
Abstract:

1. Introduction

2. Preliminaries and problem formulation

The paper considers the stability problem of linear time-
invariant continuous-time systems of fractional commen-
surate order. It is shown that the system is stable if and
only if plot of rational function of fractional order (called
the generalised modified Mikhailov plot) does not encircle
the origin of the complex plane. The considerations are
illustrated by numerical examples.
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In the last decades, the problem of analysis and
synthesis of dynamical systems described by fractional
order differential (or difference) equations was consi-
dered in many papers, see [4, 9, 10, 12, 18, 21, 23], for
example. Some applications of fractional order systems
can be found in [5, 19, 20-22]. The stability problem of
linear continuous-time systems of fractional order has
been studied in [2, 3, 6, 7, 8, 23]. The new class of the
linear fractional order systems, namely the positive
systems of fractional order has been considered in
[15-17].

The aim of this paper is to give the new frequency do-
main methods for stability analysis of linear continuous-
time fractional systems in the case of commensurate de-
gree characteristic polynomials. To the best knowledge of
the Author, computationally effective frequency domain
methods for stability analysis of fractional commensura-
te degree polynomials have not been proposed yet

A linear single input, single output continuous-time
dynamical system of fractional order is described by the
following fractional differential equation (see [23] for
example)

(1)

where is the input, is the output,
and are ar-

bitrary real numbers, and
are real coefficients and

(2)

is the Caputo definition for fractional -order derivative

where is the Euler gamma function

.

u t( ) y t( )

�

and is an integer satisfying inequality .
Applying the Laplace transform to both sides of equa-

tion (1) and assuming zero initial conditions, we obtain
the following fractional order transfer function

The fractional order linear system with the transfer
function (3) is of [23]:

commensurate order if

where is a real number,

The transfer function of fractional system of commen-
surate order can be written in the form

Substituting in (5), one obtains the associa-
ted natural order transfer function

If, for example,

then for one obtains the associated natural or-
der transfer function

Characteristic polynomial of the fractional system (1)
has the form

The polynomial (8) is a multivalued function whose
domain is a Riemann surface. In general, this surface has
an infinite number of sheets and the fractional polyno-
mial (8) has an infinite number of zeros. Only a finite
number of which will be in the main sheet of the Riemann
surface. For stability reasons only the main sheet defined
by can be considered [23].

[7, 8, 23]. The fractional order system with
the transfer function (3) is bounded-input bounded-

p

(3)

(4)

rational order if it is a commensurate order and
where is a positive integer,

non-commensurate order if (4) does not hold.

(5)

(6)

(7a)

(7b)

(8)
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output (BIBO) stable (shortly stable) if and only if the
fractional degree characteristic polynomial (8) is stable,
i.e. this polynomial has no zeros in the closed right half
of the Riemann complex surface, that is

(9)

The Riemann surface has a finite number of sheets
only in the case of fractional polynomials (8) of commen-
surate degree, i.e. for

(10)

If (10) holds, the fractional degree characteristic
polynomial (8) can be written in the form

(11)

Hence, for from (11) we obtain the associated
natural number degree polynomial

(12)

If, for example, ( and are
real numbers) then , and the associa-
ted natural number degree polynomial has the form

[23]. The fractional commensurate degree
characteristic polynomial (11) is stable if and only if all
zeros of this polynomial satisfy the condition (9) or,
equivalently, all zeros of the associated natural degree
polynomial (12) satisfy the condition

(13)

If then from (13) we obtain the stability region
shown in Figure 1.

Parametric description of the boundary of the stabi-
lity region has the form

(14)

The polynomial (11) with is a natural number

a b

Theorem 2

Fig. 1. Stability region of fractional degree polynomial
(11) in the complex -plane with .

� = 1

degree polynomial and from (14) we have that the ima-
ginary axis of the complex plane is the boundary of the
stability region.

From the above and Theorem 2 we have the following
sufficient condition for stability of fractional degree po-
lynomial (11) with .

The fractional commensurate degree cha-
racteristic polynomial (11) with is stable if the
associated natural number degree polynomial (12) is
asymptotically stable, i.e. the condition (13) holds for

which means that for all zeros
of (12).

From Theorem 2 it follows that the fractional polyno-
mial (11) may be stable in the case when the associated
natural degree polynomial (12) is not asymptotically
stable.

Stability checking of the fractional degree polynomial
(11) on the basis of Theorem 2 is a difficult problem in
general, because the degree of the associated polynomial
(12) may be very large. If, for example,

then for one obtains the associated
polynomial of natural degree [6]

The above polynomial has degree equal to 127 and
only five non-zero coefficients.

To avoid this difficulty, a method for determination of
the multi-variate natural degree polynomial, associated
with the fractional commensurate degree polynomial has
been given in [6]. To stability analysis of multi-variate
degree polynomials, the LMI technique has been propo-
sed in [6].

The aim of this paper is to give the new frequency do-
main methods for stability analysis of fractional polyno-
mials of commensurate degree. The methods proposed
are based on the Mikhailov stability criterion and the
modified Mikhailov stability criterion, known from the
theory of systems of natural number order (see [1, 14,
24], for example).

Lemma 1.

� = 1,

In the stability theory of natural degree characteristic
polynomials of linear continuous-time systems, the fol-
lowing kinds of stability are considered (see [1], for
example):

asymptotic stability (all zeros of the characteristic
polynomial have negative real parts),
D-stability (all zeros of the characteristic polynomial
lie in the open region D in the left half-plane of
complex plane).
From the above and Theorem 2 we have the following

lemma.

The fractional degree polynomial (11) is
stable if and only if the associated natural degree polyno-
mial (12) is D-stable, where the parametric description
the boundary of the region D has the form (14). In parti-

3. Solution of the problem

�

�

Lemma 2.
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which holds if and only if (18) is satisfied.
The reference fractional polynomial can be cho-

sen in the form

(21)

Note that for the reference polynomial (21) is
stable.

Plot of the function is
defined by (16) we will called the generalised modified
Mikhailov plot.

The condition (18) of Theorem 4 holds if and only if
the generalised modified Mikhailov plot does not encircle
the origin of the complex plane as runs from to .

From (11), (16) and (21) we have

(22)

and

(23)

From (23) it follows that if
Hence, from Theorem 4 we have the following important
lemma.

The fractional degree polynomial (11) is
not stable if .

Now we consider the case in which the condition (18)
of Theorem 4 does not hold.

The fractional characteristic polynomial
(11) of commensurate degree has zeros in the right
half of the Riemann complex surface if and only if as
runs from to the plot of times encirc-
lese in the negative direction the origin of the complex
plane. In such a case

(24)

As in [14] in the case of natural degree poly-
nomials we can show that if the fractional degree poly-
nomial (11) has zeros with positive real parts, then

(25)

Hence, from (20) and (19), (25) it follows that (24)
holds. If (24) holds then from (20) and (19) we have (25).

It is easy to see that Theorem 4 follows from Theorem
5 for .

Consider a linear fractional order system with cha-
racteristic polynomial of commensurate degree of the
form [6]

�

�

c

k

k

k

> 0

)

0

0

= 0

Lemma 3.

Theorem 5.

Proof.

Example 1.

�

�

4. Illustrative examples

cular, for the D-stability region is shown in
Figure 1.

It is easy to see that if then the fractional
degree polynomial (11) is reduced to the natural degree
polynomial (12) with . In such a case from (14) it
follows that boundary of the stability region is the ima-
ginary axis of the complex plane.

The fractional degree characteristic poly-
nomial (11) is stable if and only if

(15)

where for

It is easy to see that
This means that (15) is the necessary and sufficient
condition for D-stability of the natural degree polynomial
(12) [1]. Hence, the proof follows from Lemma 2.

Plot of the function where for
will be called the generalised (to the class of

fractional degree polynomials) Mikhailov plot.
Satisfaction of (15) means that the generalised Mik-

hailov plot starts for in the point on real
axis and with increasing from to turns strictly
counter-clockwise and goes through quadrants of the
complex plane.

Checking the condition (15) of Theorem 3 is difficult
in general (for large values of ), because quickly
tends to infinity as grows to .

To remove this difficulty, we consider the rational
function

(16)

instead of the polynomial (11), where is the refe-
rence fractional polynomial of the same degree as poly-
nomial (11).

We will assume that the reference fractional polyno-
mial is stable, i.e.

for (17)

The fractional degree polynomial (11) is
stable if and only if

(18)

where for and is defined by
(16).

If the reference polynomial is stable
then from Theorem 3 we have

(19)

From (16) for it follows that

(20)

The fractional degree polynomial (11) is stable if and
only if

� = 1

0

Theorem 3.

Proof.

Theorem 4.

Proof.

�

n

n
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(26)

For and from the fractional
commensurate degree polynomial (26) we obtain the
associated natural degree polynomial

(27)

From Theorem 2 it follows that the fractional degree
polynomial (26) is stable if and only if the associated
natural degree polynomial (27) has no zeros in the cone
shown in Figure 1 with .

Plot of the function (16) with
is shown in Figure 2. According to (22) and (23) we have

From Figure 2 it follows that the generalised modified
Mikhailov plot does not encircle the origin of the
complex plane and the system is stable, according to
Theorem 4.

Now we consider the fractional degree polynomial
(26) and associated natural degree polynomial (27) in the
case when the free term has negative sign, i.e. is

instead of . In such a case
and the fractional

system is not stable, according to Lemma 3.

Fig. 2. Plot of the function (16) with .

-221.9590294 +221.9590294

In this case, the generalised modified Mikhailov plot
with the reference polynomial is
shown in Figure 3, where

Zeros of natural degree polynomial (27) with negative
free term and the boundary of the stability region are
shown in Figure 4.

From Figure 3 it follows that the generalised modified
Mikhailov plot ones encircles the origin of the
complex plane in negative direction. This means, accor-
ding to Theorem 5, that the system is unstable and the
characteristic polynomial has one unstable zero. This ze-
ros lies in the instability region shown in Figure 4.

Consider the control system with the
fractional order plant described by the transfer function
[11, 25]

(28)

and the fractional PD controller (designed in [11])

(29)

Characteristic polynomial of the closed loop system
with the plant (28) and controller (29) has the form

Fig. 3. Plot of the function (16) with
of the form (26) with negative free term.

Fig. 4. Zeros of polynomial (27) with negative free term and
boundary of the stability region.

D(s)

Example 2.
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(30)

Substituting and in (30),
one obtains the associated polynomial of natural degree

(31)

The control system is stable if and only if all zeros of
polynomial (31) lie in the stability region shown in Figure
1 with .

To stability checking of fractional polynomial (30) we
apply Theorem 4.

Plot of the function where
has the form (30) and is the

reference fractional polynomial, is shown in Figure 5.

From (22) and (23) we have

From Figure 5 it follows that the generalised modified
Mikhailov plot does not encircle the origin of the
complex plane. This means that the fractional control
system is stable, according to Theorem 4.

New frequency domain methods for stability analysis
of linear systems of fractional commensurate order have
been given.

The methods have been obtained by generalisation of
the Mikhailov stability criterion and the modified Mikha-
ilov stability criterion (known from the theory of natural
order systems) to the case of fractional order systems.

In particular it has been shown that:
the fractional polynomial (11) is stable if and only if
plot of with increasing from to turns
strictly counter-clockwise and goes through qua-
drants of the complex plane (Theorem 3),
the fractional polynomial (11) is stable if and only if
plot of the rational function
where is defined by (16), called the generalised
modified Mikhailov plot, does not encircle the origin
of the complex plane (Theorem 4),

D s

D j
n

j
s

( )

( ) 0

( ),
( )

Fig. 5. Plot of the function .

5. Concluding remarks

�

�

� �

� �

�

the fractional characteristic polynomial (11) has
zeros in the right half of the Riemann complex surface
if and only if as runs from to the generalised
modified Mikhailov plot times encircles in
the negative direction the origin of the complex plane
(Theorem 5).

The effectiveness of the methods has been illustrated
by numerical examples.

Generalisation of the main result of the paper (Theo-
rem 4) for the fractional systems of non-commensurate
order has been given in [2].

The preliminary version of this paper was presented
at the conference Automation'2008 which was held in
Warsaw, Poland and published in [3].

The considerations can be generalised to the linear
fractional order systems with delays.
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