
Abstract:

1. Introduction
Faults (transient, permanent or intermittent) appear-

ing during system operation may result in logical errors,
which can be critical for the realised applications [1,11].
Transient faults are especially critical as they dominate in
contemporary technologies. Hence, an important practi-
cal issue is to evaluate dependability of software applica-
tions in the presence of faults. It is particularly critical in
many reactive systems (e.g. nuclear plants, satellites,
aircrafts, chemical industry, medicine). One kind of such
applications, erroneous behaviour of which might have
some serious consequences, are control algorithms. This
paper studies dependability of software implementations
of explicit versions of DMC (Dynamic Matrix Control) and
GPC (Generalised Predictive Control) Model Predictive
Control (MPC) algorithms. The investigation is based on
software implemented fault injection, which has been
adapted to reactive applications [1,6]. In particular,
a new approach to test result qualification is proposed.

MPC is recognised as the only advanced control tech-
nique, which has been very successful in practical appli-
cations [14,15,16,17,21]. As MPC algorithms use models
of processes for calculation of the control policy they can
be successfully applied to processes, which are difficult
to control. In particular, processes with significant time
delay for which the PID controller does not give satis-
factory control performance. Among different MPC tech-
niques, DMC [4] and GPC algorithms [3] are the most
popular. Both algorithms use linear models. The DMC
algorithm uses a non-parametric model consisting of
step-response coefficients of the process. Such a model
can be easily obtained in industry, but to precisely des-
cribe a process many coefficients are needed. The GPC
algorithm uses a parametric model in the form of a dis-
crete difference equation. Usually, such models are signi-
ficantly less complicated in terms of the number of para-

This paper studies dependability of software implemen-
tation of DMC (Dynamic Matrix Control) and GPC (Gene-
ralised Predictive Control) Model Predictive Control (MPC)
algorithms. Explicit formulation of algorithms is considered
in which the control laws are calculated off-line. Depen-
dability is evaluated using software implemented fault
injection approach. Tests are performed in the control sys-
tem of a remotely controlled robot vehicle used in nuclear
plants.

Keywords: dependability, fault injection, process control,
and predictive control.

meters than the step-response ones.
The paper is structured as follows. First, in Section 2,

the case study is presented. The investigated control
algorithms and their explicit formulations are shortly
characterised in Section 3. Next, Section 4 presents the
fault injection test bed, experiment set-up and some new
aspects of adapting experiments to control algorithms
specificity. Finally, Section 5 discusses experimental
results and the paper is concluded in Section 6

The case study process for this research is a remotely
controlled robot vehicle for nuclear plants [5] shown in
Fig. 1. The vehicle must act reliably in a hazardous and
unsafe environment. Application of such vehicles can
significantly reduce radiation exposure to personnel and
improve maintenance programme performance. Discrete-
time model of the process is (the sampling time is
0.5 min)

where , , ,
are parameters. Input of the controlled

process relates to the voltage applied to the vehicle's
engine. The vehicle model limits the voltage range to
[-5;5]. Output y of the process is the velocity of the
vehicle. Values of at each sampling instant are consi-
dered to be the result of the whole application and are
subject to correctness analysis.

The considered process has significant time delay. For
such processes the classical PID controller usually does
not give satisfactory control. That is why MPC algorithms
are used.

.

(1)

In the MPC algorithms [14,15,16,17,21] at each con-
secutive sampling instant a set of future control incre-
ments

(2)

2. Remotely controlled vehicle

y k b u k– b

u

y

()= (9)

0.022276 0.019823 -1.683638
0.704688

9 – u k– –a y k– –a y k–

b b a
a

10 1 2

9 10 1

2

(10) (1) (2)

= = =
=

k

Fig. 1. Remotely controlled robot for nuclear plants.

3. Model predictive control

FAULT SENSITIVITY OF EXPLICIT DMC
AND GPC ALGORITHMS

Piotr Gawkowski, Maciej Ławryńczuk, Piotr Marusak, Janusz Sosnowski, Piotr Tatjewski

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue52

is calculated assuming that for ,
where is the control horizon. It is usually done in such
a way that the future control error values (i.e. differences
between the reference trajectory and the predicted values
of the output) are minimised over the prediction horizon

. The following quadratic cost function is typically used

(3)

where ,

are vectors of length , is
a weighting matrix, is the reference (i.e. the set-
point) and are predicted values of the output
over the prediction horizon, for . These
predictions are calculated using a dynamic model of the
process. Typically, , which decreases the dimen-
sionality of the optimisation problem and leads to smaller
computational load. Because only the first element of the
determined sequence (2) is applied to the process, the
control law is

(4)

At the next sampling instants the prediction is shifted
and the whole procedure is repeated.

When a linear dynamic model of the process is used, it
is possible to express the output prediction as the sum of
a forced trajectory (which depends only on the future
input moves and a free trajectory (which
depends only on the past)

(5)

where is
a vector of length . The dynamic matrix of dimensiona-
lity is composed of step response coefficients of
the model.

Thanks to using a linear model and the superposition
principle (5), the cost function (3) becomes a quadratic
one. Hence, the vector of optimal control input incre-
ments is

(6)

where is a matrix of dimensionality
which is calculated off-line.

In the DMC algorithm the process dynamics is descri-
bed, in a convenient way, by a discrete-time, finite step-
response model. Thus, for any sampling instant , output
of the model is

(7)

where are step-response coefficients, is the horizon
of the process dynamics.

The DMC control law (3) can be expressed in the
following form [14,21]

p N
N

N

N

p N

N <N

k k

N
N N

N N

k

s D

�

�

�

�

u

u

u

u

u

j

=1,...,

()) ()u y0

3.1. Dynamic Matrix Control algorithm

(8)

where and , are coefficients cal-
culated off-line. The total number of parameters is . The
obtained explicit control law is a linear feedback from the
difference between the set-point trajectory and values of
the manipulated variable increments calculated at pre-
vious sampling instants. The structure of the explicit DMC
algorithm is shown in Fig. 2.

The GPC algorithm uses a process model in the form of
a discrete difference equation describing the process
input-output relation

(9)

where , are coefficients and , define order of the
dynamics.

The GPC control law can be expressed in the following
form [21]

(10)

where and , are
coefficients calculated off-line. The total number of
parameters is . The obtained explicit GPC con-
trol law is a linear feedback from the reference trajectory,
values of the manipulated variable calculated at previous
sampling instants and values of the controlled variable
measured at previous sampling instants. Structure of the
explicit GPC algorithm is shown in Fig. 3. Comparing the
structures of both studied algorithms, it is evident that in
the DMC algorithm, there is only one feedback from the
process output variable and feedback from values of
past process input increments. In the GPC algorithm,
there are feedbacks from the current process output value
and last past values of the output increments and from
last past values of the process input increments.

The step-response usually contains a large number of
elements. At the same time, the process can be described
precisely enough by a discrete difference equation of
a relatively low order. Hence, a model used in the GPC
algorithm has significantly less parameters than the mo-
del used in the DMC algorithm (i.e. ,).
It should be stressed, however, that a non-parametric

D

a b n n

n n

D

n
n

D>>n D>>n

Fig. 2. Structure of the explicit DMC algorithm.

3.2. Generalized Predictive Control algorithm

i i A B

A B

A

B

A B

+ +2

1�

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 53

also shows that such disturbances give the most inte-
resting results for the fault susceptibility analysis [11].
Deeper discussion upon the fault injection policy can be
found in [9,11,18].

The input of the whole application is the
required vehicle's velocity, a step from 0 to 1 at is
considered during the tests. The DMC algorithm uses the
step-response model obtained from the model (1) (the
horizon of the process dynamics) whereas the
GPC algorithm uses directly the model (1). In both
algorithms , and .

The whole experiment is conducted by FITS automa-
tically. At the end of the experiment synthetic (aggre-
gated) results for each fault location are given. An im-
portant issue (frequently neglected in the literature) is
qualification of experimental results. In case of a typical
calculation-oriented application correctness of its result
is usually easy. It is much more complicated for other
classes of applications, especially related to real-time
systems [18]. Control algorithms require complex analysis
of the controlled process behaviour. Values of y at each
sampling instant are considered to be the result of the
whole application and are subject to correctness analysis.
In general, 4 classes of test results are distinguished:

C: correct vehicle behaviour (ISE 20),
INC: incorrect (unacceptable) vehicle behaviour
(ISE 20),
S: test terminated by the system due to
un-handled exception,
T: timed-out test.

where the standard factor ISE (Integrated Sum of Squared
Errors) is proposed as a measure of result () correctness.
The reference ISE value (obtained during GR) is 12.79
(due to delayed vehicle response). System exceptions (S)
are generated by hardware mechanisms embedded in
contemporary COTS (commercial off-the-shelf) systems,
e.g. memory access violation.

Analysis of fault effects requires detail information
upon the faults injected and the application behaviour.
FITS can provide details about every test (simulated fault
injection) that allow manual replay the whole test
execution. Moreover, all the events and user messages
occurring during the test are recorded. The tested appli-
cation is instrumented to save its outputs (here simula-
tion results, i.e. a set of control signals in subsequent
sampling instants) into separate files for each test (file
names managed by FITS). This gives a possibility for
deeper analysis (post-experiment) of fault effects in the
correlation with the injected fault and observed beha-
viour for each single test.

The cost of the DMC algorithm implementation is 173
bytes of binary code (50 machine instructions). At the
same time, the GPC algorithm implementation takes 212
bytes (59 instructions). The main difference is the number
of executed instructions, i.e. a single simulation execu-
tion of the DMC and GPC algorithms takes 121261 and
12192 machine instructions, respectively. Such a result
is not surprising as the control law used in the DMC

(())
=10

=100

=20 =5 =1

y k
k

D

N N

y

ref

u p

�

�

�

�

�

�

5. Experimental results

step-response model is obtained on the basis of a simple
experiment but it is necessary to conduct a full identifica-
tion experiment to obtain a parametric model.

In order to examine the fault sensitivity of the explicit
implementation of the analysed control algorithms the
considered controllers are implemented as applications
written in language. These applications execute a pre-
defined reference trajectory on the process (vehi-
cle), whose simulator is also the part of the application.
The applications (one for the DMC and the second one for
GPC) are then examined with the use of a fault injection
test bed. It's concept is based on the software emulation
of a fault during the run-time of the application under
test. In this research FITS fault injector is used [10,19].
It uses standard Win32 Debugging API to control the
execution of the software application under test. In the
whole process the following steps can be distinguished:
optional source code instrumentation of the tested appli-
cation, golden run execution, experiment configuration,
fault injection and results analysis.

In order to assure good experiment controllability,
are introduced [6]. FITS disturbs directly the

application only within those areas. Here, the parts of the
tested applications disturbed during the experiments
(dashed box) as well as process models (not disturbed) are
marked in Fig. 2 and Fig. 3. To simplify tracing fault
effects the captured and collected by the
FITS during experiments are inserted [19]. This mecha-
nism provides supplementary communication between
the tested application and the FITS. As a result, the tested
application signals some measures related to internal
variables values, output signal deviations etc.

During the (GR - reference execution with-
out faults) the execution trace and reference results are
logged. Additionally, statistic information is collected on
the tested application (e.g. resource usage, code size,
instruction distribution). Those measures help to inter-
pret experimental results and to profile experiments to be
done (e.g. by elimination of injecting faults into unused
resources). FITS simulates faults by disturbing the run-
ning application. In this process an important issue is
policy of selection the type, location and time of fault
injection (fault triggering). In this study single bit-flip
faults within CPU and FPU registers, applications' data
and machine instruction code are considered. Faults are
injected pseudorandomly in time (program execution)
and space (bit position within disturbed resource, distri-
bution over applications' memory). There is a common
consensus in the literature that such fault model well
mimics Single Event Upset (SEU) effects. The experience

Fig. 3. Structure of the explicit GPC algorithm.

testing areas

user-messages

Golden Run

4. Fault injector and experiment set-up

C
y k(())ref

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue54

5 10 15 20 25 30 35 40 45 50 55 60

-10

-5

0

5

10

um ax

umin

5 10 15 20 25 30 35 40 45 50 55 60

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

yref

algorithm has 100 parameters whereas the GPC control
law has only 14 parameters.

Fig. 4 depicts summarised results of experimental
evaluation of DMC and GPC algorithms (results categories
C, INC, S and T are described in Section 4) from experi-
ments with faults located in CPU registers, static code,
instruction stream, FPU and used data area. The main
difference can be seen in the case of faults located in the
data area used by the considered algorithms. As the DMC
algorithm uses much more parameters (100) than the GPC
one (14), it is more insensitive to single disturbances.
It is worth noting, that both algorithms can be further
hardened by introducing exception handling. In the expe-
riments carried out, no exception handling is present.
Hence, approximately 50% of faults affecting the static
image of the code, executed instruction stream and CPU
registers resulted in unhandled exceptions (most of them
relate to memory access violations). Previous experience
shows [9,11,12,13,18,19] that such behaviour can be
efficiently improved.

A great number of tests have been performed (more
then 25000 per algorithm) and their results compared.
Because of limited space only two time-plots are presen-
ted here. Fig. 5 compares simulation results of the golden

run (solid lines) and two example incorrect vehicle beha-
viour (dashed lines). In the first case (left figures), fault
injected into static code of the DMC algorithm imple-
mentation results in slow response and big control errors
(ISE=31.44). It leads to unacceptable output response
(slow and with big control errors). Moreover, the manipu-
lated variable () oscillations appear (the left plot).
In the second case (right figures) the responses from
a different experiment with the DMC algorithm are shown
(fault also injected into the static code). This time viola-
tion of the manipulated variable constraint is observed
(as shown in the left graph). It would result in an
oscillatory movement of the robot forward and back
repeatedly.

Fig. 6 shows the distribution of ISE values observed
(faults located in the static code) for tests considered as
unacceptable (INC). It is worth noting that both the DMC
and GPC algorithms have similar distribution for low ISE
values (<100). Moreover, more than 66% of the INC tests
have very high ISE values (100), which means that the
control system is unstable. Obviously, other correctness
measures should be also considered and need further
development and investigation.

u

�

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Fig. 4. Summary of the experimental results.

Fig. 5. DMC algorithm simulation results: left: slow response and big control errors (ISE=31.44); right: manipulated
variable u constraint violation (ISE=23.94); solid line - golden run, dotted line - incorrect vehicle behaviour.

5 10 15 20 25 30 35 40 45 50 55 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

yref

Special issue 55

Fig. 6. Distribution of ISE in incorrect category.

6. Conclusions
The paper presents a novel approach to evaluation and

comparison of dependability of software implementation
of two most popular MPC algorithms, i.e. DMC and GPC. For
this purpose software implemented fault injector is used.
Explicit formulation of these algorithms is considered in
which the control laws are calculated off-line. The experi-
ments show that the performance of both algorithms is
different in the case of some faults (in data), as well as
their faults susceptibility. It is worth noting that robust-
ness of software implementation can be improved by
some basic software fault detection/tolerance techni-
ques. The new measures of process behaviour are also
considered to be developed. Those topics will be covered
in the future research.

- Institute of
Computer Science, Faculty of Electronics and Infor-
mation Technology, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warszawa, Poland.
Tel. +48 22 234 77 11, fax. +48 22 825 16 35. E-mails:
{P.Gawkowski, J.Sosnowski}@ii.pw.edu.pl

- Institute of Control and Computation Engineering,
Faculty of Electronics and Information Technology,
Warsaw University of Technology, ul. Nowowiejska 15/19,
00-665 Warszawa, Poland. Tel. +48 22 234 76 73, fax.
+48 22 825 37 19. E-mails: {M.Lawrynczuk, P.Marusak,
P.Tatjewski}@ia.pw.edu.pl.
* Corresponding author

AUTHORS
Piotr Gawkowski* and Janusz Sosnowski

Maciej Ławryńczuk, Piotr Marusak and Piotr Tatjewski

References
[1] Benso A., Prinetto P., F

. Kluwer
Academic Publishers, 2003.

[2] Blevins T. L., Mcmillan G. K., Wojsznis M. W.,
, ISA, 2003.

[3] Clarke D. W., Mohtadi C., Tuffs P. S., “Generalized pre-
dictive control - I. The basic algorithm”, ,
vol. 23, 1987, no. 2, pp. 137-148.

[4] Cutler R., Ramaker B., “Dynamic matrix control - a com-
puter control algorithm”, ,
Houston, USA, 1979.

[5] Dorf C. D., , Addison-Wesley,
Reading, 1995.

[6] Gawkowski P., Sosnowski J., „Experiences with software
implemented fault injection”. In:

, Zurich,

ault injection techniques and
tools for embedded systems reliability evaluation

Advanced
control unleashed

Automatica

AIChE National Meeting

Modern control systems

International Confe-
rence on Architecture of Computing Systems

Switzeralnd, VDE Verlag GMBH, 2007, pp. 73-80.
[7] Gawkowski P., Sosnowski J., “Software implemented

fault detection and fault tolerance mechanisms - part I:
Concepts and algorithms”,

, vol. 51, 2005, no. 2, pp. 291-303.
[8] Gawkowski P., Sosnowski J., “Software implemented

fault detection and fault tolerance mechanisms - part
II: Experimental evaluation of error coverage”,

, vol. 51, 2005, no. 3,
pp. 495-508.

[9] Gawkowski P., Sosnowski J., Radko B., “Analyzing the
effectiveness of fault hardening procedures”. In:

,
2005, Saint Raphael, France, pp. 14-19.

[10] Gawkowski P., Sosnowski J., “Analysing system suscep-
tibility to faults with simulation tools”,

, vol. 4, 2006, pp. 123-134.
[11] Gawkowski P., Sosnowski J., “Dependability evaluation

with fault injection experiments”,
, vol. E86-D, 2003, no. 12, pp.

2642-2649.
[12] Gawkowski P., Sosnowski J., Experimental validation of

fault detection and fault tolerance mechanisms. In:

. Cannes, France, pp. 181-186 , 2002.
[13] Gawkowski P., Sosnowski J., “Analyzing fault effects in

fault insertion experiments“, The On-Line Testing Work-
shop, IEEE Computer Society Press, 2001, Giardini
Naxos - Taormina, Italy, pp. 21-24.

[14] Maciejowski J. M., ,
Prentice Hall, Harlow, 2002.

[15] Morari M., Lee J., “Model predictive control: past, pre-
sent and future”, ,
vol. 23, 1999, no. 4/5, pp. 667-682.

[16] Qin S. J., Badgwell T., “A survey of industrial model
predictive control technology”,

, vol. 11, 2003, no. 7, pp. 733-764.
[17] Rossiter J. A., , CRC Press,

Boca Raton, 2003.
[18] Sosnowski J., Gawkowski P., Lesiak A., “Fault injection

stress strategies in dependability analysis”,
, vol. 33, 2005, no 2. , pp. 679-699.

[19] Sosnowski J., Lesiak A., Gawkowski P., Włodawiec P.,
„Software implemented fault inserters”. In:

, 2003,
Ostrava, Czech Republic, pp. 293-298.

[20] Sosnowski J., Gawkowski P., Lesiak A., “Fault injection
stress strategies”, In:

, Brazil, 2003, pp. 258-263.
[21] Tatjewski P.,

, Springer, London, 2007.

Kwartalnik Elektroniki i Tele-
komunikacji

Kwar-
talnik Elektroniki i Telekomunikacji

The 11 IEEE International On-Line Testing Symposium

Annales UMCS
Informatica AI

IEICE Transactions on
Information and System

The
7 IEEE International Workshop on High Level Design
Validation and Test

Predictive control with constraints

Computers and Chemical Engineering

Control Engineering
Practice

Model-based predictive control

Control and
Cybernetics

IFAC Work-
shop on Programmable Devices and Systems

The 4 IEEE Latin - American Test
Workshop 2003

Advanced control of industrial processes,
structures and algorithms

th

th

th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

0%

10%

20%

30%

40%

50%

<30 <40 <50 <60 <70 <80 <90 <100 <200 <500 <1000 >=1000

GPC

DMC

Special issue56

