
Abstract:

1. Introduction
Synchronous languages specify the reactions of reac-

tive and real-time systems to their environment. They
have rigorous mathematical semantics, which allows
programmers to develop critical software faster and more
reliably. Synchronous languages also enable validation
and verification of the developed systems. They are
particularly useful for designing the control of real-time
embedded systems [8].

Modern hardware design is done using hardware
description languages (HDLs); Verilog [6] is one of the
two most popular such languages (the other being
VHDL). As a result, there are many libraries of tested and
verified Verilog designs available. These include many
useful applications, such as communication protocols,
video and audio compression algorithms, cryptographic
algorithms, and more. These libraries far outnumber

Verilog is one of the two most popular high-level hard-
ware description languages. Many libraries of useful
designs, such as communication protocols and compres-
sion algorithms, are available in Verilog. These designs
could be useful to designers of real-time and reactive
systems if they could be translated into the languages used
for such designs.

Synchronous languages are particularly useful for des-
cribing the control of real-time embedded systems. Their
rigorous mathematical semantics allows programmers to
develop critical software faster and more reliably. Synchro-
nous languages also enable validation and verification of
the developed systems.

Veriest is an automatic translator that converts synthe-
sizable Verilog designs into the synchronous language
Esterel. The translation into a synchronous language can
expose hidden flaws in the original design, including subtle
race conditions. In addition, the extensive libraries of
verified Verilog designs can now be reused in synchronous
designs.

Verilog and Esterel have different models and features,
complicating the translation. For example, Verilog has
flexible data types and operators for dealing with data
buses of varying widths; it also supports three-state logic,
which has no equivalent in languages not meant to
describe hardware. Veriest creates functions in the hosting
language (usually C) to represent concisely such features
of Verilog that are not native to Esterel.

Keywords: Automatic transformation, Synthesizable Verilog,
Esterel.

corresponding libraries for synchronous languages. Many
of these asynchronous designs could also be useful for
designers of reactive systems that use synchronous
languages, if they could be translated into these langu-
ages. These could be used to synthesize synchronous
designs in software as well as hardware. In this way,
designers using synchronous languages would be able to
take advantage of existing asynchronous libraries ins-
tead of having to manually implement (or translate)
them synchronously.

Besides allowing reuse of existing designs, trans-
lating a Verilog design into a synchronous language can
expose hidden flaws in the design that were not disco-
vered by testing. Phenomena such as race conditions
become obvious when stated in a synchronous language.

Such translation is complicated by the difference in
models between Verilog and synchronous languages.
Verilog is actually composed of two main sub-languages.

is the subset of Verilog that can be
directly compiled into hardware. The rest of the language
is used for designing stimulus environments (which are
not a part of the design) for the simulation of synthe-
sizable Verilog designs, and contains such features as the
generation of random test vectors and assertions.
Reusable Verilog designs are all written in synthesizable
Verilog. This is a hardware-oriented language, and inclu-
des variable-length data types and flexible operators for
combining and selecting parts of such buses. Verilog also
supports three-state logic, in which a wire can be in an
undriven (or “floating”) state, enabling multiple sources
of control for the wire. Such features of the language
have no equivalent in the target synchronous languages.

We have implemented an automatic translator, called
Veriest, that converts synthesizable Verilog designs into
the synchronous language Esterel [4]. Esterel is one of
the most popular synchronous programming languages,
designed for programming reactive systems. Esterel can
be compiled into sequential code as well as into hard-
ware. Veriest preserves the Verilog RTL hardware seman-
tics in the generated Esterel code.

In order to create readable Esterel programs, Veriest
attempts to keep the structure of the original program as
much as possible. Some elements of Verilog can be repla-
ced by corresponding Esterel elements in a straight-
forward manner. These include Verilog's one-bit vari-
ables (), continuous and procedural assign-
ments, conditional controls (),
values with compatible representations, module instan-
tiation, and operators (). Features of
Verilog that are not directly expressible in Esterel are
implemented using Esterel's support for external

Synthesizable Verilog

reg, wire
if-else, ? :, case

e.g., !=, =

REUSING VERILOG DESIGNS

IN THE SYNCHRONOUS LANGUAGE ESTEREL

Menachem Leuchter, Shmuel Tyszberowicz, Yishai A. Feldman

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 3, N° 1 2009

Special issue 23

functions in the hosting language (usually C). Veriest
defines a set of auxiliary functions, derived from the par-
ticular features and operations used in the source design.
The function names follow a fixed scheme, so that their
semantics can be immediately understood without refe-
rence to their implementation. In this way, implemen-
tation details are hidden while the design is still exe-
cutable. The Verilog elements that have been handled in
this way are vectors (including partial vectors), arrays,
operations that depend on variable width (e.g., on
groups of bits), concatenation, and tri-state signals.

We have successfully translated a number of different
Verilog designs using this tool. The generated Esterel
code was about half again as long as the original code
(excluding the generated C functions). The original in-
tent was quite clear in the generated code, and it seemed
to be understandable and maintainable. This is due to the
following aspects of the translation: (1) the original code
layout and variable names were preserved; (2) whenever
possible, Verilog constructs were translated directly to
the corresponding Esterel constructs; (3) the complexity
inherent in the other part of the translation was hidden
under a suitable abstraction that uses a lucid naming
scheme.

Esterel is a high-level synchronous language that sup-
ports abstraction, a variety of data types and the ability
to define new ones, and interoperability with other lan-
guages. It contains special constructs for timing control,
and is therefore appropriate as the target language for
developing reactive systems.

In contrast, Verilog is meant for hardware design, and
the synthesizable subset of Verilog lacks many of the
abstraction mechanisms and data types of Esterel. It does
emphasize timing, although in an asynchronous setting,
and in that sense is closer to Esterel than most con-
ventional programming languages. The translation of C/ -
C++/Java code into Esterel is not as useful as that re-
sulting from Verilog, since the former programs are se-
quential, and have no timing restrictions or concurrency.
The loss in such languages of the synchronization charac-
teristics in the design makes it less suitable for a synchro-
nous language such as Esterel.

Some features of Verilog can be translated more-or-
less directly into Esterel , although care must be taken to
preserve the semantics. Other features pose more diffi-
culties. Verilog supports arbitrary-width variables, with
their associated operations. For example, it is possible to
define 5-bit variables, and arithmetical and shift opera-
tions on such variables truncate any results to 5 bits.
Similarly, it is possible to define a variable consisting of
128 bits, which is beyond the capabilities of Esterel's
built-in data types.

Verilog also supports flexible combinations of parts of
such variables. For example, the expression

represents the value containing
the seven least-significant bits of with the
value of concatenated on the right. In
hardware, such operations correspond to simple wiring,
without computational content. In Esterel, these have to
be represented in code.

1.1. The Gap

#

{data_out
[6:0], data_in}

data_out
data_in

Hardware designs sometimes use
signals, which are distinct from logical high and low

(or one and zero) values. The floating signals are not
actively driven, so that any of a number of connected
circuits can drive them in turn. This is useful in cases
where one output value can result from one of several
sources, each active at a different time, or when a single
wire is used alternatively for input and for output. Verilog
fully supports tri-state signals; for example, the expres-
sion denotes a 6-bit value whose most-
significant bits are 101, followed by three floating bits.
These bits could be supplied by a different module.
Esterel has no built-in support for tri-state values.

In addition, Esterel has no built-in support for arrays,
a basic data type of Verilog (and many other languages).
These have to be simulated in the generated code.

Those constructs of Verilog that have direct counter-
parts in Esterel are translated separately and indepen-
dently. Note that even seemingly trivial operations such
as addition are complicated by the presence of data types
with flexible widths. For example, the Verilog expression

cannot be directly translated to Esterel if the origi-
nal and are 5-bit variables, whereas their counter-
parts in Esterel are integers, since truncation of the sum
to 5 bits needs to be added.

Unique Verilog constructs require a more detailed
analysis of the Verilog source code. There are general
translation solutions for each such construct, but
these are sometimes overly complex. Veriest therefore
attempts to recognize some frequently-used Verilog
patterns, in order to translate those into more concise
and efficient code.

Pure Esterel can express some Verilog features
awkwardly, and others not at all. For example, it is
impossible to represent in Esterel a 128-bit vector using
the built-in types. Five-bit vectors be represented
using Esterel integers, but correctly translating opera-
tions on them to pure Esterel requires additional opera-
tions that increase code size and obscure its meaning. To
achieve a full and efficient translation we use Esterel

[1]. These types are considered completely abstract
by Esterel itself; their implementation is given in the
host language. Veriest defines a set of user types with
associated operations. The types and operations gene-
rated depend on the particular source program; however,
they follow common patterns, and their names comp-
letely describe their semantics. Designers who want to
maintain and modify the generated Esterel code there-
fore do not need to read the C implementation at all.

We start with a small yet complete example, and then
discuss the non-trivial issues involved in the translation
one by one. The full details are available in [5].

Figure 1 contains a Verilog design of a simple 24-bit
up-down counter. Its inputs are a clock, a counting direc-
tion selector line () and a reset line (). Its
outputs are a 24-bit bus that stores the current value and
a carry for the next stage. The value of is

tri-state (or floa-
ting)

can

user
types

6'b101zzz

a+b
a b

dir rst

data_out

2. The Translation

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue24

VOLUME 3, N° 1 2009

In most of this paper we refer to Esterel version 5, which
was the latest version when this work was implemented [5].
We address the changes to Esterel in Section 3.1.

incremented or decremented at each rising clock cycle,
depending on whether the value of is one or zero,
respectively. Whenever overflows or
underflows, it is truncated, and is set to one for
one clock cycle.

dir
data_out

carry

Figure 2 shows the Esterel code generated by Veriest
from the Verilog design. Both Verilog wires (transient
values without memory, such as and) and regi-
sters (memory devices, such as) are translated
into Esterel as signals with boolean values. A change in
the variable value causes the corresponding signal to be
emitted, while the value of the variable is stored in the
signal's associated value. A binary value could have been
represented by the presence or absence of a signal. How-
ever, the use of a signal with a value preserves two impor-
tant characteristics of Verilog register variables: first,
retaining the value after the signal disappears, and
second, the ability to refer to the value of the signal at
the previous clock tick even while a new value is assigned
to it. This capability is crucial for correct translation.
Because of the need to refer to previous values, all
signals are generated with appropriate initializations.

The Verilog design uses ,
which have a triggering condition. In this case, the
triggering condition is

, which means that this section of code
is activated on a positive edge of the signal or

clk dir
carry

always @(posedge clk or
negedge rst)

clk

procedural assignments

module up_down_counter(data_out,carry,rst,clk,dir);

input clk,rst,dir;

output [23:0] data_out;

output carry;

reg [23:0] data_out;

reg carry;

always @(posedge clk or negedge rst)

begin

if (!rst) begin data_out <= 0; carry <= 0; end

else

begin

if (dir)

begin

data_out <= data_out + 1;

if (data_out == 24'hffffff) carry <= 1;

else carry <= 0;

end

else

begin

data_out <= data_out - 1;

if (data_out == 0) carry <= 1;

else carry <= 0;

end

end

end

endmodule

Fig. 1. A Verilog design of an up-down counter.

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 25

VOLUME 3, N° 1 2009

module up_down_counter:

type VEC_23_0; % definition of new type for 23-bit register

function CONV_STRING_VEC_23_0(string):VEC_23_0;

function PLUS_VEC_23_0(VEC_23_0, VEC_23_0, integer):VEC_23_0;

function COMP_EQ_VEC_23_0(VEC_23_0, VEC_23_0): boolean;

function MINUS_VEC_23_0(VEC_23_0, VEC_23_0, integer):VEC_23_0;

input clk:=false: boolean, rst:=false: boolean, dir:=false: boolean;

output data_out:VEC_23_0, carry:=false: boolean;

loop % procedural assignment section

await [clk or rst];

if (((?clk) and not pre(?clk)) or (not(?rst) and pre(?rst))) then

if (not pre(?rst)) then

emit data_out(CONV_STRING_VEC_23_0("0"));

emit carry(false);

else if (pre(?dir)) then

emit data_out(PLUS_VEC_23_0(pre(?data_out), CONV_STRING_VEC_23_0("1")), 24);

if (COMP_EQ_VEC_23_0(pre(?data_out), CONV_STRING_VEC_23_0("16777215")))

then emit carry(true);

else emit carry(false);

end if;

else

emit data_out(MINUS_VEC_23_0(pre(?data_out), CONV_STRING_VEC_23_0("1")), 24);

if (COMP_EQ_VEC_23_0(pre(?data_out), CONV_STRING_VEC_23_0("0")))

then emit carry(true);

else emit carry(false);

end if;

end if;

end if;

end if

end loop

end module

Fig. 2. The Esterel version of the up-down counter.

a negative edge of . This is translated into an Esterel
loop that waits for a change in or . Because
these are signals with values, the meaning of the
statement is to wait for the

of either signal, regardless of their values.
A signal exists when a value is emitted for it. The type of
change (from false to true, denoting a positive edge, or
from true to false, denoting a negative edge) is checked
separately, with the following statement. This is
necessary because Esterel does not support the notion of
positive or negative edges of signals, and is the reason
for the need to reference previous values. This treatment
of signals with values whose existence indicates the
assignment of new values allows the Esterel compiler to
generate

The body of the Verilog statement uses a
number of , expressed using the

operator. The right-hand sides of all concurrent non-
blocking assignments are computed before any value is
changed. In the generated Esterel code, the same effect
is achieved by using the previous values of the variables
on the right-hand side. Thus, the two Verilog nonbloc-
king assignments ; would be translated
into
whereas the (sequential) blocking assignments

would be translated into
.

Other than these changes, the structures of the two
programs are similar. The most striking change is the
treatment of the 24-bit data type used for .
In Verilog, the definition
causes the addition operator in to
denote 24-bit addition, which truncates its result to the
required length. To achieve the same result in Esterel,
Veriest defines a user type called . All the
required operations on this data type are defined as user
functions. This particular program uses addition and
subtraction on 24-bit quantities, and compares them
for equality. Veriest therefore defines the functions

for these operations. The im-

rst
clk rst

await [clk or rst]

if

always

<=

a <= b; b <= c
emit a(pre(?b)); emit b(pre(?c));

a = b;
b = c; emit a(?b); emit
b(?c);

data_out
reg [23:0] data_out

data_out + 1

VEC_23_0

PLUS_VEC_23_0, MINUS_VEC_23_0, and
COMP_EQ_VEC_23_0

existence

(a) Verilog source

(b) Esterel translation

Fig. 3. Translating continuous assignments.

nonblocking assignments

more efficient code, which only checks the
conditions when the value is assigned, rather than at
each instant.

assign o1 = a | b;

assign b = a;

loop

await [a or b]; emit o1(?a or ?b);

end loop

||

loop

await a; emit b(?a);

end loop;

plementation of these functions in C is straightforward,
and is generated automatically.

This example also shows the treatment of constants.
In this example, the target host language could represent
integers of up to 16 bits. The 24-bit vectors of the
example are therefore represented as a struct of two
integers, and there is no general way to specify constants
of this type. The general solution in such cases is to use
strings to encapsulate the constants, with conversion
functions (like) to create
the internal representation. Of course, whenever
possible, numeric constants are used.

In addition to the proce-
dural assignments shown in the example, Verilog also
supports statements of the form

. Their semantics is that the
variable always has the value of the expression; whenever
the value of the expression changes, so does the value of
the variable.

In order to translate continuous assignments into
Esterel, they must be placed in a loop that waits on any
variable involved in the expression to change. If there are
multiple continuous assignments, they are translated
separately into parallel Esterel loops. Figure 3 shows an
example of such translation.

There are two possible ways
of dealing with variable-width vectors. The first is to em-
bed them into the closest built-in integer type large
enough to hold them. This makes arithmetical operations
relatively straightforward, but selecting subfields and
combining them to create new vectors is more difficult.
The second approach is to keep each vector as a set of
separate bits. This makes selection, shifting, and conca-
tenation easier, but arithmetic becomes complex. Quite
often, the same variable participates in both types of
operations. Veriest takes the first approach. Each of the
new types created for variable-width vectors is embedded
in the next highest integer type or in a C struct of integers
in case the field is too wide. As shown above, special-
purpose functions are created as necessary in order to
perform arithmetical operations on the new types. Simi-
lar functions are created for selection and concatenation.

A set of concatenation functions is created when
variable-width vectors are combined. For example, the
statement could
be translated into

,
where the second and fourth arguments specify the
number of bits to take from the preceding argument.
However, Veriest recognizes this pattern as a shift, and
produces the more concise

. The second argument to the shift function is the
width of the shifted field, and the third is the shift
amount.

Veriest recognizes the “shift” pattern when the same
variable appears on both sides of an assignment, with
some bits from either end of the vector omitted but all
other bits shifted, and when another value takes the
place of the missing bits. For example, this pattern will
also be recognized in the statement

, but not in

CONV_STRING_VEC_23_0

assign

data[7:0] = {data[6:0], a}
emit data(CONCAT_INT_BOOL

(CONV_INT_INT(?data, 6, 0), 7, ?a, 1))

emit data(OR_
INT_BOOL(SHIFT_L_INT_INT(?data, 7, 1),
?a))

data[7:0] =
{data[6:2], a, b} data[7:0] =

Continuous Assignment.

Variable-Width Vectors.

continuous assignment
var = expression

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue26

VOLUME 3, N° 1 2009

{a, data[6:0]}
data[7:1] = {data[6:2], a}
data

= COMP_EQ_VEC_8_0

reg [7:0] mem[0:255]

ARRAY_REG_7_0_255_0

_Z

data
data_Z

data data_Z
select

data
data

data_Z

COMP_EQ_Z and COMP_NEQ_Z

, since the data is not shifted, nor in
, since not all bits

of are assigned.
Such heuristics are not necessary for correct trans-

lation, but they improve code readability and reduce its
size. Since the goal of the translation is to generate
maintainable code in the synchronous language, it is
important to include such heuristics for common cases,
such as shifts. For the same reason, built-in Esterel ope-
rators are used when possible. For example, Veriest will
use “ ” instead of the function .

Verilog supports arrays of other types, and in
particular arrays of registers. For example, the declara-
tion defines an array con-
taining 256 8-bit vectors. (This is a typical way to define
memory.) Esterel, on the other hand, does not have built-
in arrays. As in the case of vectors, the solution is to use
user types. In this example, Veriest will create the type

, with associated operations
for reading and writing elements or ranges of arrays.

As mentioned in Section 1.1, Verilog
supports a floating state for bits in addition to zero and
one. In Esterel, it must be simulated using an additional
bit. For each variable that may have floating bits, Veriest
creates another variable that has the same name with
a suffix. Each bit in the new variable has the value
one exactly when the corresponding bit in the original
variable is in the floating state. Veriest creates code to
manage both variables together in order to represent the
Verilog semantics. For example, the Verilog excerpt

is translated into

In this case, the variable is shared between all
modules that may attempt to write to it, but is
duplicated for each module. A module may only write to

if it asserts in that those bits it is writing
to are not floating. Note that when is false and
all bits of are set to tri-state mode in the Verilog
source, there is no need to change the value of the
variable in Esterel, since its value is irrelevant when

is set to all ones.
Veriest creates special comparison functions, such

as , for comparing
tri-state variables.

Arrays.

Tri-State Logic.

inout [2:0] data;

data = (select) ? 3'b111 : 3'bzzz;

inputoutput data: integer;

output data_Z: integer;

if (?select) then

emit data(7); % set data to 3'b111

emit data_Z(0); % set data to normal mode

else

emit data_Z(7); % set data to tri-state mode

end if

3. Results and discussion
We have evaluated Veriest on four designs. These are

all real and useful Verilog designs, each written by a dif-
ferent programmer. The example designs include the fol-

lowing: the up-down counter shown in Section 2;
a Viterbi encoder, an error-correcting algorithm based on
convolution encoding [7]; a real-time clock; and an
implementation of the I C protocol for connecting multi-
ple devices using only two wires. In all cases, the gene-
rated code was functionally equivalent to the original.
This section analyzes the results of the translation of
these examples, and discusses their implications.

Esterel code generated by Veriest tends to be longer
than the original Verilog code; the average increase in our
examples was 60% (excluding the generated C functions).
Generated lines also tend to be longer, due to the substi-
tution of primitive operators such as arithmetic, selec-
tion, shifting, and concatenation, by generated functions
with relatively long names. Nevertheless, most lines have
a reasonable length.

There are several other factors for the increase in the
total size of the code. The largest overhead in the
translation comes from continuous assignments, each of
which needs to be translated into a loop. This is mostly
due to the need to separate the triggering condition into
two parts, one in the statement listing the signals
to watch, and the other in the statement that checks
the particular triggering values. Another source for the
increase in size of the generated code is the difference
between the control structures in the two languages. For
example, Esterel lacks a or statement;
Verilog's statement is therefore translated into
nested s. A very common construct in hardware designs
is a state machine, which is often implemented as a long

statement. Translating that statement into an
results in many terminating statements, which
increase code size and decrease readability.

In spite of all these factors, the increase in the total
size of the code seems quite reasonable. The structure of
the original design is preserved in the translated design to
the best degree possible, including all module, register,
and wire names. The original intent is therefore easily
discernible in the generated design, making it easily
maintainable.

As explained above, Veriest translates part of the
source Verilog design into Esterel, and part into the
hosting language, C. The decision of what features to
translate into which language was based on two criteria:

1. whatever can be stated concisely in Esterel should be
rendered in Esterel;

2. host-language functions should have clear and simple
semantics and a short and efficient implementation.

Indeed, the meaning of the host-language functions
is immediately obvious from their names. The consistent
and simple naming scheme means that the Esterel desig-
ner need not see the C implementation; all the informa-
tion required to understand and maintain the design is
available in the Esterel source code. Also, host functions
are only used when there is no equivalent Esterel

2

#

3.1. Maintainability

await
if

case switch
case

if

case if
end if

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 27

VOLUME 3, N° 1 2009

The transformations were designed to preserve the Verilog RTL
hardware semantics. We also ran simulations of the source and target
programs to check their equivalence.

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue28

construct. For example, the comparison functions (like
the family) will not be used when the built-in
Esterel comparison operator will have the same effect.

Tools that compile Esterel into sequential code or
hardware could also be made to take advantage of the
simple and consistent naming scheme in order to produce
efficient results.

Since the publication of the first author's thesis [5]
(on which this paper is based), the Esterel language
(currently at version 7) has been enhanced with new data
types and operators. These include bitvectors (arrays of
booleans), bitvector maps (records composed of fields
and bitvector slices), encoders from unsigned expressions
to bitvectors, and signal arrays. These were added to the
language to support “hardware or low-level software
designs” [3]. These changes remove the need to use auxi-
liary C functions to implement operations previously una-
vailable. The translation can now be even more concise
and readable.

Because of the asynchronous nature of the language,
it is possible to write in Verilog designs that have race
conditions. These are not flagged by the compiler, and
may not be caught during simulation. Figure 4(a) shows
a simple example of a race condition [2]. In this example,
a signal sets to 0 and to 1. A subsequent
signal causes a race condition, where the first
block tries to set to the value of while the second
block simultaneously tries to set to the value of .
However, the Verilog simulator will execute one block
before the other; both orders are legal. The result will be
that both and will have the same value: 1 if the first
block is executed first, and 0 if the second block executes
first.

The Veriest translation of this example to Esterel is
shown in Figure 4(b). Because of the synchronous seman-
tics of Esterel, this program is illegal and the compiler
rejects it with the error message “statically cyclic prog-
ram, cannot be compiled by scssc.”

In this simple Verilog example, the race condition is
easy to spot by inspection. However, subtle race condi-
tions in larger Verilog designs will be harder to discover.
Simulation, and even hardware execution (for different
reasons), may yield correct results even in the presence of
race conditions, and the problem might manifest itself
only under rare conditions that are difficult to duplicate.
The translation to the synchronous language discovers
these problems during compilation.

We have presented Veriest, a translator that can con-
vert designs in synthesizable Verilog into the synchronous
language Esterel. This makes the large body of intellec-
tual-property hardware designs available to be incorpo-
rated into synchronous designs. As an added benefit, the
translation of an asynchronous design into a synchronous
language can help discover subtle timing conditions that
may have escaped testing in an asynchronous setting.

The translation is complicated by several hardware-
related features of the source language. These are solved
by using user types implemented in the host language.

COMP_EQ

rst x y clk
always

x y
y x

x y

3.2. Discovering Race Conditions

4. Conclusions

The structure of the resulting translation is very close to
that of the original, although it is somewhat more ver-
bose. Experiments have shown that the results are still
readable and maintainable in the target language.

Some Verilog designs are more appropriate than
others for automatic translation to a synchronous lan-
guage. Designs of large generic processing components
such as CPUs and DSPs will probably not generate useful
synchronous designs. The same effects can be better
achieved by coding directly in Esterel. On the other hand,
hardware-oriented protocols for specific purposes, such
as communication protocols and compression algorithms,
are good candidates for automatic conversion and are
expected to yield results comparable to our example
cases.

(a) A Verilog design with a race condition [2].

(b) The translation to Esterel.

Fig. 4. A race condition.

module race(x, y, clk, rst);

output x, y;

input clk, rst;

reg x, y;

always @(posedge clk or posedge rst)

if (rst)

x = 0;

else

x = y;

always @(posedge clk or posedge rst)

if (rst)

y = 1;

else

y = x;

endmodule

module race:

input clk:=false:boolean, rst:=false:boolean;

output x:=false:boolean, y:=false:boolean;

loop

await [clk or rst];

if (((?clk) and not pre(?clk))

or ((?rst) and not pre(?rst))) then

if (?rst) then emit x(false); else emit x(?y);

end if;

end if

end loop

||

loop

await [clk or rst];

if (((?clk) and not pre(?clk))

or ((?rst) and not pre(?rst))) then

if (?rst) then emit y(true); else emit y(?x);

end if;

end if

end loop

end module

VOLUME 3, N° 1 2009

Journal of Automation, Mobile Robotics & Intelligent Systems

Special issue 29

AUTHORS
Menachem Leuchter

Shmuel Tyszberowicz*

Yishai A. Feldman

References

- Computer Science Department,
The Open University, Rabutzki Str. 108, 43107 Raanana,
Israel.

- School of Computer Science,
The Academic College of Tel Aviv Yaffo, 61083 Tel Aviv,
and Tel Aviv University, 69978 Tel Aviv, Israel. Phone:
+972-3-6803398, Fax: +972-3-6803342.
E-mail: tyshbe@tau.ac.il.

- IBM Haifa Research Lab, Haifa
University Campus, Mount Carmel, 31905 Haifa, Israel.
* Corresponding author

[1] G. Berry and G. Gonthier, “The Esterel synchronous pro-
gramming language: Design, semantics, implementa-
tion”, , vol. 19, no. 2,
1992, pp. 87-152.

[2] C. E. Cummings, “Nonblocking assignments in verilog
synthesis, coding styles that kill!”. In:

, 2000.
[3] Esterel Technologies. The Esterel v7 reference manual.

http://www.esterel-technologies.com/files/Esterel-
Language-v7-Ref-Man.pdf.

[4] N. Halbwachs,
, Kluwer, 1993.

[5] M. Leuchter. Translating Verilog designs into the
synchronous language Esterel. Master's thesis, The
Open University, Israel, February 2003.
http://telem.openu.ac.il/cs/msc/files/ leuchter.pdf.

[6] S. Palnitkar, ,
Prentice Hall, 1996.

[7] J. G. Proakis, D McGraw-Hill, 3
edition, 1995.

[8] R. Shyamasundar and J. Aghav, “Realizing real-time
systems from synchronous language specifications”,

, Work in Progress Session,
Orlando, Florida, USA, 2000.

Science of Computer Programming

Synopsis Users
Group (SNUG)

Synchronous Programming of Reactive
Systems

A Guide to Digital Design and Synthesis

igital Communications,

Real Time Systems Symposium

rd

VOLUME 3, N° 1 2009

