
Abstract:

1. Introduction: Applicability of Linux
in Real-Time Systems
In a real-time system there is a conflict between pe-

riodic and aperiodic tasks. Aperiodicity naturally stems
from noise, disturbances, delays, and all other unpredic-
table phenomena in the real world. A real-time operating
system should not enforce strict rules that nature cannot
meet, but rather provide resources that help to smooth
the conflicts. Basic approaches are pre-emptivity, buf-
fers, and priority rules. However, as a result of pre-em-
ptivity, a high-priority task requiring a resource may be
blocked to wait for medium-priority tasks that do not hold
this resource. This problem is called priority inversion.

Linux is neither intended, nor designed to support
real-time tasks. It is a general-purpose operating system,
implementing full range of API functions covered by the
POSIX-1003.1 specification. A kernel providing such lar-
ge scope of API services cannot meet demands of pre-
emptivity and low latency, required in most technology
control systems.

To enhance kernel pre-emptivity and reduce kernel
latencies, two basic approaches are used:

pre-emptive patches to Linux kernel (Molnar),
virtual machines (Hardware Abstraction Layers, RT-
Linux, RTAI Linux).

RTLinux kernel implements a Hardware Abstraction
Layer inserted between hardware and the Linux kernel.
Essentially, it creates a virtual machine that controls the
Linux kernel timer interrupt. The RTLinux can switch bet-
ween the Linux kernel and other tasks [1], [2], thus
making possible to solve conflicts between real-time
tasks and the Linux kernel. The Hardware Abstraction
Layer (HAL) controlling the system is realized in the Linux
kernel space. The system as a whole is simple and fast, but
barriers between real-time task and the non-real-time
Linux kernel are thin, and as a result of that, the real-time
part may easily get out of stability margins required.

Jitter is a variable deviation from ideal timing event.

This paper deals with real-time task jitter measurement
under RTLinux operating system. In the first part, it des-
cribes methods and tools developed to measure jitter in the
RTLinux environment. In the second part, it is focused on
discussion of results, obtained on PC hardware, and their
interpretation.

Keywords: real-time, jitter, latency, measurement, RT-
Linux, benchmark, workload effects, saturation method.

�

�

Scheduling jitter is the delay between the time when task
shall be started, and the time when the task is being
started. Similarly, interrupt latency is a delay between
the time interrupt is triggered and the time when the
Interrupt Service Routine is being started. The interrupt
latency varies, and therefore, it produces a jitter. Jitters
result from physical phenomena in hardware (noise),
from concurrent task processing (realized either in hard-
ware or in software), and from passing the code through
different branches (each conditional instruction is a po-
tential jitter source). Kernel latency is not stable, but
composed from various phenomena, most of them (if not
all) showing jitters.

RT-Linux is designed as a module to the Linux kernel,
and therefore, it could be reasonably supposed, the RT-
Linux kernel can suffer from jitters inherited to the Linux
kernel. Hence, thoughtful testing is of prime importance.

Throughout the time, many jitter measuring methods
were developed and published [3], [4]. Periodic task is
characterized by its starting time of execution and by the
length of execution, while aperiodic task is characterized
by its latency. Interrupt latency is defined as the time
from generating the interrupt request to (the start of) its
service routine execution.

Both theory and experience requires, that a system
shall be tested under load. In a technology control sys-
tem, the load is caused by the specific application requi-
rements. This creates need to test the control system
with the particular technology plant. On the other hand,
benchmarks are valuable in early stages of a design pro-
cess to estimate, if a control system intended for the ap-
plication will fit its requirements. Therefore, both model
classes of technology plants and model classes of loads
can be used. As a model load, heavy network or disk load
is often used.

Proctor [3] examines the RTLinux behaviour in a par-
ticular application (a motor control), while Dougan [4]
provides latencies and jitter examination of individual
elementary RTLinux mechanisms without relations to
their interactions with surrounding environment (work-
load, controlled technology, control system hardware),
and their interactions to each other.

This work presents an approach based on a generalized
application program. It is intended as a measuring me-
thod tightly connected with application study. Therefore,
it can be reasonably assumed, that results will be useful
for general engineering practice.

2. Existing measurement methods

3. Proposed measurement methods

TASK JITTER MEASUREMENT UNDER

RTLINUX OPERATING SYSTEM

Pavel Moryc, Jindrich Cernohorský

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue62

3.1. Generalized data acquisition program
RTLinux in tight connection with Linux is intended for

use in systems, that allow both real-time and non-real-
time tasks to coexist, and it is typically applied as an
interface between dedicated real-time and non-real-time
IT levels. As a representative case of this class, a gene-
ralized data acquisition program has been chosen, sup-
plied with diagnostic time stamp outputs.

The application, named RT-golem, contains and inte-
grates resources, which make possible to apply a defined
workload to the system, as well as to measure how the
load task is executed on the system. It implements both
periodic and aperiodic tasks.

The RT-golem is a part of an over-all architecture
presented in Figure 1. That contains and integrates re-
sources, which make possible to apply a defined work-
load to the system, as well as to measure how the load
task is executed on the system. The RT-golem includes:

periodic task, which is controlled by RTLinux
scheduler,
aperiodic task (the Interrupt Service Routine, which
is installed instead the default RTLinux ISR routine).

During initial tests performed with the RT-golem it
was observed that excessive IRQ requests could disrupt
system operation. For that reason, the RT-golem was
strengthened with overload protection, so it can sustain
arbitrary input IRQ rates. Based on the test results, a satu-
ration method of measuring interrupt latency was desig-
ned, as shown in Figure 2. Interrupts are triggered by
a periodic signal supplied from external generator. The
incoming interrupt rate is boosted, till the time between
two successive ISR routines starts decreases. When the
time stops decreasing, the IRQ rate reaches its saturation
point. The minimum time between two successive ISR
starts equals to the interrupt latency. It consists of laten-
cy times caused both by hardware and software resources.

Since the saturation imposes the maximum IRQ rate
load on the measured system it is capable to accept, the
method is expected to provide comparable results across
various hardware platforms.

�

�

Fig. 1. RT-golem operation.

RT-golem application has been further modified, so it
could be loaded more than once. This creates a possibility
to load the system by more periodic tasks, each with diffe-
rent priority, period, time of execution and diagnostic
timestamps output. It has evolved to a configurable and
flexible simulation tool.

Analysing the measurement results and RTLinux re-
sources, it has been recognized, that a measurement tool,
which encompasses the whole range of typical RTLinux
resources and provides a deeper insight is needed. Based
on this analysis, the following important RT-Linux charac-
teristics have been identified:

precision of the scheduler (measured as task starting
time jitter),
interrupt latency time,
execution time of typically used API services,
pipe write and read operations,
shared memory write and read operations,
thread switching time,
I/O port read and write access time.

The I/O access is also included, because it characte-
rizes hardware, and presents the basic method of com-
municating with both sensors and actuators.

The generalized application was substantially redesig-
ned to form an advanced measurement tool. The advanced
version of RT-golem consists of a periodic task, and an
interrupt service routine. The periodic task includes two
threads. It is possible to set priority and period of both
threads, as well as to disable one or more parts of the task.
This way, it is possible to balance the workload that the
RT-golem imposes on the system.

A set of comparison measurements has been perfor-
med. In particular, the effects of different additional load
on different test systems have been measured, with the
load added as follows:

no load,
load with copying files
(while [true]; do cp /bin/bash ${f}; done),
/bin/bash is ca. 70kB in length,
load of 15 RT-golem 5.1 tasks

on two test systems,
PC Dell GX 280,
PC no name.

Fig. 2. ISR latency saturation method.

3.2. Advanced measurement tool: RT-golem

�

�

�

�

�

�

�

�

�

�

�

�

4. Experimental setup

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 63

Fig. 4. Periodic task starting time, PC no name, loaded with
copying files.

Fig. 5. Periodic task finishing time, PC Dell, loaded with
copying files.

Fig. 6. Periodic task finishing time, PC no name, loaded with
copying files.

Fig. 7. Execution time means vs. medians. PC Dell, loaded
with copying files.

dark: mean
light: median

The graphs show that the RT-golem runs smoother on
the Dell PC (Figures 3 and 5), than on the no name PC
(Figures 4 and 6). To evaluate the outlying values, figures
7 and 8 show the mean vs. median comparison, as well as
standard deviation vs. interquartile range comparison. It

The source code of the RTLinux scheduler contains
a comment [5] recommending that this scheduler should
not be used for more than 10 tasks. For verification of this
recommendation, an experiment was designed, where the
system is heavily loaded by fifteen RT-golem tasks, and
jitters of the RT-golem test task are measured. The fifteen
tasks have been configured as maximum acceptable load
for the system, that is, the highest load, at which the
Linux kernel yet does not start reporting, lost timer
interrupts.

PC Dell is a workstation designed for graphical appli-
cations, while PC no name is a low-cost, low-end personal
computer. Linux kernel has been configured to use only
64 MB of RAM memory. Test system configurations are
presented in Table 1.

Because of limited space, only a handful of results can
be presented. The first series of graphs, presented in
Figures 3 through 6, show the task instance starting (or
finishing) time, while the second series of graphs (pre-
sented in Figures 7 and 8) shows the statistical data. The
task instance starting time is calculated from the previous
task instance starting time. This means, the starting time
delay impacts two adjacent values. First, the difference
between the correct and delayed instance is longer, which
causes the spike up on the graph, and then, the difference
between the delayed and next correct instance is shorter,
which causes the spike down. If both spikes are symme-
trical, the second value is okay. The finishing time is cal-
culated from the task instance starting time.

Spikes on the relative starting time graphs below
oscillate around 1 msec, because they show scheduling
jitter that means, a difference of the actual relative
starting time from the nominal value, which is 1 msec.

Table 1. Test system details.

Fig. 3. Periodic task starting time, PC Dell, loaded with
copying files.

5. Experimental results

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue64

stems from definitions of mean and standard deviation,
that they are more impacted by outlying values than
median and interquartile range.

dark: standard deviation
light: interquartile range

From the results one can conclude that the heavy hard
disk operation [3] imposes more load on the system than
the real-time tasks load. As the load resulting from hard
disk operation is quite common in the system according to
POSIX 1003-13 PSE 54 profile, it can be concluded, that
a) the scheduler manages to handle more tasks than is

was presumed by its authors,
b) the Linux kernel operation significantly influences the

real-time task jitters.

There is a question, whether the real-time characte-
ristics of the system (the measured jitter spikes) could be
smoother, if the Linux kernel were ported on a CPU desig-
ned for real time.

The hardware is built as a layered structure of basic
hardware resources (disk, memory, processor registers,
etc.), and following advanced means (instruction queues
and priority rules). The advanced resources are basically
the same as the resources used in operating system. These
higher-level hardware resources can be seen as a hardware
implementation of the operating system resources.

A CPU designed for real time (DSP) has different archi-
tecture than a CPU designed for general purpose appli-
cation. It is unlikely, that it could optimally support a full
range POSIX 1003-1 compliant kernel.

Based on performed RTLinux and Linux kernel analy-
sis, as well as on measured results, it can be reasonably
concluded that for the RTLinux/Linux operating system,
a general-purpose hardware is the optimal hardware
platform.

Measurements performed at the level of a real-time
task often provide valuable information on task jitters,
but only little information on underlying causes. There-
fore, it could be useful to create a small and simple HAL
layer (module) in the Linux kernel, which intercepts timer
interrupt and possibly other hardware means for a mo-
ment, and quickly gets and taps the diagnostic infor-
mation needed. Another possible idea is, that such tool
could be integrated into lower (architecture dependent)
layer of the RTLinux HAL.

Fig. 8. Execution time means vs. medians. PC Dell, loaded
with copying files.

6. Conclusion and future work

ACKNOWLEDGMENTS

AUTHORS
Pavel Moryc*, Jindrich Cernohorský

References

This work was supported by the Ministry of Education of the
Czech Republic under Project 1M0567.

[1] FSM Labs Inc.,“ “, 2001.
[2] I. Ripoll “WP1: RTOS State of the Art Analysis:

Deliverable D1.1: RTOS Analysis”, 2002, OCERA.
[3] F.M. Proctor, W.P. Shackleford, “Real-time operating

system timing jitter and its impact on motor control”.
In: Proc. SPIE, vol. 4563,

, P.E. Orban (Ed.), 2001,
pp. 10-16.

[4] C. Dougan, Z. Mwaikambo, Lies, “Misdirection and Real-
time Measurements”, .

[5] RTLinux V.3.1 source code.

- Technical Univer-
sity of Ostrava, Faculty of Electrical Engineering and
Computer Science, Department of Measurement and
Control, Centre for Applied Cybernetics. 17. listopadu 15;
708 33 Ostrava-Poruba, Czech Republic. E-mails:
pavel.moryc@arcelormittal.com,
jindrich.cernohorsky@vsb.cz.
* Corresponding author

Getting Started with RT Linux
et al.,

Sensors and Controls for In-
telligent Manufacturing II

C/C++ Users Journal, April 2004

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 65

