
Abstract:

1. Introduction
The peculiarity of this system implies a number of

requirements typical for [15].
The automation software for supervision of the laser
equipment cannot break it due to its internal logical
error. It also must not expose human personnel inspec-
ting high power laser equipment to a risk of being
injured. One of the most important requirements for
customer-oriented facility as FLASH [1] is maximization
of (the time when the FLASH is utilized
for the experiments). The automation software is expec-
ted to be a means for improving this factor by reducing

and by providing automatic fault recovery.
Under these circumstances of the software seems
to be very important too.

Several attempts to automate certain subsystems of
the FLASH have been performed at the DESY [3,4,5,6].
All of them utilized the DOOCS [2] Finite State Machine
[7,3] toolkit or Stateflow [8]. Authors' practice reveals
that successful applications of simple automation sche-
mes are feasible but design of statemachines for larger
subsystems turns out to be tedious and error-prone. The
problem becomes particularly evident when specification
evolves and design has to be updated. Then, even well
elaborated statemachine becomes a mixture of complex
expert's knowledge and tricky endeavours, which "make

Free-electron laser FLASH (260-meter-long machine) is
a pilot facility for the forthcoming XFEL (3 km). Along with
growth of the experiment, service and maintenance are
becoming so complex that certain degree of automation
seems to be inevitable. The main purpose of the automa-
tion software is to facilitate operators with computer-aided
supervision of several hardware/software subsystems. The
efforts presented in this contribution concern elaboration
of general framework for designing and development of
automation software for the FLASH. The toolkit facilitates
specification, implementation, testing and formal verifi-
cation. The ultimate goal of the framework is to systema-
tize the way of automation software development and to
improve its dependability. At present usefulness of the
tools is being evaluated by testing the automation soft-
ware for single RF-power station of the FLASH.

safety-related applications

machine uptime

human error
liveness

Keywords: Automation, formal methods, model checking,
expert system, Prolog, FLASH.

1

2

it work". Both aforementioned toolkits offer merely the
implementation tools. They do not facilitate stages of
specification, testing and verification.

To address requirements of application domain, seve-
ral mechanisms borrowed from expert-systems field have
been used. Proposed software consists of two execution
engines (see Fig. 1) supplied with the specification in the
domain-specific language. The planner engine assembles
plans to drive the subsystem automatically towards
desired operation mode. The exception handler is desig-
ned to deal with possibly complex exceptional situations,
which may be exposed by driven hardware. Its role is to
fix known operation glitches and perform conflict resolu-
tion in case of multiple exceptions

Single installation of the automation software con-
sists of two runtime automation engines and two speci-
fication files. Cooperation of the engines is realized by
a dedicated cooperation protocol.

Its role is to automate routine operation procedures
usually performed by the operators. It consists of speci-
fication language interpreter, state estimator, planner
and plan executor. State estimator retrieves current sta-
tus of supervised accelerator subsystem. Planner synthe-
sizes a sequence of procedures bringing the system from
active state to the state satisfying specification of target
operation mode. Plan executor takes care of for executing
a single procedure. The specification for the planner
engine is comprised of constructs presented by the gram-
mar from Fig. 2. A state space of a finite state description
is represented by set of system variables ()
with significantly reduced domains. Physical signals
readouts are introduced to the specification by means of

. Mapping between the model and hardware
readouts is accomplished by definition of system vari-
ables domains. Possible model state transformations are
expressed by means of atomic operations ().

.

2. The architecture

Fig. 1. Single installation of the automation software.

<qvariable>

<observable>

<procedure>

2.1. Planner Engine

IMPROVING DEPENDABILITY OF AUTOMATION

FOR FREE ELECTRON LASER FLASH

Bogusław Kosęda, Tomasz Szmuc, Wojciech Cichalewski

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 33

1. Deutsches Elektronen-Synchrotron in Hamburg, member of the
Helmholtz Association.

2. Distributed Object Oriented Control System.

Their specification consists of precondition, postcon-
dition, reference to the executable code and estimate of
execution time. Procedure is permissible only if its pre-
condition evaluates to true. Postcondition becomes ful-
filled after its successful execution. Execution time helps
in estimation whether the procedure is still in progress or
has presumably failed. Since every automated operation
is performed on purpose, there is a way to specify pos-
sible goals of automation. For these purpose there exists
a construct . It specifies a valuation of subset
of system variables, which must hold for the operation
mode to be active. Specification can be augmented with
definitions of formal properties of the model (

). The only usage scenario of the planner engine is
to configure target mode and let the software bring the
subsystem there. This process executes in cycles. Every
cycle the state estimator guesses the status of supervised
device, planner finds the sequence of atomic procedures
driving the system into target operation mode and plan
executor performs first procedure from the plan. After
reaching the target operation mode, planner engine
restricts itself to monitoring. In the case of single pro-

<opmode>

<formal-
prop>

<specification> ::= { <definition> ";"}
<definition> ::= <repexceptions> | <exception> | <observable> | <procedure> | <qvariable> | <opmode> |

<formalprop>
<observable> ::= <obsname> of type <obstype>

<doocsaddr>
<obstype> ::=
<condition> ::= <relation> <junction> <relation>
<junction> ::= | " "
<relation> ::= <obsname> <operator> <number> | <obsname> <bitop> integer <operator> integer
<operator> ::=
<bitop> ::=
<number> ::= integer | float
<procname>, <obsname>, <qname>, <qval>, <opname>, <pname>, <doocsaddr>, <description>,
<message> ::= string
<qvariable> ::= <qname> <qdomain>
<q domain> ::= <qvalue> {" ," <qdomain>}
<qvalue> ::= <qval> <condition>
<opmode> ::= <opname> <state>
<state> ::= <state> {<junction> <state> }
<state> ::= <qrelation>
<qrelation> ::= <qname> <qval> | <q name> <qval>
<procedure> ::= <proc name> <description> <doocsaddr>

<condtype> <condition> <condition> integer
<condtype> ::= |
<formalprop> ::= <pname> <ptype> <state>
<ptype> ::=
<repexceptions> ::= <exctype> <doocsaddr>
<exctype> ::=
<exception> ::= <interrupt> | <fault> | <warning>
<interrupt> ::= <description> <condition> <message>

<proc name>
<fault> ::= <description> <condition> <message>
<warning> ::= <description> <condition> <message>

def

observable
taken from
bool | int | float | string

& |

== | != | < | > | <= | >=
bitor | bitand | bitxor

qvariable

value if
opmode active when

== !=
procedure description: trigger:
allowed postcondition: cost:
unless: when:
specification
always | never | possible
report to
fault | warning | interrupt

interrupt holds if report message
execute procedure
fault holds if report message
warning holds if report message

Fig. 2. Grammar defining syntax of the specification language for both the planner and the exception handler.

cedure failure several scenarios depending on plan exe-
cutor setup may happen. At present there are two setups
possible. First repeats failed procedure while the second
tries to find and execute alternative procedure.

Exception handler recognizes operation glitches and
if possible executes appropriate remedy procedures. If
exception cannot be dealt with automatically, it stops
the automation software and warns the operators. In the
case of multiple exceptions it must choose the most
suitable remedy procedure. Its specification language is
designed for definition of exceptional situations. They
are described by means of conditions defined in terms of
monitored DOOCS properties. There are distinguished
three categories of the exceptions. Permanent faults,
temporary interrupts and warnings. Faults cause perma-
nent break in machine operation. Interrupts are temporal
glitches, which can be automatically dealt with. War-
nings provide information about possibly approaching
operation problems.

2.2. Handler of Exceptional Events

3

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue34

VOLUME 3, N° 1 2009

3. Corresponding grammar may be found in Fig. 2.

the interfaces presented in the diagram. Figures 4 and
5 present the design of the cooperation protocol in the
form of Harel's statecharts [14] . Table 2 provides des-
crip-tions of the states from the Fig. 4 and 5. Poorly
designed cooperation protocol might cause automation
software to hang. Therefore it had to be verified for the
deadlock [13] and livelock [13] freedom. The SPIN [11]
model checker was used for this purpose. Protocol design
pre-sented in Fig. 3, 4 and 5 was modelled in the PRO-
MELA language. Then the model has been checked for
the exis-tence of deadlocks and livelocks. It turned out
that all non-progressive cycles [11] found in the model
did not cause starvation (livelock). They have been mar-
ked as progressive by inserting a progress labels depicted
as numbered bullets in 4 and 5. After inserting the labels
into the model no invalid endstates [11] (deadlocks)
have been found. Besides, the model has been verified
to conform to its functional requirements presented in
Fig. 6.

4

5

3. Integrated formal verification
and testing
In this project, automated formal verification is reali-

zed by model checking [10]. The NuSMV [9] is a model
checker used to verify formal properties included in the
specification for the planner. Dedicated converter trans-
lates the model encoded in the specification language to
the equivalent model expressed in the NuSMVs input lan-
guage. Definitions of formal properties, which need to be
fulfilled by the model, are expressed in the Computation
Tree Logic (CTL) [10]. Fragmentary example of the NuSMV
input specification could be seen in Fig. 7. The model of
verified system is an asynchronous statemachine. Its
state is described by symbolic variables defined in the
module and each transition is represented
by corresponding module (e.g.). Modu-
le creates all the processes. Model consists
in sequential execution of nondeterministically chosen
processes.

systems_state
switch_to_manual

main execution

Above classification was introduced to facilitate
conflict resolution in the case of multiple exceptions
occurrence. If a fault occurs, automation software is
permanently suspended and appropriate message is sent
to operators' console. Occurrence of an interrupt in case
of lack of faults entails execution of suitable remedial
procedure. Conflict resolution between interrupts is
based on calculation of subsumption relation. More
strictly specified interrupts have precedence before more
general ones. The algorithm for deciding whether one
exception subsumes another utilizes two constraint
solvers. The [12] and the [12]. The idea
of calculating the relation is fairly simple. If one assumes
two exceptions and which conditions and .
The algorithm reports the subsumption if there exist
three valuations of variables (hardware readouts)
in cnd1 and cnd2 meeting one of the following
statements.

When above conflict resolution methods fail, the
order of appearance in the specification file decides
which exception is handled first.

Both the runtime engines perform complementary
tasks. Since they share the same hardware equipment,
they must obey certain rules of cooperation. For this
purpose a protocol orchestrating their collaboration has
been designed. General diagram of the cooperation
protocol design is presented in Fig. 3. Table 1 explains

clp/bounds clpqr

E E cnd1 cnd2

V ,V ,V

E E iff

(cnd1(V) cnd2(V) (cnd1(V) cnd2(V))
(cnd1(V) cnd2(V))

E E iff

(cnd1(V) cnd2(V)) (cnd1(V) cnd2(V))
(cnd1(V) cnd2(V))

1 2

1 2 3

1 2

1 1 2 2

3 3

2 1

1 1 2 2

3 3

subsumes

subsumes

�
¬

¬ ¬

¬

¬ ¬

� � �

�

� � � �

�

2.3. Cooperation Scenarios

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 35

VOLUME 3, N° 1 2009

4. They should be interpreted according to the operational semantics described in the Stateflow User's Guide [8].
5. A modeling language of the SPIN model checker.

Fig. 3. General scheme of communication between the planner and the exception handler.

To facilitate the process of automation design, dedi-
cated software has been implemented. The toolbox allows
simulating continuous or step-by-step execution of the
planner engine. It provides the interface to display and
simulate the system state and integrates automatic
formal verification. Some elements of the toolbox can be
seen in the Fig. 7, 8, 9.

4. Conclusion
Usefulness of the framework has been evaluated by

implementation of supervision software for RF-power
station subsystem. This installation is responsible for
supplying cavities with energy necessary for particle
acceleration. Unfortunately description of this complex
installation is beyond of the scope of this paper. It can be

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue36

VOLUME 3, N° 1 2009

Description

State of supervised plant fits in the state space defined by the specification
A state of the target operation mode has been reached
A path to one of the target states has been found
Target operation mode has been specified
The software is permitted to supervise the plant
Exception handler reports an operation glitch
Exception handler reports a permanent fault
Suspend the planner
Suspend the exception handler

Stimulus name

STATE_RECOGNIZED
GOAL_REACHED
PLAN_SUCC
GOAL_AIMED
AUTO_MODE
GLITCH
ERROR
FREEZE_PLANNER
FREEZE_HNDLR

Table 1. Explanation of the data supplied to and exchanged between the parts of the protocol from Fig. 3.

Fig. 4. Design of the communication protocol for the planner.

Fig. 5. Design of the communication protocol for the exception handler.

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 37

VOLUME 3, N° 1 2009

Table 2. Explanation of the state names from the Fig. 4 and 5.

Description

The planner is permitted to supervise the plant
The planner is suspended
A target operation mode has been specified
No target operation mode is specified
The planner executes single step of a plan
Planning in progress
Planner performs state recognition
Planner is incomplete
Planning has failed
State of the plant is unknown
Both engines are suspended
The exception handler is suspended
The automation engines are permitted to supervise the plant
Exception detection in progress
All exceptions are being reported to the operator
Exception handling procedure in progress

Stimulus name

P_AUTO
P_FROZEN
GOAL_IS_AIMED
GOAL_NOT_AIMED
STEP_EXECUTION
PLANNING
STATE_SCANNING
INCOMPLETE
INC_PLANNING
INC_STATE_SCANNING
E_MANUAL
E_FROZEN
AUTO
UPDATE
REPORTING_EVENT
PROCEDURE_EXECUTION

1. FREEZE_PLANNER FREEZE_PLANNER
2. FREEZE_HNDLR FREEZE_HNDLR
3. GLITCH P_FROZEN
4. ERROR P_FROZEN
5. MANUAL P_FROZEN
6. GOAL_AIMED GOAL_NOT_AIMED E_FROZEN

� �

� �

� �

� �

� �

� � �

�

�

�

�

�

�

MODULE
VAR

ASSIGN

MODULE
ASSIGN case

esac

MODULE
ASSIGN case

esac

MODULE
VAR

process
process
process

FAIRNESS

SPEC EF

systems_state

FORCE_MANUAL_MODE: {FALSE,TRUE};
MODULATOR_STATUS: {LOCKED_FOR_5_MIN,ERROR,OFF,ON};

next(FORCE_MANUAL_MODE) := FORCE_MANUAL_MODE;
next(MODULATOR_STATUS) := MODULATOR_STATUS;

switch_to_manual(st)
next(st.FORCE_MANUAL_MODE) :=
st.FORCE_MANUAL_MODE = TRUE: FALSE;
1: st.FORCE_MANUAL_MODE; ;

switch_to_auto(st)
next(st.FORCE_MANUAL_MODE) :=
st.FORCE_MANUAL_MODE = FALSE: TRUE;
1 :st.FORCE_MANUAL_MODE; ;

main

state: systems_state;
proc_switch_to_manual: switch_to_manual(state);
proc_switch_to_auto: switch_to_auto(state);

running

-- reachability of MODULATOR_READY
(state.FORCE_MANUAL_MODE = FALSE

& state.KLY_INTERLOCK_STATUS = ALL_GREEN
& state.MOD_INTERLOCK_STATUS = ALL_GREEN
& state.MODULATOR_STATUS = ON)

Fig. 6. Properties of the cooperation protocol, which prove its responsiveness and deadlock freedom.

Fig. 7. Fragmentary specification for the planner automatically translated to the NuSMV input language.

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue38

found in [1]. Despite the whole RF-power station is quite
complex, it has simple operation scenarios. Six operation
modes have been specified. They are presented in Fig. 8.
The system state was described by nine system variables
depicted in Fig. 9. The exception handler was supplied
with the specification of the following exceptions.

Personal interlock active (personal safety, perma-
nent fault).
RF-leakage detected (personal safety, permanent
fault).
Unrecoverable modulator fault (permanent fault).
Modulator power supplier switch is off (human assis-
tance needed).
Only RF-inhibit activated (remote restart possible).
General modulator problem (remote restart possible).
IGCT stack overheated (hardware safety, wait till tem-
perature drops).

The software has been used for several maintenance
days for driving the fifth RF-power station of the FLASH.
It was used to drive the RF-power station to all specified

�

�

�

�

�

�

�

6

7

operation modes. It also managed to recover the RF-
power station from several field quenches in the accele-
rating structures () and modula-
tor faults (). These two are the
most frequently occurring exceptions, which need to be
handled automatically. Response to remaining specified
faults was verified by fault injection.

- Technical
University of Lodz, Department of Microelectronics and
Computer Science, Al. Politechniki 11, 90-924 Łódź,
Poland. E-mail: koseda@dmcs.pl

- AGH University of Science and Tech-
nology, Department of Automatics, Al. Mickiewicza 30,
30-059 Kraków, Poland.
* Corresponding author

only RF-inhibit activated
general modulator problem

AUTHORS
Bogusław Kosęda*, Wojciech Cichalewski

Tomasz Szmuc

References
[1] Aghababyan A., Altarelli M., ,

, ISBN
3-935702-17-5, 2006.

[2] Hensler O., Rehlich K., “DOOCS: a Distributed Object
Oriented Control System”. In:

, Protvino, 1996.
[3] Ayvazyan V., Rehlich K., Simrock S., Sturm N., “Finite

et al. XFEL The European
X-Ray Free-Electron Laser Technical Design Report

Proceedings of XV Work-
shop on Charged Particle Accelerators

VOLUME 3, N° 1 2009

Fig. 9. The graphical user interface for observing and simulating the finite-state model of the planner for the RF power
station.

Fig. 8. The interfaces for simulation and step-by-step execution of the automation software.

6. Personal interlock indicates potential threat to the personnel
servicing the RF-power station. It also indicates presence of the
personnel in the vicinity of high power microwave installations.

7. DRF-leakage is a hardware interlock signal reporting leakage of the
high power electromagnetic field from the waveguide distribution
system, which may cause serious injury of the person subjected to
the field.

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 39

State Machine Implementation to Automate RF Opera-
tion at the TESLA Test Facility”. In:

, Chicago, 2001.
[4] Kosęda B., Cichalewski W., “Design and Implementation

of Finite State Machine for RF Power Station”. In:

, Kraków,
Poland, 2005.

[5] Kosęda B., Cichalewski W., “Improvements of Expert
System for RF-Power Stations”. In:

, Gdynia, Poland, 2006.
[6] Brandt A., Cichalewski W., Koseda B., Simrock S.,

“Automation of low level RF control operation for the
VUV-FEL at DESY and future accelerators”. In:

, IV 5948, 2005.
[7] Wagner F.,

, ISBN 0-8493-8086-3, 2006.
[8] MathWorks, Inc.,

.
[9] Cimatti A., Clarke E., , “NuSMV 2: An OpenSource

Tool for Symbolic Model Checking”. In:

, Copenhagen, Denmark 2002.
[10] Huth M., Ryan M.,

, ISBN 0-521-54310-X,
2004.

[11] Holzmann G.,
, ISBN: 0-321-22862-6, 2004.

[12] Wielemaker J., . Avail-
able at: http://gollem.science.uva.nl/SWI-Prolog/
Manual/.

[13] . Available at:
http://foldoc.org/.

[14] Harel D.,
, vol. 8,

1987, pp. 231-274.
[15] Storey N., , Addison

Wesley, ISBN 0-201-42787-7, 1996.

Proceedings of the
Particle Accelerator Conference

Pro-
ceedings of the 12 International Conference Mixed
Design of Integrated Circuits and Systems

Proceedings of the
13 International Conference Mixed Design of Integrated
Circuits and Systems

Proceedings of SPIE, Photonics Applications in Industry
and Research

Modeling Software with Finite State Machines:
A Practical Approach

Stateflow and Stateflow Coder User's
Guide

et al.
Proceeding of

International Conference on Computer-Aided Verifica-
tion

Logic in computer science, Modelling
and Reasoning about Systems

SPIN Model Checker, The: Primer and
Reference Manual

SWI-Prolog 5.6 Reference Manual

Free On-Line Dictionary of Computing

Statecharts: A Visual Formalism for Complex
Systems Science of Computer Programming

Safety Critical Computer Systems

th

th

VOLUME 3, N° 1 2009

