
Abstract:

1. Introduction

Keywords:

A prototype environment called CPDev for program-
ming small-distributed control-and-measurement systems
in Structured Text language of IEC 61131-3 standard is pre-
sented. The environment is open what means that the code
generated by the compiler can be executed on different
hardware platforms. However, an interpreter, another
words - a virtual machine, must process such universal code
similarly as programs written in Java. The CPDev environ-
ment consists of the compiler, simulator and configurer of
hardware resources (i.e. communications). They are deve-
loped in C# at MS.NET Framework 2.0 platform. CPDev is
open allowing the user to create function blocks and libra-
ries. External interface procedures (drivers) can be written
by hardware designers and linked with the universal code.
Free selection of data types required by different applica-
tions is provided. Virtual machine written in ANSI C is dedi-
cated for a particular processor. So far the machines for
AVR, MCS-51 and PC have been developed. Programming
a mini-DCS system from LUMEL Zielona Góra has been the
first application of CPDev.

universal

mini-DCS system, control program execution,
ST language, compiler, IEC 61131-3 standard, virtual
processor.

Domestic control-and-measurement industry manu-
factures transmitters, actuators, drives, PID and PLC con-
trollers, recorders, etc. connected with distributed sys-
tems, are used for automation of small and medium scale
processes. However, engineering tools applied for pro-
gramming such devices are rather limited and do not
correspond to IEC 61131-3 standard [1] (Polish law since
2004). This restricts effectiveness of competition with
foreign products. The problem may be solved to some
extent by developing an universal, open engineering en-
vironment for programming control devices, particularly
small PID, PLC and multifunction controllers according to
IEC 61131-3 (further denoted IEC for brevity).

Basic task of control engineering tool is to compile
source program written in one of IEC languages into ma-
chine code of a given processor. Change of the processor
requires a new compiler. A tool, to be called ,
should be able to generate a code executable on different
platforms, particularly such as AVR, ARM, MCS-51 and PC,
if domestic devices are considered. However, such uni-
versal code must be executed by an interpreter that
translates instructions of this code into instructions of
the machine language. Each of the platforms must have

its own interpreter. So the universal code is in fact a kind
of intermediate code into which the source program is
compiled. Generally speaking, it resembles somewhat the
concept of Java virtual machines capable of executing
programs on different platforms [2]. Therefore the inter-
preters of the universal code will also be called

here.
Engineering environment can be considered if it

provides the following:
tools for development of user functions and function
blocks, which are program units suitable for reuse,

The environment may be called , if of all data
types available in the IEC standard, the user can freely
choose the ones suitable for particular application. For
instance, PID and PLC algorithms need somewhat diffe-
rent sets of data types.

This paper presents current state of work on engine-
ering environment for programming small control-and-
measurement devices and distributed mini-systems
according to the IEC standard. An example of such mini-
DCS involving instruments from LUMEL Zielona Góra is
shown in Fig.1. The environment, called CPDev (

), satisfies universality, openness and
flexibility requirements stated above. Initial information
on CPDev has been presented on recent Real Time
Systems conference [3, 4]. CPDev is being developed at
Microsoft. NET Framework 2.0 [5].

virtual
machines

open

flexible

Control
Program Developer

�

� specifications of I/O and communication interfaces
in the form of prototypes of driver procedures, which
are common for different processors and hardware
solutions (the same way of procedure call; internal
bodies can be different).

Fig.1. Example of mini-distributed system with equipment
from LUMEL Zielona Góra.

MINI-DCS SYSTEM PROGRAMMING

IN IEC 61131-3 STRUCTURED TEXT

Dariusz Rzońca, Jan Sadolewski, Andrzej Stec, Zbigniew Świder, Bartosz Trybus, Leszek Trybus

Received 25 ; accepted 15th thFebruary May 2008.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 2, N° 3 2008

R
S

4
8

5

RS232

RS485

R
S

4
8

5

SMC

SMC

Articles48

The paper is organized as follows. Structure of CPDev
and the way in which the code for different platforms is
generated are explained in Sec.2. The environment con-
sists of ST language compiler (also called CPDev), simu-
lator CPSim and configurer CPCon of hardware resources.
The compiler produces a file with the universal code for
virtual machine. User interface is presented in Sec.3
together with simple example. Functions and function
blocks available in CPDev libraries are listed in Sec.4. The
user can create his function blocks and libraries. Simu-
lator CPSim and configurer CPCon are described in Secs.5
and 6, respectively. The configurer generates a file with
hardware allocation map, which provides another data
needed by virtual machine. Configuration of a mini-DCS
test system from LUMEL, involving a new SMC program-
mable controller, is given as an example. Language of
virtual machine, operation cycle, and the way in which
program interfaces are adapted to different processors
and hardware solutions are explained in Sec.7.

CPSim software simulator,
CPCon configurer of hardware resources.

General characteristic of CPDev
environment

2.1. Programming languages

2.2. CPDev environment

The IEC standard defines five programming langua-
ges, i.e. LD, IL, FBD, ST and SFC, allowing the user to
choose one suitable for particular application. Instruc-
tion List IL and Structured Text ST are text languages,
whereas Ladder Diagram LD, Function Block Diagram FBD
and Sequential Function Chart SFC are graphical ones
(SFC is not an independent language, since it requires
components written in the other languages). Relatively
simple languages LD and IL are used for small applica-
tions. FBD, ST and SFC are appropriate for medium-scale
and large applications. John and Tiegelkamp's and Kas-
przyk's books [6,7] are good sources to learn IEC pro-
gramming.

ST is a high level language originated from Pascal,
Ada and C, especially suitable for complicated algorithms
(e.g. for PID self-tuning). Equivalent code for a program
written in any of the other languages can be developed in
ST, but not . Hence most of engineering pack-
ages use ST as a default language for programming user
function blocks. Due to such reasons it has been assume

environment (called also package) invol-
ves four programs shown in Fig.2. At PC side we have:

CPDev compiler of ST language,

The programs exchange data through files in appro-
priate formats. The CPDev compiler generates universal
code executed by virtual machine VM at the controller
side. The machine operates as an interpreter. The
executable code is a list of primitive instructions of the
virtual machine language called VMASM assembler.
VMASM is not related to any particular processor, how-

vice versa

d
that ST will be employed as base language in CPDev
environment. In future, programs written in the other IEC
languages will be converted into ST (graphic editor for
FBD is being developed).

The CPDev

�

�

�

2.

ever it is close to somewhat extended typical assemblers.
Brief characteristic of VMASM is given in Sec.7. CPSim
simulator also involves the virtual machine (in this case
at the PC side).

Fig. 2. Components of CPDev environment.

Fig. 3. Logic and hardware layers of CPDev environment.

Fig.3 shows how the CPDev compiler and CPCon confi-
gurer cooperate. Separation of program compilation at
the logic layer from hardware configuration at the hard-
ware layer simplifies generation of the code for different
platforms. The ST source program is compiled into uni-
versal executable code applying relative addresses defi-
ned in ST (called local addresses here). The compiler
employs functions, function blocks and programs stored
in libraries. Configuration of hardware resources at the
second layer involves memory, input/output and commu-
nication interfaces. This includes memory types and
areas, numbers and types of inputs, outputs and commu-
nication channels, physical addresses, validity flags, etc.
Allocation of hardware resources has the form of a map
that assigns local addresses to physical ones. Virtual ma-
chin

rom CPDev viewpoint hardware platforms differ in terms
of hardware allocation maps and not in executable code.
The code remains the same, hence it is called .
Some diversification of binary code is possible for optimi-
zation of execution by particular processor (see Sec.7).

Software deployment at different platforms is illustra-
ted in Fig.4. Virtual machine is dedicated to a particular
processor. So far the machines for AVR, MCS-51 and PC
have been developed (PC machine is a part of CPSim). ARM
7 is considered as the next one. While developing the
machines attention has been given to decrease time
overhead for code interpretation. Similarity of the VMASM
assembler to machine languages is the advantage. Inde-
xing mechanism for instruction interpretation has been
employed [3].

e at the target platform, given the code and hard-
ware allocation map, is able to execute calculations.

F
2.3. Different hardware platforms

universal

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 2, N° 3 2008

Articles 49

Tree of the START_STOP project shown in the figure
includes POU unit with the program PRG_START_STOP,
five global variables from START to PUMP, task TSK_START
_STOP, and two standard function blocks TON and TOF
from IEC_61131 library.

The PRG_START_STOP program seen in the main area
is written according to ST language rules. The first part
involves declarations of instances DELAY_ON, DELAY_OFF
of the blocks TON and TOF. Declarations of the global
variables (EXTERNAL) are the second part, and four ins-
tructions of the program body, the third one. The instruc-
tions correspond to FBD diagram shown in Fig.6. So one
can expect that certain MOTOR is turned on immediately
after pressing a button START and the PUMP five seconds
later.

he START_STOP project is shown in Fig.7.

All variables have RETAIN attribute. The addresses
specify [6, 7] and denote
relative location in controller memory (keyword AT dec-
lares the address in individual window). Here these ad-
dresses are called . As explained before, correspon-
dence of local addresses to physical ones is defined by
hardware allocation map. Variables without addresses
(not used in this project) are located automatically by
the compiler.

Window with declaration of the TSK_START_STOP task
is shown in Fig.8. A task can be executed once, cyclically
or continuously (triggered immediately after completing,
as in small PLCs). There is no limit on the number of pro-
grams assigned to a task, however a program can be assi-
gned only once.

Fig. 6. START_STOP system for control of a motor and pump
(with delay of 5 seconds).

Fig. 7. Global variable list for the START_STOP project.

directly represented variables

local

Pressing STOP or activation of an ALARM sensor
triggers similar turn off sequence.

Global variables can be declared in CPDev either using
individual windows or collectively at variable list. The list
for t

3.3. Global variables and task

Fig. 4. Software deployment at different hardware platforms.

User interface

3.1. Data types

3.2. Program in ST language

The CPDev compiler is able to process twenty elemen-
tary data types defined in the IEC standard [1, 6, 7]. How-
ever, only a part is needed while programming a specific
device or a system. For an SMC controller presented furt-
her ten data types listed in Table 1 have been selected
(the same types are used in Industrial IT 800xA DCS from
ABB). The types available in particular instance of the
compiler are selected by means of an XML configuration
file (Sec.7). The elementary types may be used to define
derived types such as alias, arrays and structures [6, 7].

Main window of user interface in CPDev is shown in
Fig.5. It consists of three areas:

tree of project structure, on the left,
program in ST language, center,
message list, bottom.

Table 1. Data types for SMC programmable controller.

Fig.5. User interface in CPDev environment.

�

�

�

3.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 2, N° 3 2008

Type

BOOL

INT

DINT

UINT

REAL

Size

2B

4B

variable
length

4B

8B

Size (range)

1B
(0, 1)

2B
(-32768...32767)

4B
(-2 ... 2 -1)

2B
(0 ... 65535)

4B,
IEEE-754 format

31 31

Type

WORD

DWORD

STRING

TIME

DATE_AND_TIME

Articles50

Fig. 8. Declaration of TSK_START_STOP task.

Text of the project represented by the tree is kept in
an XML text file. Compilation is executed by calling
Project->Build from the main menu. Messages appear in
the lower area of the interface display (Fig.5). If there are
no mistakes, the compiled project is stored in two files.
The first one (*.xcp extension) contains universal execu-
table code in binary format for the virtual machine. The
second one (*.dcp) contains mnemonic code (Sec.7), to-
gether with some information for simulator and hardware
configurer (variable names, etc.).

efined in IEC standard. Six groups of them
followed by examples are listed below:

type conversions: INT_TO_REAL, TIME_TO_DINT,
TRUNC,
numerical functions: ADD, SUB, MUL, DIV, SQRT, ABS,
LN,
Boolean and bit shift functions: AND, OR, NOT, SHL,
ROR,
selection and comparison functions: SEL, MAX, LIMIT,
MUX, GE, EQ, LT,
character string functions: LEN, LEFT, CONCAT,
INSERT,
functions of time data types: ADD, SUB, MUL, DIV
(IEC uses the same names as for numerical functions).

Selector SEL, limiter LIMIT and multiplexer MUX from
selection and comparison group are particularly useful.
Variables of any numerical type, i.e. INT, DINT, UINT and
REAL (called ANY_NUM in IEC [6, 7]) are arguments in
most o

s ones (see Fig.6). So far the CPDev package
provides two libraries:

IEC_61131 standard library,
Basic_blocks library with simple blocks supplementing
the standard.
Table 2a lists blocks from the first library. Source pro-

grams for three of them are presented in Table 2b. The
programs for the SR flip-flop and R_TRIG rising edge de-
tector are obvious (CLKp denotes previous value of CLK).

Functions and libraries
4.1. Standard functions

4.2. Function block libraries

The CPDev compiler provides most of standard
functions d

f relevant functions.

Typical program in ST language is a list of function
block calls, where inputs to successive blocks are outputs
from previou

�

�

�

�

�

�

�

�

4.

The output ET () of the timer TON is the dif-
ference between current value of the system time counter
read by CUR_TIME() function, and the value of local
variable sTime set at the rising edge of the input IN. The
output Q is set to TRUE when ET becomes equal to the
input PT ().

The second library involves blocks of Table 3 (names
are dropped). They are similar to the blocks available in
multifunction instruments such as PSW-166 from ZPDA
Ostrów Wlkp., Sipart DR24 from Siemens or Protronic 550
from ABB. The blocks have up to four inputs and one or
two outputs. The integrator and totalizer execute calcula-
tions on double precision numbers (LREAL in IEC).

Elapsed Time

Preset Time

Table 2. (a) Standard blocks from the IEC_61131 library;
(b) programs of SR, R_TRIG and TON.

a)

b)

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 2, N° 3 2008

Bistable elements

Counters

flip-flop RS
flip-flop SR
semaphore SEMA

up CTU
down CTD
up-down CTUD

FUNCTION_BLOCK
VAR_INPUT

BOOL
BOOL

END_VAR
VAR_OUTPUT

BOOL
END_VAR

OR NOT AND
END_FUNCTION_BLOCK

FUNCTION_BLOCK
VAR_INPUT

BOOL
END_VAR
VAR_OUTPUT

BOOL
END_VAR
VAR

BOOL FALSE
END_VAR

AND NOT

END_FUNCTION_BLOCK

SR

S1: ;

R: ;

Q1: ;

Q1 := S1 (R Q1);

R_TRIG

CLK: ;

Q: ;

CLKp: := ;

Q := CLK CLKp;

CLKp := CLK;

Edge detectors

Timers

rising R_TRIG
falling F_TRIG

pulse TP
on-delay TON
off-delay TOF
real time clock RTC

FUNCTION_BLOCK
VAR_INPUT

BOOL

END_VAR
VAR_OUTPUT

BOOL

END_VAR

IF NOT THEN
FALSE

ELSE
IF THEN

FALSE

ELSE
TRUE

END_IF
END_IF
END_FUNCTION_BLOCK

TON

IN: ;

PT: TIME;

Q: ;

ET: TIME;

IN

Q := ;

ET := t#0ms;

(ET < PT)

Q := ;

ET := ET+TASK_CYCLE;

PT_x := PT;

Q := ;

ET := PT_x;

PT_x:= CUR_TIME();

Articles 51

Table 3. Simple blocks of Basic_Blocks library.

Fig. 9. Simulation of the START_STOP project.

The user can develop functions, function blocks and
programs, and store them in his libraries. Functionality of
the compiler with respect to tables and structured
variables follows the IEC standard.

The compiled project may be verified by simulation
before downloading into the controller. The CPSim simu-
lator can be used in two ways:

before configuration of hardware resources (simula-
tion of the algorithm),
after configuration of the resources (simulation of the
whole system).

The first way involves logic layer of the CPDev environ-
ment (Fig.3). PC computer operates as virtual machine
executing universal code. Simulation window (not shown)
is a table with variables, their types, simulated values and
local addresses.

The second way requires configuration of hardware
resources, so it is application dependent. In case of mini-
DCS of Fig.1, the CPCon configurer generates hardware
allocation map (*.xcp file) that assigns local addresses to
physical ones (remote) and specifies conversion of ST
data formats (Table 1) into formats accepted by hardware.
The objective is to bring simulation close to hardware
level, so CPSim uses both the code (*.xcp) and the map
(*.xmc). Simulation window of the START_STOP project is
shown in Fig.9. The two faceplates on the left present
values of three inputs and two outputs (TRUE is marked).
The user can select faceplates, arrange them on the screen
and assign variables. Simulated values can be set both in
group and in individual faceplates.

CPSim simulator

�

�

5.

So far the window of Fig.9 is used for simulation
only. In future it will also be involved in on-line tests
().

ommunications. Commu-
nication task table determines what question answer
and command acknowledgment transactions take place
bet-ween SMC controller () and SM modules
(). The transactions are called
and rep-resented by the rows of the table. The DCS system
is configured by filling the rows, either directly in the
table or interactively through a few windows of Creator of
com. tasks (bottom).

The first row specifies communication between SMC
and SM5 binary input module (remote). SM5 is connected
to pushbuttons in the console (Fig.10), which, in case of
the START_STOP project, set the variables START, STOP

commissioning

master
slaves communication tasks

Communication configurer CPCon

6.1. Mini-distributed system

6.2. Functions of CPCon configurer

The CPCon configurer defines hardware resources for
particular application. The example considered here in-
volves mini-DCS system with SMC programmable con-
troller, I/O modules of SM series and other devices from
LUMEL Zielona Góra (Fig.1). Modbus RTU protocol is em-
ployed [8] on both sides of SMC.

Fig.10 shows test realization of the system with SMC
controller (on the left), SM5 binary input module
(middle), and SM4 binary output module (on the right).
The console with pushbuttons and LEDs (below) is used
for testing. The PC runs CPDev package (and eventually
SCADA). PC and SMC are connected USB channel confi-
gured as a virtual serial port.

The CPCon functions are as follows:
configuration of communication between SMC and SM
I/O modules,
creation of file with hardware resource allocation map
(*.xmc),
downloading the files with executable code (*.xcp)
and map (*.xmc) to the SMC.

Recall that having the map the CPSim can be used in
the second mode.

Main window of the CPCon configurer is shown in
Fig. 11. The Transmission slot sets speed, parity and stop
bits for PC SMC and SMC SM c

via

Fig. 10. Test set-up of mini-DCS system with SMC controller
and SM I/O modules.

�

�

�

� �

�

�

6.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 2, N° 3 2008

Mathematics

Memories

Signal analyzers

linear function
division with non-zero divisor
square root with linear origin
difference amplifier
integrator
pseudo-random numbers

analog memory
binary memory

maximum over time
minimum over time

Flop-flops, pulsers

Filters

D flop-flop
T flip-flop
JK flop-flop
one cycle delay
pulse duration time
totalizer (integration, pulse)
square wave
triangle wave

lag filter (1st order)
lead filter

Articles52

Journal of Automation, Mobile Robotics & Intelligent Systems

and ALARM (Figs.5, 6). In SMC these variables have con-
secutive addresses beginning from 0000 (Fig.7). SM5 pla-
ces the inputs in consecutive 16-bit registers beginning
from 4003. So all variables can be read in a single Modbus
transaction with the code FC3 (read group of registers
[8]). However, since BOOL occupies single byte in CPDev,
the interface of the virtual machine has to perform 16 8
bit conversion.

Communication tasks are handled by SMC during pau-
ses that remain before end of the cycle, after execution of
the program. Single transaction takes 10 to 30 ms, depen-
ding on speed (max. 115.2 kbit/s). If the pause is large,
the task can be executed a few times. It has been assumed
that the task with NORMAL priority is executed twice
slower than the task with HIGH priority, and the task with
LOW priority three times slower. As seen in Fig.11, the
communication with SM5 module has NORMAL priority.
The Timeout within which transaction must be completed
is 500 ms.

Second row of the Communication task table defines
communication with the SM4 binary output module. SM4
controls the console LEDs. Two consecutive variables,
MOTOR and PUMP, the first one with the local address
0008, are sent to SM4 by single message with the code
FC16 to remote addresses beginning from 4205 (write
group of registers). This time 816-bit conversion is
needed.

e following functions:
decomposes text of the program into tokens

(lexical units),
translates the list of tokens into mnemonic

code of the VMASM assembler,
converts the mnemonics into execut-

able code in binary format for the virtual machine.

Examples of primitive instructions of the VMASM as-
sembler are given in Table 4 [3]. VMASM does not involve
the notion of accumulator. Data are stored in memory as
constants, variables or stacks. The constants begin with
the hash sign #, the labels with the colon:. For example,
the instruction MCD Q, #01, #00 initialises the variable Q
with one byte (#01) of zero value (#00). Names of auxi-
liary variables and labels created automatically during
compilation of complicated expressions or IF instructions

�

Fig. 11. Communication configuration of the START_STOP
project.

scanner

parser

code generator

Compiler and virtual machine

7.1. VMASM assembler
General task of the CPDev compiler is to transform text

of the program in ST language into executable form for
the virtual machine. The compiler consists of three parts
that perform th
�

�

�

7.

contain question mark? (ST names are without question
marks). Function instructions such as ADD, SUB or NOT are
called directly by their names. A signature-involving
name of the function and types of the arguments defines
function execution. The same name, e.g. GE (greater-or-
equal), can be used for all types from ANY_NUM group.
Functions involving internal instructions are preceded by
the keyword CALF () and address of the
argument set.

Depending on resources and applications, the virtual
machine can handle all or only some of the twenty data
types defined in IEC standard. This is determined by a lib-
rary configuration file LCF (XML format), whose elements
<deny-type> (of the TYPES section) eliminate unwanted
data typ

ording to Fig.12.

Call Function

Table 4. Example of VMASM assembler instructions.

Fig. 12. Phases of virtual machine cycle.

es. This makes the compiler flexible.
The LCF has restricted the number of types for SMC

controller to ten (Table 1). LCF files may also be used to
assign different binary codes for the same VMASM instruc-
tion at different processors. This opens the way to some
form of code optimisation. So by means of the LCFs one
can create any number of dedicated compilers.

Main part of the virtual machine for interpretation of
the universal code has been written in ANSI C, so it can be
directly adapted to different processors. The machine is
an automaton operating acc

7.2. Creating the virtual machine

VOLUME 2, N° 3 2008

Instructions

MCD

MEMCP

ADD

SUB

AND

NOT

Meaning

Constant
initialization
Assignment

Addition

Subtraction

Logic
product
Negation

Meaning

Greater
or equal
Bit shift

to the left
Unconditional

jump
Conditional

jump
String

concatenation
Return from

function

Instructions

GE

SHL

JMP

JZ

CONCAT

RETURN

Articles 53

Journal of Automation, Mobile Robotics & Intelligent Systems

The task consists of programs executed consecutively.
The code involves binary identifiers of instructions and
operands. The machine, similarly as any real processor,
maintains program counter with the index (address) to
the next instruction. The machine fetches the identifier of
the instruction, decodes it, fetches the operands and
executes the instruction. It also triggers I/O and commu-
nication procedures (drivers) and monitors time cycle of
the task.

The main part of virtual machine depends on the type
of the processor but does not depend on hardware solu-
tions of particular platform. CPDev environment provides
general specifications of external interfaces in the form of
prototypes of I/O and communication procedures (names,
types of inputs and returned outputs). The prototypes are
kept in a file with *.h extension (similarly as stdio.h in C).
The contents of corresponding binary file, e.g. with *.obj
extension, can be written by hardware designers (as done
by LUMEL for SMC controller). By linking the main part
with this *.obj file the virtual machine for particular
platform is created. This makes the CPDev environment
open also in the hardware sense.

Rzeszów Uni-
versity of Technology, Division of Computer Science and
Control, 35-959 Rzeszów, W. Pola 2, Poland. E-mail:
ltrybus@prz-rzeszow.pl

Conclusions
CPDev environment for programming industrial con-

trollers and other control-and-measurement devices
according to IEC 61131-3 standard has been presented. So
far only the ST language is available. The environment is
universal, since the compiled code may be executed on
different platforms. However, the execution must be car-
ried out by virtual machines dedicated for particular pro-
cessors. This corresponds to the concept of Java virtual
machines. Hardware allocation map defines available
resources. The environment is open in terms of software
and hardware. The user can program external interfaces
(drivers). Mini-DCS system from LUMEL is the first appli-
cation of the package.

One assumes that programs written in future in other
languages (e.g. FBD) will be converted into ST before
compilation. XML format for data exchange between
languages has already been defined by PLCOpen [9].

Dariusz Rzońca, Jan Sadolewski, Andrzej Stec, Zbigniew
Świder, Bartosz Trybus, Leszek Trybus

IEC 61131-3 standard:
. (2003).

[2] T. Lindholm, F. Yellim,
Java Software, Sun Microsystems

Inc., 2004.

Programmable Controllers -Part 3,
Programming Languages. IEC

Java Virtual Machine Specifica-
tion - Second Edition,

8.

-

* Corresponding author

ACKNOWLEDGMENTS

AUTHORS

*

References

Support of MNiSzW under the grant R02 058 03 is gratefully
acknowledged.

[1]

[3] D. Rzońca, J. Sadolewski, B. Trybus, “IEC 61131-3 stan-
dard ST compiler into universal executable code”. In:

, WKŁ,
Warsaw, 2007, pp. 189-198 (in Polish).

[4] A. Stec, Z. Świder, L. Trybus, Functional characteristic
of the prototype system for embedded systems prog-
ramming. In:

, WKŁ, Warsaw, 179-188 (2007) (in Polish).
[5] - http://msdn2.microsoft.

com/en-us/vcsharp/aa336809.aspx (November 2007).
[6] K.H. John, M. Tiegelkamp, IEC 61131-3:

. Berlin-Heidelberg,
Springer-Verlag, 2001.

[7] J. Kasprzyk, . WNT,
Warsaw, 2006 (in Polish).

[8] . MODICON,
Inc., Industrial Automation Systems, Massachusetts,
1996. www.modbus.org/docs/ PI_MBUS_300.pdf

[9] .
www.plcopen.org/

Real-Time Systems. Methods and Applications

Real-Time Systems. Methods and Applica-
tions
C# Language Specification

Programming
Industrial Automation Systems

Programming Industrial Controllers

Modicon MODBUS Protocol Reference Guide

XML Formats for IEC 61131-3 ver. 1.01 -Official Release

VOLUME 2, N° 3 2008

Articles54

