
Abstract:

1. Introduction
A dynamical system without input signal is called

pointwise complete if every final state can be reached by
suitable choice of the initial state. The system, which is
not pointwise complete, is called pointwise degenerated.

The problem of pointwise completeness and point-
wise degeneracy of linear continuous-time systems with
delays has been considered in [5, 14, 16, 18].

The problem of pointwise completeness and point-
wise degeneracy of linear discrete-time systems with
delays has been formulated and solved in [1, 2] for the
standard systems and in [4] for the positive systems.

In positive systems inputs, state variables and out-
puts take only non-negative values. Examples of positive
systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive
linear systems behaviour can be found in engineering,
management science, economics, social sciences, bio-
logy and medicine, etc. An overview of state of the art in
positive systems is given in the monographs [7, 10].

In the last decades, the problem of analysis and syn-
thesis of dynamical systems described by fractional order
differential (or difference) equations was considered in
many papers and books (see [6, 15, 17], for example).

The new class of linear systems of fractional order, na-
mely the positive fractional systems, has been introduced
in [11-13].

In this paper we consider the problem of pointwise
completeness and pointwise degeneracy of linear conti-
nuous-time systems of fractional order. Definitions and
necessary and sufficient conditions for the pointwise
completeness and the pointwise degeneracy of fractional

A dynamical system described by homogeneous equa-
tion is called pointwise complete if every final state can be
reached by suitable choice of the initial state. The system,
which is not pointwise complete, is called pointwise dege-
nerated. Definitions and necessary and sufficient condi-
tions for the pointwise completeness and the pointwise
degeneracy of continuous-time linear systems of fractional
order, standard and positive, are given. It is shown that:
1) the standard fractional system is always pointwise com-
plete; 2) the positive fractional system is pointwise com-
plete if and only if the state matrix is diagonal.
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systems standard and positive will be given.
To the best knowledge of the authors the pointwise

completeness and pointwise degeneracy of fractional
order systems have not been considered yet

Consider the fractional continuous-time linear system
described by the homogeneous equation

(1)

where is the order of fractional derivative,
and .

The following Caputo definition of the fractional
-order derivative will be used [12]

(2)

where is the Euler gamma function and

is an integer satisfying the inequality .
It is easy to see that for we have and

(2a)

The solution of equation (1) with is given
by [12]

(3)

where

(4)

is the fundamental matrix and is the Mittage-
Leffler matrix function.

The fundamental matrix depends on the time
and the matrix .

The fundamental matrix (4) is always non-
singular, i.e.

(5)

for all and for any matrix .

.
In the paper the following notation will be used:

- the set of real matrices and
- the set of real matrices with non-negative

entries and - the identity matrix.

2. The main results
2.1. Standard systems
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Lemma 1.
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Proof.

Lemma 2.

Example 1.

Lemma 3.

Let us consider the function

(6)

We show that for any matrix .
Note that the function (6) is well definite on the

spectrum of the matrix . Let be real or
complex eigenvalues (not necessarily distinct) of .
Then from (6) it follows that for any real

and for any
complex conjugate pair

It is well known [8, 9] that the eigenvalues of the
matrix are:
and

(7)

The fundamental matrix (4) can be computed by using
the Sylvester formula [8, 9]. In the case of distinct
eigenvalues of we have the following lemma.

If has only distinct eigenvalues then
the fundamental matrix (4) can be computed from the
formula

(8)

Using the Sylvester formula check the
fundamental matrix of the system (1) with

(9)

The matrix (9) has two distinct eigenvalues:
and In this case, according to Sylvester formula
(8), we have

where

From (4) it follows that the fundamental matrix can
be written in the form

where

From (12) we have the following lemma.

If is a nilpotent matrix with the nilpoten-
cy index (i.e. for and )
then

(14)

A
A

A
μ

(10)

(11)
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(13)
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By generalisation of definitions of pointwise com-
pleteness and pointwise degeneracy to the case of frac-
tional order systems (1) one obtains the following defi-
nitions.

The fractional system (1) is called
pointwise complete at if for every final vector

there exists an initial state such that
.

The fractional system (1) is called point-
wise degenerated in the direction at if there exists
a non-zero vector such that for all initial states

the solution of (1) for satisfies the condi-
tion , where denotes the transpose.

From the above definitions and Lemma 1 we have the
following important theorem.

The fractional continuous-time system
(1) is always pointwise complete, i.e. for any finite
state there exists the initial state

such that

From Lemma 1 we have that for
any matrix and for all Hence, from (3) it
follows that for any given finite state we can always
compute the initial state from the formula (15).

Consider the system (1) with

It is easy to see that (16) is a nilpotent matrix with
the nilpotency index i.e.

From Lemma 3 for we have

where is defined by (13) for .

From Theorem 1 it follows that the fractional sys-
tem is pointwise complete and for any final state

we can find the suitable ini-
tial state from the formula

If, for example, and then

Definition 1.

Definition 2.

Theorem 1.

Proof.

Example 2.
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If then from (15) we have

3. Concluding remarks
The paper considers the problem of pointwise com-

pleteness and pointwise degeneracy of linear continuous-
time systems of fractional order, described by the
homogeneous equation (1). First, the definitions of the
pointwise completeness and pointwise degeneracy of the
standard (i.e. non-positive) fractional systems have been
introduced (Definitions 1 and 2) and it has been proved
that the fractional continuous-time system (1) is always
pointwise complete (Theorem 1). Next, the definitions
(Definitions 4 and 5) and necessary and sufficient condi-
tions of the pointwise completeness (Theorem 3) and
pointwise degeneracy (Theorem 4) of the positive frac-
tional systems have been given. It has been shown that
the positive system (1) is pointwise complete if and only
if the state matrix is diagonal.

The considerations can be extended for the fractional
discrete-time systems [3].
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2.2. Positive systems
Definition 3.

Theorem 2.

Definition 4.

Definition 5.

Theorem 3.

Proof.

Theorem 4.

Example 3.

Example 4.

The fractional system (1) is called posi-
tive if and only if for any .

A square real matrix is called the Metzler
matrix if its off-diagonal entries are non-negative, i.e.

for .
In the paper [12] the following theorem has been

proved.

The fractional system (1) is positive if and
only if the matrix is a Metzler matrix.

Definitions of pointwise completeness and pointwise
degeneracy of positive fractional system (1) can be
formulated as follows.

The positive fractional system (1) is cal-
led pointwise complete at if for every vector
there exists an initial state such that .

The positive fractional system (1) is cal-
led pointwise degenerated if it is not pointwise complete,
that is there exists at least one state which can
not be reached from any initial state i.e. does
not exist and such that .

The positive fractional system (1) is point-
wise complete at if and only if the matrix is
diagonal.

In positive systems, according to Definition 3,
and . From (15) it follows that for any
there exists if and only if
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The positive fractional system (1) is
pointwise degenerated if and only if is not a diagonal
matrix.
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From (19) it follows that if and then
. This means that the system with the Metzler

matrix (16), analysed as a positive system, is pointwise
degenerated. This result also follows from Theorem 3.

Consider the positive system (1) with the
matrix (9). Fundamental matrix of the system has the
form (10).

By Theorem 3 the positive fractional system is point-
wise complete at any since the matrix (10) is dia-
gonal. Using (15) we may find for any given

.
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