].

Predicates may be regarded as weak metrics also in
the context of geometry. From this point of view, we may
apply in order to define basic notions of rough mereo-
logical geometry.

In the language of this geometry, we may approxima-
tely describe and approach geometry of objects; a usage
for this geometry may be found, e.g., in navigation and
control tasks of mobile robotics [1], [12].

It is well-known, see [24], [2] that the geometry of
Euclidean spaces may be based on some postulates about
the basic notions of a point and the ternary equi-distance
functor. In [24], postulates for Euclidean geometry over
a real-closed field were given based on the functor of bet-
weenness and the quaternary equi-distance functor. Simi-
larly, in [2], a set of postulates aimed at rendering general
geometric features of geometry of finite-dimensional spa-
ces over reals has been discussed, the primitive notion
there being that of nearness.

We first introduce a notion of distance in our rough
mereological universe by letting

We now introduce the notion of betweenness as a fun-

μ μ(A, B, r)

A A

μ

μ

(X, Y) r = min{max u, max w : X is μ Y Y is μ X}.

�� ��

�

� � �

2.3. Qualitative spatial reasoning: Basic geometric
predicates induced by μ

connected, discrete from,
adjacent, intersecting

r

r

r u w

ctor of two individual names; the statement is
reads as :

for all

Thus, is holds when the rough mereological
distance between and any is in the non-oriented
interval (i.e. between) [distance of to , distance of
to] for any .

One checks that satisfies the axioms of Tarski [24]
for .

:

We may also apply to define in our context the
functor of nearness proposed in van Bentham [2]:

Here, nearness means that is closer to than to
(recall that rough mereological distance is defined in an
opposite way: the smaller , the greater distance).

Then the following hold, i.e., does satisfy all axioms
for nearness in [2], see [19].

:
1.

;
2.

3. ;
4. ;
5.

.

We now may introduce the notion of equi-distance as
a functor defined as follows:

It follows that

We may also define a functor of equi-distance follo-
wing Tarski [24]:

These functors do clearly satisfy the following, see
[2], [24],

:

T(X,Y) Z
T(X,Y) Z X Y

Z T(X,Y)

W (Z, W) (X, W) (Y, W) s r t t r s.

Z T(X,Y)
Z W

X W Y
W W

T

Z T(X, X) Z = X
Y T(X, U) Y T(X, Z)

Y T(X, Z) Y T(X, U) X Y Z
T(X, U) U T(X, Z)

N

Z N(X, Y) ((Z, X) (X, Y) s < r).

Z X Y

r
N

Z N(X, Y) Y N(X, W) Z N(X, W)

Z N(X, Y) X N(Y, Z) X N(Z, Y)

(Z N(X, Z))
Z = X ? Z N(Z, X)
Z N(X, Y) Z N(X, W) W N(X, Y)

Eq(X, Y)

Z Eq(X,Y) ((X N(Z,Y)) (Y N(Z,X))).

Z Eq(X, Y) (r ((X, Z)
(Y, Z))

D(X, Y, Z, W) (r (X, Y) (Z, W)).

is between and

is

betweenness

The following properties hold, see [19]
1. is (identity);
2. is Z is T(Y, U) is
(transitivity);
3. is is is

is (connectivity).

is

The following properties hold, see [19]
is is is

(transitivity)
is is is

(triangle inequality);
non is (irreflexivity)

is (selfishness)
is is is

(connectedness)

is non is non is

is for all
.

for all

The following properties hold, see [19]

�

� � � � � 	

 �

�

�

� 	

� � � 	

�

�

� � � � 	

� 	

� 	

	 �

� �

� � �

�

� � � �

r s t

r s

r

r

r r

Proposition 1.

Proposition 2.

Proposition 3.

Proposition 4.

2.4. Nearness

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

��
 ��A B
� r,

�� ��A

Articles 25

with squares of fixed size in such a way that the density of
the square field (measured e.g. as the number of squares
intersecting the disc of a given radius centred at the
target) increases toward the target.

To ensure this property, we fix a real number -
in the interval (0, square edge length), in our

case it is 0.01. The collection of squares grows recursively
with the distance from the target by adding to a given
square in the step all squares obtained from it
by translating it by field growth step (with respect to
Euclidean distance) in basic eight directions: N, S, W, E,
NE, NW, SE, SW (in the implementation of this idea, the

with queue has been used, see the next
section).

Once the square field is constructed, the path for
a robot from a given starting point toward the target is
searched for.

The idea of this search is in finding a sequence of
which delineate the path to the target. Waypoints

are found recursively as centroids of unions of squares
mereologically closest to the square of the recently found
waypoint. In determining mereological distance, the for-
mula (1) is applied.

Parameters of this procedure are: the size of a square
(in this work, our robots have been built on the basis of
Roomba robot and accordingly, squares we chose to be of
edge length equal to 1.5 Roomba (is the trademark of
iRobot Inc.) diameter which does ensure safe transition
from one square to another close one) and the field
growth step (we set it to 0.01 which is small value in com-
parison to the square size).

The path planner we designed accepts target point
coordinates and provides list of waypoints from given
robot position to the goal. To do its job it needs a map of
static obstacles that a robot should avoid while appro-

r

(k + 1) th
k

the field
growth step

floodfill algorithm

way-
points

�

�

4. The mereological path planner

1.
(triangle equality);

2.
(circle property);

3. (reflexivity);
4. (identity);
5.

(transitivity).

is for all is is is

Z is Eq(X, Y) X is Eq(Y, Z) Y is Eq(Z, X)

Z is T(X, Y) W is Eq(X, Y) D(Z, W, X, W)

D(X, Y, Y, X)
D(X, Y, Z, Z) X = Y
D(X, Y, Z, U) D(X, Y, V, W) D(Z, U, V, W)

Z TB(X, Y) [W (Z W Z N(X, W) Z
N(Y, W))].

� 	

� 	

	

� 	

� � �

One may follow van Bentham's proposal for a between-
ness functor defined via the nearness functor as follows:

Methodology of potential fields [11], [9] was concei-
ved as a framework in which one could generate smooth
trajectories from the start point to a target point by mbile
robots as well as manipulators. It is known [10] that the
method is capable of falling into local minima (as general
hill climbing methods do) or oscillatory behaviour, how-
ever, working with a global potential map prevents these
phenomena: such is our approach in this work.

Classical methodology works with integrable force
field given by formulas of Coulomb or Newton which pres-
cribe force at a given point as inversely proportional to
the squared distance from the target; in consequence the
potential is inversely proportional to the distance from
the target. The basic property of the potential is that its
density (=force) increases in the direction toward the
target. We observe this property in our construction.

We construct the potential field by a discrete con-
struction. The idea is to fill the free workspace of a robot

3. Potential fields methodology:
Mereological approach

3.1. The construction of a potential field: The idea

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

Fig. 1. Map of our artificial world edited by the uDig appli-cation (created and maintained by Refractions Research).
The map consists of number of layers whose can be edited individually; on the figure we can see how solid obstacles
are situated within obstacles layer.

Articles26

aching target point. A robot and a target should both lay
within the area delimited by surrounding static obstacles
that form borders of robot workspace. There can be other
static obstacles within the area, all marked on the pro-
vided map. After the path is proposed a robot is lead
through the path until it reaches given target. If a robot
cannot move towards goal position for some longer time
(e.g. it keeps on hitting other robot reaching its target
or any other unknown non-static obstacle), new path is
proposed.

We tested our planner device running simulations in
which we have had a model of Roomba robot traveling in-
side artificial workspace. Real Roomba robots are round
and therefore easy to model, however they do not provide
many useful sensor devices (except bumpers which we
were using to implement lower-level reaction for hitting
unexpected obstacles). Also odometry of Roomba robots
is unreliable [26] hence we assume that simulated robots
are equipped with a global positioning system.

Right after the goal position is given, our planner
builds mereological potential field filled with squared
areas each of the same size. The field is delimited by
workspace borders. Only space free of obstacles is filled.
To compute a value of potential field in a place we are
taking mereological feature of one object being a part of
another to a degree where our objects are squared areas
that fill the potential field. Near the goal any two squared
areas are parts of each other to a higher degree and this
value goes low as the distance to the goal increases. It
can happen that for bigger workspace, areas too far from
the goal are not filled as the potential is limited to values
from 0 to 1, where value 0 means that two squares are not
part of each other (maximal mereological distance
between two areas) while 1 means that two areas are part
of each other to a maximal degree (minimal mereological
distance between two areas). As a result our potential
field is dense with squared areas close to the target and it
gets loose far from it.

The algorithm of filling the potential field with squa-
red areas is following.

Structure: a queue
1. Add to the queue and coordinates of a given

goal together with as current distance from current
squared area to the next neighbouring area (so they
will be part of each other to the maximal degree). Also
put clockwise as current direction of exploration.
These are initial values.

2. Spin in the main loop until there are no more ele-
ments in the queue :
2.1. Extract current distance and current

direction of exploration from the beginning of
queue .

2.2. Check if there is any other squared area already
present in potential field to which the distance
from current and coordinates is equal or shor-
ter than current distance. If so, skip taken ele-
ment and run new main loop turn.

2.3. Form new squared area with current and as the
coordinates of the centroid of this new area.
Check if there are any common part with any static
obstacle within this new squared area. If so, skip
taken element and run new main loop turn.

2.4. Add new squared area to the potential field.
2.5. Increase current distance by 0.01.
2.6. Add eight neighbour areas to the queue (for

each area add these data: x and y coordinates,
current distance and direction of exploration op-
posite to current); if direction is clockwise neigh-
bours are: left, left-up, up, right-up, right, right-
down, down, left-down; if direction is anti-clock-
wise neighbours are: left-down, down, right-
down, right, right-up, up, left-up, left.

2.7. Run new main loop turn.

SQUARE_FILL_ALGORITHM

Q
Q, x y

Q
x, y,

Q

x y

x y

Q

0

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

Fig. 2. Obstacles layer together with potential field layer (potential field generated for given goal is stored as ano-ther map
layer). Observe increasing density towards the goal.

Articles 27

Fig. 3. Initial step of global potential field construction
algorithm. New square area with the goal in the middle
(denoted as solid dot) was added as the first element of
the potential field.

Fig. 4. First run of the main loop of the potential field con-
struction algorithm. Element on the left was added within
the distance 0.01 from the initial square. In this main loop
turn, elements are added using clockwise direction: left,
left-up, up, right-up, right, right-down, down, left-down.

Fig. 5. First run of the main loop of the potential field cons-
truction algorithm is now completed. Eight squares were
added to the potential field around initial square. These
squares were also added to the queue so they will be
operated in next main loop turns.

Fig. 6. First element from the beginning of the queue
was taken - it is the square to the left of the initial area.
In this main loop turn, elements are added using anti-

Q

Q

clockwise direction: left-down, down, right-down, right,
right-up, up, left-up, left. Newly added element (with
thicker lines on the figure) was left-down to element taken
from the begin-ning of the queue . Note that distance
between the two elements is bigger comparing to previous
main loop turn.

Fig. 7. Second run of the main loop of the potential field
construction algorithm is now completed. Eight more squa-
res were added to the potential field (and queue) around
first square taken (and removed) from the queue (square
with thicker lines on the figure).

PATH_SEARCH_ALGORITHM

Q

Q

The algorithm of searching for a path within given po-
tential field is following:

1. Check if there is a field coverage in the current robot
position. Also check if the robot is not at the goal
which means no path needs to be planned. Choose
a start square from the potential field: the nearest
squared area from areas that have any common part
with the robot. The centroid of this area will be the
first waypoint.

2. Spin in the main loop until goal is found:
2.1. From the set of squared areas that have any

common part with previously choosen squared
area choose the one which is the part of this area
to the bigest degree (the smallest mereological
distance). The centroid of this area will be the
next waypoint.

2.2. Run new main loop turn.

A robot should follow the path proposed by planner by
going from one area centroid to another until the goal is
reached.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

Fig. 8. Stage simulator in use - two iRobot Roomba robots inside of simulated world waiting for a goal to be set.

Articles28

Journal of Automation, Mobile Robotics & Intelligent Systems

5. Implementation in Player/Stage robotics
framework
Player/Stage is an Open-Source software framework

designed for many UNIX-compatible platforms, widely
used in robotics laboratories [17]. Main two parts are
Player - message passing server (with bunch of drivers for
many robotics devices, extendable by plugins) and Stage
- a plugin for Players bunch of drivers which simulates
existence of real robotics devices that operate in simu-
lated 2D world. Player/Stage offers client-server archi-
tecture. Many clients can connect to one Player server,
where clients are programs (robot controllers) written by
a roboticist who can use Player client-side API. Player it-
self uses drivers to communicate with devices. In this
activity it does not make distinction between real and
simulated hardware. It gives roboticist means for testing
programmed robot controller in both real and simulated
world.

Among all Player drivers that communicate with devi-
ces (real or simulated), there are drivers not intended for
controlling hardware and instead they offer many facili-
ties for sensor data manipulation. For example: camera
image compression, retro-reflective detection of cylind-
rical markers in laser scans, path planning. One of such
drivers widely used during our experimentations is the
PostGIS driver. It connects to PostgreSQL database [22]
in order to obtain and/or update stored vector map
layers.

PostGIS itself is an extension to the PostgreSQL ob-
ject-relational database system which allows GIS (Geo-
graphics Information Systems) objects to be stored in the
database [21]. It also offers new SQL functions for spatial
reasoning. Maps which to be stored in SQL database can
be created and edited by graphical tools like uDig or by
C/C++ programs written using GEOS library of GIS func-
tions. PostGIS, uDig and GEOS library are projects main-
tained by Refractions Research.

A map can have many named layers, for each layer
a table in SQL database is created. We can assume that
layer named is full of objects that a robot can-
not walk through. Other layers can be created and we are
using one of such layers to store potential field data
(squared areas).

A roboticist can write a robot controller using Player

obstacles

CREATE FUNCTION meredist(object1 geometry, object2 geometry)
RETURNS DOUBLE PRECISION AS
$$

SELECT min(degrees.degree) FROM
((SELECT
ST_Area(ST_Intersection(extent($1), extent($2)))

/ ST_Area(extent($1))
AS degree)

UNION (SELECT
ST_Area(ST_Intersection(extent($1), extent($2)))

/ ST_Area(extent($2))
AS degree))

AS degrees;
$$ LANGUAGE SQL STABLE;

Having mereological distance function we can derive nearness predicate:

client-side API, which obtains information about current
situation through the interface. Additionally,
to write such a program, PostgreSQL client-side API can
be used to open direct connection to the database server.

A robot controller does not need to be implemented
as the client-side program. Other way is to write a C++ co-
de (a plugin) which will act as a new driver for the Players
bunch of drivers. Player itself already contains one such
driver called . This driver plays two roles: it acts
as a simple path planner and it can controll a robot to
walk through the path. It can use another built-in driver
called which implements Vector Field Histogram
algorithm for obstacle avoidance [4].

Our mereological path planner is implemented as
a plugin driver that can replace driver. How-
ever, it is not intended to use driver for obstacle avoi-
dance as the Vector Field Histogram algorithm needs any
ranger sensor (laser, sonar, infrared) while Roomba robot
default configuration does not have any such device. In-
stead, robot controller part of our driver monitors how
long does it take to achieve next waypoint and if it is too
long, it asks planner to replan the path from current robot
position using already computed potential field. Additio-
nally, we have added to our driver low-level behaviour
that monitors state of bumpers and whenever bumpers
are closed, the robot is going back-left to a new position
from which the path is replanned.

As on the client-side, server-side drivers can use
interface to obtain required map layer. Also

direct connection to PostgreSQL database server can be
opened. In our planner driver we have used ECPG API
provided by PostgreSQL which enables to put SQL queries
directly into the C/C++ code. To make our SQL queries mo-
re robust, we have stored our mereogeometry SQL func-
tions on PostgreSQL server together with map database.
These functions can be called using connection with da-
tabase managed by ECPG infrastructure. Our mereological
functions are processed on SQL database server side, re-
sults are sent back to the calling program (which means
to our planner). This gives our planner ability to perform
spatial reasoning based on rough mereology.

We have created our mereogeometry SQL predicates
[13]. Rough mereological distance is defined as such:

vectormap

wavefront

vfh

wavefront
vfh

vectormap

VOLUME 3, N° 2 2009

Articles 29

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

CREATE FUNCTION merenear(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT meredist($1, $2) > meredist($3, $2)
$$ LANGUAGE SQL STABLE;

The equi-distance can be derived as such:
CREATE FUNCTION mereequ(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (NOT merenear($1, $2, $3))
AND (NOT merenear($1, $3, $2));

$$ LANGUAGE SQL STABLE;

Our implementation of the betweenness predicate makes use of a function that produces an object which is an extent of
given two objects:

CREATE FUNCTION mereextent(object1 geometry, object2 geometry)
RETURNS geometry AS
$$

SELECT GeomFromWKB(AsBinary(extent(objects.geom))) FROM
((SELECT $1 AS geom)
UNION (SELECT $2 AS geom))
AS objects;

$$ LANGUAGE SQL STABLE;

The betweenness predicate is defined as such:

CREATE FUNCTION merebetb(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT
meredist($1, $2) = 1
OR meredist($1, $3) = 1
OR

(meredist($1, $2) > 0
AND meredist($1, $3) > 0
AND meredist(mereextent($2, $3),

mereextent(mereextent($1, $2), $3)) = 1);
$$ LANGUAGE SQL STABLE;

Using the betweenness predicate we can check if three objects form a pattern:

CREATE FUNCTION merepattern(object1 geometry, object2 geometry, object3 geometry)
RETURNS BOOLEAN AS
$$

SELECT merebetb($3, $2, $1)
OR merebetb($1, $3, $2)
OR merebetb($2, $1, $3);

$$ LANGUAGE SQL STABLE;

Also having pattern predicate we can check if four objects form a line:

CREATE FUNCTION mereisline4(obj1 geometry, obj2 geometry, obj3 geometry, obj4 geometry)
RETURNS BOOLEAN AS
$$

SELECT merepattern($1, $2, $3) AND merepattern($2, $3, $4);
$$ LANGUAGE SQL STABLE;

As we can realise, the path from current robot position to the goal is built from squared areas that form mereological line
(as described by predicates above). We derived SQL aggregate function that can check if a given set of areas form a mereo-
logical line. This consists of one state function, one final function and one aggregate definition:

Articles30

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 2 2009

CREATE FUNCTION mereislinestate(statearray geometry[4], inputdata geometry)
RETURNS geometry[4] AS
$$

SELECT ARRAY[$1[2], $1[3], $2, result.object] FROM (SELECT
CASE

WHEN $1[4] IS NOT NULL
THEN $1[4]

WHEN $1[3] IS NULL
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) > 0)
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) = 0)
THEN $2

WHEN ($1[1] IS NULL) AND merepattern($1[2], $1[3], $2)
THEN NULL

WHEN ($1[1] IS NULL) AND (NOT merepattern($1[2], $1[3], $2))
THEN $2

WHEN merepattern($1[1], $1[2], $1[3]) AND merepattern($1[2], $1[3], $2)
THEN NULL

ELSE $2
END AS object) AS result;

$$ LANGUAGE SQL STABLE;

CREATE FUNCTION mereislinefinal(statearray geometry[4])
RETURNS BOOLEAN AS
$$

SELECT ($1[4] IS NULL)
AND ($1[3] IS NOT NULL)
AND ($1[2] IS NOT NULL);

$$ LANGUAGE SQL STABLE;

CREATE AGGREGATE mereisline
(

SFUNC = mereislinestate,
BASETYPE = geometry,
STYPE = geometry[],
FINALFUNC = mereislinefinal,
INITCOND = '{}'

);

One of client-side programs that come together with Player server is . It shows a map of robot environment
(with marked current robot position). We can in-dicate on the map goal position where robot should go. The sends
the goal to planner device working on given Player server instance. Then it asks the planner for current path which will be
marked on the map.

Fig. 9. Playernav in use - Roomba robot waits for the orders.

playernav
playernav

Articles 31

Journal of Automation, Mobile Robotics & Intelligent Systems

6. Comparison with Player's built-in path
planning device

7. Conclusions

As it was stated before, Player already provides its
own path planning device called . This mecha-
nism provides correct paths to given targets. Our method
is implemented as a plugin for Player, which acts as a di-
rect replacement for and provides correct paths
too. It is worth to mention that our method gives pos-
sibility of observing intermediate stage of its routine:
computed potential field used by planner can be viewed
using uDig software. This gives possibility of additional
tweaking of the algorithm. Each planner in certain circu-
mstances must perform replanning. To do this
must repeat whole planning routine. Using our method,
only second stage of planning routine is done during re-
plannig as potential field is computed only once (unless
the database is updated with new obstacles). Searching
for a path within already computed potential field is com-
putationaly cheap as it is limited to database lookup ope-
rations (therefore speed of database communication is
critical if our method is intented to be working fast).

Results of simulations show that this method gives
satisfactory results. Further research is aimed at planning
paths for teams of robots as well as for planning paths for
prescribed robot formations.

wavefront

wavefront

wavefront

AUTHOR
Paweł Ośmiałowski

References

- Polish-Japanese Institute of Infor-
mation Technology, Chair of Intelligent Robotic Systems,
Koszykowa str. 86, 02-008 Warszawa, Poland.
E-mail: newchief@king.net.pl.

[1] Arkin R. C., , MIT Press: Cam-
bridge MA, 1998.

[2] van Bentham J., , Reidel: Dordrecht,
1983.

[3] Booch G.,
Addison-Wesley Publ., Menlo Park, 1994.

[4] Borenstein J., Koren Y., “The Vector Field Histogram -
Fast Obstacle Avoidance for Mobile Robots”,

, vol. 7, no. 3, June
1991, pp. 278-288.

[5] Cohn A. G., “Calculi for qualitative spatial reasoning”,
in: J. Calmet, J. A. Campbell, J. Pfalzgraf (eds.), Artifi-
cial

, vol. 1138,
Springer Verlag: Berlin, 1996, pp. 124-143.

[6] Cui Z., Cohn A. G., Randell D. A., “Qualitative and topo-
logical relationships”, in:

, vol. 692, Sprin-
ger Verlag: Berlin, 1993, pp. 296-315.

Behavior Based Robotics

The Logic of Time

Object-Oriented Analysis and Design with
Applications,

IEEE Jour-
nal of Robotics and Automation

Intelligence and Symbolic Mathematical Computa-
tion, Lecture Notes in Computer Science

Advances in Spatial Databa-
ses, Lecture Notes in Computer Science

VOLUME 3, N° 2 2009

Fig. 11. Show trails is a nice option in Stage which can be used to track robot trajectory. Here we can see how two
Roomba robots walked through planned paths to their targets.

Fig. 10. Playernav in use - Roomba robot follows path to the target.

Articles32

Journal of Automation, Mobile Robotics & Intelligent Systems

[7] Glasgow J., “A formalism for model-based spatial plan-
ning”, in: A. U. Frank, W. Kuhn (eds.),

, vol. 988, Springer Verlag, Berlin,
1995, pp. 501-518.

[8] Gotts N. M., Cohn A. G., “A mereological approach to
representing spatial vagueness”. In:

, 1995.
[9] Khatib O., “Real-time obstacle avoidance for manipu-

lators and mobile robots”. In
, St. Louis MO, pp.

500-505.
[10] Koren Y., Borenstein J., “Potential field methods and

their inherent limitations for mobile robot navigation”.
In:

, Sacramento CA, 1991, pp.
1398-1404.

[11] Krogh B.,
”, SME-I Technical paper MS84-

484, Society of Manufacturing Engineers, Dearborn MI,
1984.

[12] Kuipers B.,
, MIT Press: Cambridge

MA, 1994.
[13] Ladanyi H., , Sams Publishing, 1997.
[14] de Laguna T., ,

, vol. 19, 1922, 449461.
[15] Latombe J.-C., , Kluwer: Boston,

1991.
[16] Lesniewski S., “On the foundations of mathematics”,

2, 1982, pp. 752.
[17] P. Osmialowski, “Player and Stage at PJIIT Robotics

Laboratory”,
, no. 2, 2007, pp. 21-28.

[18] Polkowski L., “An Approach to Granulation of Know-
ledge and Granular Computing Based on Rough Mereo-
logy: A Survey”, in: V. Kreinovich, W. Pedrycz, A. Skow-
ron (eds.), , John Wiley
and Sons: New York NY, 2008.

[19] Polkowski L., Osmialowski P., “Spatial reasoning with
applications to mobile robotics”. In:

, InTech, Vienna, 2008.
[20] Polkowski L., Skowron A., “Rough mereology in infor-

mation systems with applications to qualitative spatial
reasoning”, , vol. 43, issue
14, 2000, pp. 291-320.

[21] Ramsey P., . In:
, 2008.

[22] Stones R., Matthew N.,
, Wrox Press, 2001.

[23] Tarski A., “Les fondements de la géométrie des corps”.
In:

(
), a supplement to Annales de la Sociéte Polonaise

de Mathématique, Kraków (Cracow), 1929, pp. 29-33.
[24] Tarski A., “What is elementary geometry?” In: L. Hen-

kin, P. Suppes, A. Tarski (eds.),

, North-Hol-
land: Amsterdam, 1959, pp. 16-29.

Spatial Informa-
tion theory - A Theoretical Basis for GIS, Lecture Notes in
Computer Science

Working papers,
the Ninth International Workshop on Qualitative Reaso-
ning, QR'95

: Proceedings IEEE Intern.
Conf. on Robotics and Automation

Proceedings of the IEEE International Conference
on Robotics and Automation

A generalized potential field approach to obs-
tacle avoidance contro

Qualitative Reasoning: Modeling and Simula-
tion with Incomplete Knowledge

SQL Unleashed
Point, line, surface as sets of solids J. Phi-

losophy
Robot Motion Planning

Topoi

Journal of Automation, Mobile Robotics and
Intelligent Systems

Handbook of Granular Computing

Motion Planning
for Mobile Robots: New Advances

Fundamenta Informaticae

PostGIS Manual postgis.pdf file down-
loaded from Refractions Research home page

Beginning Databases with Post-
greSQL

Ksiega Pamiatkowa I Polskiego Zjazdu Matematycz-
nego Memorial Book of the I Polish Mathematical Con-
gress

The Axiomatic Method
with Special Reference to Geometry and Physics, Studies
in Logic and Foundations of Mathematics

st

[25] Thrun S., Burgard W., Fox D., , MIT
Press: Cambridge MA, 2005.

[26] Tribelhorn B., Dodds Z., “Evaluating the Roomba: A low-
cost, ubiquitous platform for robotics research and edu-
cation”. In:

, 10 -14 April 2007,
Roma, Italy, pp. 1393-1399.

Probabilistic Robotics

2007 IEEE International Conference on Ro-
botics and Automation, ICRA 2007 th th

VOLUME 3, N° 2 2009

Articles 33

