Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 3, N°1 2009

INCORPORATING FAULT TOLERANCE INTO COMPONENT-BASED
ARCHITECTURES FOR EMBEDDED SYSTEMS

Shourong Lu, Wolfgang A. Halang

Abstract:

A component-based software architecture is presented
to support the process of designing and developing fault-
tolerant computerised control systems. To this end, we
combine an idealised fault-tolerant component, the (2
architecture style and protective wrappers, and embed
fault tolerance techniques into component definitions. The
resulting architecture is described by normal- and abnor-
mal-activity components aiming to support a wide range of
fault tolerance features. Use of this architecture enables to
reason about system dependability already from the earli-
est development stages on, and to customise fault tole-
rance strategies according to application characteristics.
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1. Introduction

Fault prevention, fault tolerance, fault removal, and
fault forecasting are the four main means to attain the
various attributes of dependability [4]. Fault prevention
and fault tolerance aim to prevent introducing faults, or
to avoid service failures when faults occur. Fault removal
and fault forecasting, instead, mean to reduce number
and severity of faults, and to estimate present and future
incidences and consequences of faults. Among them,
fault tolerance is the most promising mechanism to meet
the dependability requirements. Fault-tolerant systems
work under the assumption that they contain faults (e.g.,
made by humans while developing or using systems, or
caused by aging hardware), and aim to provide specified
services in spite of faults being present. Fault tolerance
depends on redundancy, fault detection, and recovery.
Many fault-tolerant systems are complex because of
redundancy, re-configurability, and various interactions
between their components. This complexity has a strong
impact on system architecture, as fault occurrences
have to be taken into account from the earliest design
stages on of systems required to be dependable. There-
fore, architecture design is a crucial aspect for fault-
tolerant systems, as indicated by well-known safety me-
chanisms such as masking, dynamic redundancy, and
design diversity (e.g., N-version programming, recovery
blocks) [8].

Component-Based Software Engineering (CBSE) focu-
ses on producing software systems by composing prefa-
bricated components, which can improve the produc-
tivity and quality of target systems. In recent years, the
emphasis of research on and practice in CBSE has chan-
ged from functional aspects to non-functional ones.
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Particularly, dependability of component-based systems
is considered as one of the most crucial non-functional
properties in CBSE. To cope with complexity and fault
tolerance requirements, it may be beneficial to combine
in their development process well-established fault
tolerance techniques with component techniques, as well
as to employ the Unified Modeling Language (UML) [10]
to describe component-based software architecture
models providing fault tolerance.

In a component-based system, the software architec-
ture specification captures system structure by identi-
fying architectural components and connectors, and re-
quired system behaviour by specifying how components
and connectors are intended to interact. It is desirable
that all components show only their normal behaviours.
However, certain abnormal behaviours exist when some
unexpected conditions occur. In CBSE, the abnormal be-
haviours of components are usually represented by a set
of exceptions defined by the component developers.
It is impossible to eliminate all abnormal behaviours,
but one can reduce them, and handle them properly
after their occurrences. The main goal of this paper is to
design a comprehensive architecture to develop fault-
tolerant systems from components. By embedding fault
tolerance mechanisms into an integration architecture,
normal and exceptional behaviours of system compo-
nents are specified.

The body of this paper is organised as follows. Section
2 briefly introduces an idealised fault-tolerant compo-
nent meeting the architecture style C2 as defined in [7].
Section 3 describes the integration of idealised fault-
tolerant components and the C2 architecture. Section 4
presents the main activities of designing fault-tolerant
systems out of components.

2. Anidealised fault-tolerant component

and C2 architecture style

An idealised fault-tolerant component [5] is a struc-
turing concept for coherent provision of fault tolerance
in a system as shown in Fig. 1 (a). It includes both normal
and abnormal responses in the interface between inter-
acting components. Idealised fault-tolerant components
communicate through request or response messages,
only. On receiving a service request, an idealised compo-
nent will react with a normal response if the request is
successfully processed, and with an external exception,
otherwise. Such an external exception may be due to an
invalid service request, in which case it is called interface
exception, or due to a failure in processing a valid
request, in which case it is called failure exception.
Internal exceptions are associated with errors detected
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Fig. 1. Idealised fault-tolerant component and C2 architecture style.

within a component that may be corrected, allowing the
operation to be completed successfully; otherwise, they
are propagated as external exceptions.

(2 is a software architecture style for systems with
intensive userinterfacing. The style is component-based,
and supports large-grain re-use and flexible system com-
position, emphasising weak bindings between compo-
nents [7]. A C2 architecture as shown in Fig.1 (b) consists
of software components and connectors, which transmit
messages between components. Components maintain
state, perform operations, and exchange messages with
other components via two interfaces (named top and
bottom). Each interface consists of a set of messages that
may be sent or received. Inter-component messages are
classified into two types, viz. requests to a component to
perform an operation, and notifications that a given
component has performed an operation or changed state.
In the C2 architectural style, both components and
connectors have a top and a bottom interface. Systems
are composed in a layered style, where a component's top
interface may be connected to the bottom interface of
a connector, and its bottom interface may be connected
to the top interface of another connector. Each side of
a connector may be connected to any number of compo-
nents or connectors.

3. Integration of idealised components
into C2
Guerra et al. [3] introduced the concept of the
“idealised C2 Component” (iC2C), depicted in Fig.2, as an
equivalent, in structure and behaviour, to the idealised
fault-tolerant component. The latter's purpose is to struc-
ture the architectures of component-based software sys-

tems compliant with the C2 architectural style. Service
requests and normal responses of an idealised fault-tole-
rant component are mapped as requests and notifications
in the C2 architectural style. Interfaces and failure excep-
tions of an idealised fault-tolerant component are consi-
dered subtypes of notifications. An iC2C is composed of
five elements: NormalActivity and AbnormalActivity com-
ponents, and iC2C top, iC2C internal, and iC2C bottom
connectors.

The NormalActivity component processes service re-
quests and answers them through notifications. It imple-
ments the normal behaviour, responsible for error detec-
tion during normal operation, and the signalling of
interface and internal exceptions. The AbnormalActivity
component is responsible for the exception handlers
(error recovery) of the iC2C, and the signalling of failure
exceptions. While an iC2C is in its normal state, the
AbnormalActivity component remains inactive. When an
exceptional condition is detected, it is activated to
handle the exception. In case the exception is success-
fully handled, the iC2C returns to its normal state and the
NormalActivity component resumes processing.
Otherwise, a failure exception is signalled to components
in lower layers of the architecture, which become respon-
sible for handling it.

The iC2C top connector encapsulates the interaction
between the iC2C and components located in upper levels
of an architecture. It is responsible to guarantee that
service requests sent by the Normal-Activity and Abnor-
malActivity components to other components located in
upper levels of the architecture are processed synchrono-
usly, and that response notifications reach the intended
destinations. The iC2C top connector also performs do-
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main translation, converting incoming notifications to
a format the iC2C understands, and out-going requests to
a format the application understands. The iC2C internal
connector is responsible for message routing inside the
iC2C. The destination of a message sent by the internal
elements of the iC2C depends on its type, and whether the
iC2C is in a normal or abnormal state. The iC2C’s bottom
connector connects it with the lower components of a (2
configuration, and serialises the requests received. Once
a request is accepted, this connector queues new requests
received until completion of the first one. When a request
is completed, a notification is returned, which may be
a normal response, an interface exception, or a failure
exception.

4. Extending the iC2C architecture by fault

tolerance mechanisms

The proposed architecture is constructed by adding
fault tolerance mechanisms to normal- and abnormal-
activity components as shown in Fig.3. The fault tole-
rance mechanisms are responsible for detecting errors or
suspicious activities, and for executing appropriate reco-
veries whenever possible. The incorporation of fault
tolerance mechanisms into the iC2C architecture requires
re-defining normal and abnormal activities.

4.1. Definition of the NormalActivity
component

In the iC2C architecture, the NormalActivity compo-
nent encapsulates a desired functionality (normal activi-
ty). It may represent both a single component and a con-
figuration established through connectors. To embed er-
ror detection mechanisms into the NormalActivity com-
ponent, the concept of protective wrappers, known to be
the most general approach to develop fault-tolerant sys-
tems based on COTS components, is employed. Compo-

service requests

L T

normal responses

nent wrapping is a well-known structuring technique,
and a cost-effective solution to many problems in compo-
nent-based software development [2].

In our extension, a set of detectors is wrapped as iC2C
connectors connecting the normal activity component,
which is viewed as redundant software, and responsible
for (1) detecting exceptional conditions anticipated by
the specification and signalling them by raising excep-
tions in the provided interface of the exception compo-
nent, and (2) signalling other exceptional conditions
specific to the implementation of the component, by
raising exceptions. This set consists of well-defined error
detectors concerned with special purposes such as “Fail-
Stop Processor”, “Acknowledgment”, “I Am Alive”, “Are
You Alive” [6]. When a constraint violation is detected,
the detector sends an exception notification to the Ab-
normalActivity component. In addition to error detectors
embedded in the NormalActivity component, an excep-
tion component is required to specify the raising of local
and co-operating exceptions, i.e., signalling of an appro-
priate exception. Hence, an exception component is de-
signed working as an extra information holder, and
keeping information about application exceptions, which
are used by the other components. In other words, the
exception componentinteracts with the handler, concur-
rency and strategy component located in the Abnor-
malActivity component in order to obtain and update
information about exception occurrences and handling.
The exception component should have the required inter-
face for getting information and the one for updating
information. The former allows the application and other
components to obtain information about exception
occurrences, whereas the latter allows its clients to up-
date information about exceptions.
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Fig. 3. Extending the iC2C architecture by fault tolerance mechanisms.

4.2. Definition of the AbnormalActivity
component

Raising an exception results in an interruption of
a component's normal activity, followed by a search for
an appropriate exception handler to deal with the
exception signalled. Therefore, the AbnormalActivity
component can be defined as an exception handling
mechanism as shown in Fig.3 aiming for error recovery.
When an exception is raised, the exception handling
mechanism begins to work. It should be able to find and
activate an exception handler to recover from errors, and
to put the system back into a coherent state.

Abnormal behaviour is not restricted to failures of
a single component, but also associated with invalid
interactions between two or more components, and with
combinations of component failures. An intra-compo-
nent exception is raised by an individual component. The
strategy to deal with it is based on local exception hand-
lers, which are associated to a component's implemen-
tation. Their main responsibility is to cope with antici-
pated exceptions, which are more related to the compo-
nent's application domain, and are declared in its requi-

red interfaces, i.e., they are responsible to handle the
external exceptions of the component's required inter-
faces and the internal exceptions raised by the compo-
nent's implementation. When possible, the handlers
should implement forward error recovery to mask the
exceptions.

Inter-component exceptions are raised by component
configurations. The strategy to deal with them has to
consider the integration of pre-existing components into
a new configuration, and is based on co-operating excep-
tion handlers. These are associated with hierarchical
structure, and deal with exceptions that could not be
handled within the single components. The handlers are
responsible for providing error recovery and masking by
means of redundant components in the configuration,
and resolving failure semantics mismatches between
server components and their clients. They should be
capable of dealing with all exceptions signalled by a ser-
ver component. Upon receiving an exception from a ser-
ver component, the handlers should try to mask it in-
voking the same operation on a redundant (replicated or
diversely designed [1]) server component, in case it is
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available. The handlers are also responsible for trans-
lating unmasked exceptions from the server component's
domain to the client component's domain, before propa-
gating them to client components. Exceptions requiring
no further adaptation are automatically propagated.
When direct propagation is not possible, a new exception
is created wrapping the unmasked exceptions raised by
the server component.

As there are intra- and inter-component exceptions,
the architecture is designed to consist (see Fig. 3) of
HandlerComponent (HC), ExceptionHandlingStrategy-
Component (EHSC), and ConcurrentExceptionHandling-
Component (CEHC).

The ExceptionHandlingStrategyComponent is res-
ponsible to locate the different handlers required to re-
solve an exception. It implements services related to the
strategy for exception handling. Hence, its responsibi-
lities are deviation of control flow and search for hand-
lers. It plays a central role in the architecture, and inter-
acts with all other components. From Exception-Compo-
nent it receives information about an exception occurren-
ce while searching for its corresponding handler. Its pro-
vided interface provides the service for handler search.

The handling and propagation of an exception de-
pends on whether it is an intra-component exception or
an inter-component one. For the former, the handling is
limited within the component's AbnormalActivity. If the
exception cannot be handled, then it is propagated.
A handler may also explicitly re-signal the exception to
a componentin a layer of the architecture. An inter-com-
ponent exception raised on receiving a service request by
a component is not handled there, since it does not
indicate that the component is faulty. Therefore, the
exception is propagated to the client component, which
issued the request. The client component handles the
exception in the same manner as an intra-component
one, because it possibly indicates a fault within the
client component. The strategy to search for handlers of
intra- and inter-component exceptions can be described
using a pseudo-code as follows:
if exception is propagated from intra-component then

if local handler exists then

call local handler;
if not handled then
go to a higher (action) level handling;
end if;
else
go to a higher (action) level handling;

end if;
else

error detection in client component;

if exception is raised (error has been found) then

if local handler exists then
call local handler;
if not handled then
go to a higher (action) level handling;
end if;
else go to a higher (action) level handling;
end if;
default handler

end if;

end if

Special issue

The HandlerComponent is constructed with a set of
handlers to cope with abnormal activities, i.e. it is res-
ponsible for fault masking and recovering. After a handler
is found, EHSC asks the HandlerComponent to invoke the
exception handler. According to the hierarchical struc-
ture, handlers may be associated with a component,
a connector, or a configuration, as well as with excep-
tions themselves (default handlers). A default handler is
executed when there is not a more specific handler in an
application. The HandlerComponent has a required inter-
face, which allows the EHSC to invoke a handler when the
appropriate handler has been found. If an exception
reaches the lowest level of an architecture, the handler
for the entire system should be executed.

The ConcurrentExceptionHandlingComponent is
designed for concurrent co-operative actions, which use
the services provided by the exception handling strategy
in order to carry out the strategy for concurrent excep-
tion handling. When co-operating exceptions are raised
during an action, the exception resolution is accom-
plished by this component. It has a provided interface,
which is accessible by applications to create concurrent
co-operative actions.

To design co-operative component activities using
nested atomic actions, it is described how each indivi-
dual component is involved in such activities, and co-
operative exception handling for all participants in each
action is developed. We employ the Coordinated Atomic
(CA) action scheme [9], in which components take part,
by defining a group as an action, and participants are
components. Then, only co-ordinated recovery needs to
be activated within the participant tasks of a group. This
obviously restricts system design, but enables to regard
each group as a recovery region, and to attach fault
tolerance activities to each group participant.

Each group has participants, which may be activated
by some external activities, e.g., tasks, and which co-
operate within the group's scope. Participants execute
object methods that should have been designed to work
co-operatively by means of shared objects. Participants
may enter asynchronously into a group activity, but
should exit in a synchronised way. Each group participant
has a set of exception handlers that are designed to
recover the group co-operatively from eventual errors.
If any suitable handler has not been defined at least in
one of the group participants, an “abort exception” is
raised and, then, the group activity must be undone
(backward error recovery), and such an exception must be
signalled to the enclosing group. If the backward error
recovery is not executed successfully within the group,
a “failure exception” is signalled to the enclosing group.

Exceptions can be raised by participants during an
action. Some of them can be handled internally by a local
handler attached to the participant that raised an
exception. If an exception occurrence is not handled
internally by a participant, then all action participants
should handle it co-operatively. A set of co-operating
exceptions is associated with each action. Each partici-
pant has a set of handlers for (all or part of) these excep-
tions. Participants are synchronised and probably diffe-
rent handlers for the same exception had to be invoked in
the different participants. These handlers are executed
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concurrently, and co-operate in handling the exception
in a co-ordinated way. Therefore, we employ local hand-
ling at the level of individual components. If local
handling does not succeed, an exception is propagated to
the level of an action in which this component is involved
to be handled co-operatively. When action-level hand-
ling is not possible, an exception is propagated to the
containing action.

The newly defined AbnormalActivity component en-
capsulates the exception handling mechanisms (intra-
component and inter-component exception handling).
After implementation, it requires an interface, which
should have the function handleException(). If an excep-
tion is successfully handled, handleException() returns
a message, which is sent to the NormalActivity compo-
nent. Then, processing is resumed. Otherwise, an excep-
tionisraised in the body of handleException().

5. Conclusion

With the concept of the extended iC2C we aim to add
fault tolerance mechanisms to the NormalActivity and
AbnormalActivity components of an iC2C. In our appro-
ach, error detector and exception components are encap-
sulated into the NormalActivity component, with error
detectors contained by a wrapper. These detectors are
responsible to verify that messages do not violate the
acceptable behaviour constraints specified for a system.
The exception handling mechanism is embedded into the
AbnormalActivity component.

The advantage of integrating fault tolerance techni-
ques into the process of designing and developing com-
puter control systems required to be dependable is that
appropriate fault tolerance techniques can be selected
from a set of mechanisms provided and customised
according to application characteristics. This approach
will enhance the safety of control systems. Employing its
built-in extension mechanisms, UML can be extended to
suit dependable applications with respect to aspects such
as error detection, error recovery, or configuration of
redundancy measures. Thus, for each aspect to be model-
led, the most expressive techniques can be selected by
the user. Furthermore, UML and the here specified exten-
sions constitute an effective environment to design de-
pendable computer control systems in a comprehensive
way taking fault tolerance into account throughout the
entire development process.
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