
Abstract:

1. Introduction

Hybrid systems involve the interaction of discrete and
continuous dynamics. Hybrid systems have been used as
a mathematical model for many safety critical applica-
tions. One of the most important analysis problems of
hybrid systems is the reachability problem. In this paper we
argue that the proof assistant Coq can be used for the
hybrid systems verification. An example of a train crossing
control is provided.

Keywords: Formal methods, real-time, theorem proving.

Real-time embedded systems have become very impor-
tant in our everyday life. Programs such as device drivers
and embedded controllers must run on real-time cons-
traints. Demand placed on the embedded systems functio-
nality, complexity and critical nature are increasing.

Hybrid systems are systems where is a significant
interaction between the continuous and discrete parts
and high performance specifications are to be met by the
system. For example, hybrid systems arise from the inter-
action of discrete planning algorithms and continuous
processes.

Many of the hybrid systems applications are critical
safe and require the guarantee of safety operation. The
problem of safety verification seeks for an answer to the
question: is there a potentially unsafe state reachable
from an initial state? Therefore, formal verifying safety
properties of a hybrid system consist of building a set of
reachable states and checking whether this set intersects
with a set of unsafe sets. Therefore, one of the most
central problems in the analysis of hybrid automata is the
problem. It checks whether all trajectories of a given
hybrid system meet a given safety requirement. For sys-
tems with continuous dynamics it is very difficult to
compute the set of all states reachable from an initial set.

Abstraction is one of the complexity reduction tech-
niques. It reduces the state space of a system by mapping
it to an abstract set of states that preserve the actual
behaviour of the system. A predicate abstraction appro-
ach for the verification of hybrid systems is represented
in [2]. However, the computational cost of predicate
abstraction can be too high, and for large systems prac-
tically infeasible. That is why we start from a method that
decomposes the state space of a system according a rec-
tangular grid [6]. We show applicability of our method
with the verification example that we have formalized
within the proof assistant. It models the gate controller
of a railroad crossing.

2. Problem description
We use a hybrid automaton as a mathematical formula

for describing hybrid systems. We formally define the
notion of hybrid automaton. The notion of a hybrid
automaton was introduced in order to extend verification
methods towards the systems with continuous and
discrete dynamics [1]. For simplicity, we have assumed
that the number of discrete locations is finite and the
vector field is Lipschitz continuous. It guarantees that
the solutions of the differential equations are well
defined.

A Hybrid automaton is a tuple , ,
, , , , and with the following

components:

(Admissible function) We say that a function
is admissible if there are and such that

for all , , such that
for some there is such that

.
In the following we assume that functions defining

continuous behaviour satisfy this property. It will be
used for the proving of the correctness of the approach.

Definition.

Definition.

HS = (DS n
S Inv F Guard Reset)

f:

0

�

�

�

�

�

is a finite set of discrete locations; is the
dimension . The state space of is

. Each state has thus the form , where
and . is a set of initial states.

assigns to each discrete location
an invariant set, which constrains the value of the
continuous part while the discrete part is , i.e.
continuous evaluation can go on as long as remains
in .

describes a guard condition,
i.e. if a system remains in a discrete location and a
continuous state x reaches the guard (,)
then the discrete state may change its value to .

is a vector field.
is a reset function.

A system state can change in two ways: either conti-
nuously by time evaluation or by discrete transitions.
Hence, there are two kinds of transitions. First one is
a continuous transition, describing the evolution of a sys-
tem in a given location. Second one is a discrete transi-
tion, describing movement from one location to another
location and, possibly, changing the continuous variables
according to the function Reset. Based on this, the se-
mantics of a hybrid automaton is given by the following
transition system [2].

DS n
HS HS S = DS ×

R (l,x) l DS
x R S S

Inv: DS P(R) l

l
x

Inv(l)
Guard: DS × DS R

l
Guard l l

l
F: DS × R R
Reset: DS × DS × R R

R R m m
x x x R x m x m x

m m
x m x m x

>0

n

n

n

n

n n

n n

n n

n

�

� �

�

�

�

�

�

0

1

1 2

2

1 2

1 2 3 1 1 2 1 3

1 2

1 2 2 2 3

�

�

�

= + (1-)
0 < < 1 0 1

f() = f() + (1-) f()

3. Transition system

TOWARDS THE SAFETY VERIFICATION OF REAL-TIME SYSTEMS

WITH THE COQ PROOF ASSISTANT

Olga Tveretina

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue30

Definition.

Definition.

Definition.

Definition.

(Transition System) Given a hybrid automaton
, , , , , , , the transition

system of consists of
the set of states ;
the set of initial states ;
two relations and satisfying the following

(Trajectory) Given a hybrid automaton ,
a trajectory of is a sequence , such that
for all i and j such that or .

Given a hybrid automaton and a set of unsafe sta-
tes , the safety verification problem concerns with pro-
ving that all trajectories of cannot enter .

Our method is based on the approach that decomposes
the continuous state space according to a n-dimensional
rectangular grid. Such abstractions are mostly performed
in a manual manner. In general, a state space can be
represented by polyhedra [2]. This is a more flexible
approach but it requires an algorithm for dealing with
these polyhedra. A rectangular grid is less flexible but it is
simpler to implement the corresponding operations.

We assume that we have an algorithm that can pro-
duce a decomposition of a state space. We denote by
a set of all abstract states. In order to define a discrete
abstraction of a given system, we have to describe the
transitions between the abstract states, the set of initial
abstract states , and the set of abstract unsafe states

. Given a hybrid automaton and a set of abstract
states, the set of initial abstract states can be computed.
An artificial transitivity can create many false counter
examples, i.e. abstract behaviours that do not correspond
to any concrete ones. That is our incentive to optimise an
abstract transition system from [2] by reformulating the
relation defining an abstract continuous step.

(Abstract Transition System) Given a hybrid
automaton , , , , , , , the
abstract transition system of

consists of
the set of abstract states ;
the set of initial abstract states ;
two relations and satisfying the following

(Abstract Trajectory) Given a hybrid automa-
ton and a set of abstract states , an abstract
trajectory of is a sequence , such that
for all i and j such that or .

Note, that in general, an abstract trajectory starting
from some initial abstract state is not unique.

HS = (DS n S Inv F Guard Reset)
Tr = {S, , , S } HS

S
S

(l,x) (l,y) t 0, i, F (l,x ,t)=y y Inv(l),

where x=(x , ... ,x), y=(y , ... , y)

(l,x) (l', y) (l,x) Guard(l, l') y=Reset (l,l',x)

HS
HS s , s , …, s

i>j, s s s s
HS

U
HS U

S

S
U HS

HS = (DS n S Inv F Guard Reset)
Tr = {S , , , S }

HS
S

S

(l,x) (l,y) x x , y y : (l,x) (l,y)

(l,x) (l', y) x x , y y : (l,x) (l', y)

HS S
HS s , s , …, s

i>j, s s s s

0

0

0

1 1

1 2

0

0

0

0

1 2

� �

� �

� � � � � 	 �

� � � 	

� �

� �

� �

� � � � �

� � � � �

� �

c d

c d

c i i i

n n

d

m

j d j j c j

c d

c d

c c

d d

m

j d j j c j

�

�

�

�

�

�

4. Reachability analysis

a

a

a

a a a a a

a

a

a a

a a a a a

a a a a a

a

a a a

a a a a

5. Modelling of hybrid systems with
the proof assistant Coq
Coq is an interactive proof assistant, which allows

formal defining mathematical objects and helps the user
with proving the properties of these objects. Basically,
the use of Coq follows three steps: a) define the objects
and axioms used, b) state a theorem, c) provide proof
steps until the proof is completed. For more details we
refer to [3].

We do not have enough space to present all
formalizations in Coq that is why we present only a small
part of it.

Definition DiscStates:=Set.
An abstract state is defined as a list of natural numbers.
Definition AbsState := list nat.
A partition of an abstract state is defined as a list of lists
of naturals.
Definition Partition:= list (list nat).
Some other ingredients are defined as follows.
Parameter Invariant: DiscStates AbsStates.
Parameter Guard: DiscStates DiscStates AbsStates.
Parameter Flow: DiscStates AbsStates AbsStates.
Parameter Reset: DiscStates DiscStates AbsStates

AbsStates.

As an example we consider, the gate controller of
a railroad crossing from [4]. The model consists of two
subsystems: a train and the gate controller. The train is
required to send a signal at least two minutes before
it enters the crossing. The train sends a signal when it
leaves the crossing and it must happen no afterwards than
5 minutes after the signal (this is expressed by the
guard). The gate must be closed in at least 1
minute after the signal is received and not later than
in 2 minutes (the guard is). The gate responds by
opening within 1 minute after receiving the signal.
We have considered a product of timed automata that
combines the train process and the controller process,
and the resulting system is depicted in Figure 2. It has the
following discrete locations: Loc1: a train is far from the
gate and the gate is open; Loc2: the train is approaching
the crossing and the gate is open; Loc3: the train is
approaching the crossing and the gate is closed; Loc4: the
train has left the crossing and the gate is closed. We want
to verify that the gate is never closed longer than 5 minu-
tes. There are two continuous variables. Therefore, the
dimension of the continuous state space is 2.

Definition Dim := 2.
There are four discrete states. That is modelled in Coq as
following.
Inductive DS: Set := | D1: DS | D2: DS | D3: DS | D4: DS.
The partition of the continuous state space is:
Definition P := (0::1::2::3::4::5::6)::(0::1::2::3::4::5::6).

We were able to 'model check' that unsafe states are
not reachable. The full formalization of the verification
approach includes also a proof of the correctness of the
procedure in Coq that will use a definition of an admissi-
ble function. Due to the property described in the defini-
tion, a segment of a straight line is mapped to a segment

�

� �

� �

� �

�

app
out

app
x

app
y

out

2< <5

1< <5

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 31

of a straight line. This means that for each continuous
state that is in some abstract state there is a correspon-
ding abstract transition. This proof is left for future work.

We have made a first step towards the fully formal
verification of hybrid systems in the proof assistant Coq.
The presented framework allows combination of discrete
abstraction with other approaches, as "barrier certifica-
tes" for example. The train-crossing example was "model
checked" in Coq. As for future work, we intend to inves-
tigate the structure of special classes, for example linear
hybrid systems, for which our method is efficient.

- Institute for Computing and Informa-
tion Sciences, Radboud University Nijmegen, The Nether-
lands. E-mail: o.tveretina@cs.ru.nl.

6. Conclusions and future research

ACKNOWLEDGMENTS

AUTHOR
Olga Tveretina

References

I am grateful for the support by Milad Niqui in the field of Coq,
and for the support by Herman Geuvers and Dan Synek for the
examples of hybrid systems formalizations in Coq. The research
is supported by the BRICKS/FOCUS project 642.000.501.

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
Pei-Hsin Ho, Xavier Nicollin, A. Olivero, J. Sifakis, S.
Yovine, “The algorithmic analysis of hybrid sys-tems”,

, vol. 138, 1995, pp. 3-34.
[2] R. Alur, Th.Dang, F.Ivancic, “Reachability Analysis of

Hybrid Systems via Predicate Abstraction”,
, 2004.

[3] Y. Bertot, P. Casteran, “Interactive Theorem proving
and Program Development”, Springer, 1998.

[4] T.A. Henzinger, X. Nicollin, J. Sifakis, S.Yovine, “Sym-
bolic Model Checking for Real-time Systems", 7

, 1992.
[5] A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, “What's

Decidable About Hybrid Automata?”,
, vol. 57, no. 1, 1998, pp. 94-124.

[6] S. Ratschan, Z. She, “Safety verification of hybrid sys-
tems by constraint propagation-based abstraction refi-
nement”,

, vol. 6(1), 2007.

Theoretical Computer Science

ACM trans-
actions on embedded computing systems (TECS)

Sympo-
sium of Logics in Computer Science

Journal of Compu-
ter and System Sciences

ACM Transactions on Embedded Computing
Systems (TECS)

th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue32

