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Abstract:

The concept of a positive discrete-time Lyapunov sys-
tem is introduced. Solution of the Lyapunov state equation
is derived and necessary and sufficient conditions for the
positivity of Lyapunov system are established. Different
necessary and sufficient conditions for the asymptotic
stability of the positive Lyapunov systems are given. Using
the Kronecker product of matrices necessary and sufficient
conditions for reachability and controllability of the posi-
tive Lyapunov systems are established. The considerations
are illustrated by numerical example.
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1. Introduction

In positive systems inputs, state variables and out-
puts take only non-negative values. Examples of positive
systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive
linear systems behaviour can be found in engineering,
management science, economics, social sciences, bio-
logy and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive sys-
tems is more complicated and less advanced. An overview
of state of the art in positive systems theory is given in
the monographs [3, 4]. The realization problem for
positive linear systems without and with time delays has
been consideredin [1, 4, 7-10].

The reachability and minimum energy control of posi-
tive linear discrete-time systems was considered in [2].

The controllability and observability of Lyapunov sys-
tems have been investigated in the paper [11].

In this paper the notion of positive discrete-time Lya-
punov system will be introduced and necessary and suffi-
cient conditions for the positivity, asymptotic stability
and reachability and controllability of positive Lyapunov
systems will be established.

To the best knowledge of the author those problems
for the positive Lyapunov systems has not been conside-
red yet.

2. Discrete-time linear Lyapunov systems

Let R be the set of nxm real matrices and
R":= R™. The set of nxm real matrices with nonnega-
tive entries will be denoted by R”" and R? := R™'. The
set of nonnegative integers will be denoted by Z, and
the nxn identity matrix will be denoted by 7,..

Consider the discrete-time linear Lyapunov system
described by the equations

X, =A,X+XA+BU, (1a)

:CX+DUi,l.EZ+ (1b)
where X, e R™, U,eR™, Y,eR"™ are the state, input
and output matrices and 4, eR™, k=0,1; BeR"™", C
ERPX”’ D eRpxm‘

Theorem 1. Solution of the equation (1a) satisfying
the initial condition X is given by the formula

i

l' k lk
X, =) ——r—r X A
-1 _j
Zz A ez,
=0 k=0 '(] k)' o

Proof. The proof will be accomplished by induction.
The hypothesis is true fori=1,2, since from (2) we obtain

X, =A4,X,+ X, 4, +BU,, X, =A;X,+24,X,4, +
+ X Al + A, BU, + BU, A, + BU,

The same result we obtain from (1a) fori=0,1. Assu-
ming that the hypothesis is true fori=rn>1 we shall show
thatitis also valid fori=n+1. From assumption we have

A X AT+

|
S 4¢B

o, BU Alj’k
Jj=0 k=0 k‘(]_k)‘ n=j-1

Using (1a) and (3) we obtain

X,,=4X,+X A4 +BU =) ————
b 1 kzz(;k!(n—k)!

n

n=l j " X n|
K+l jk :
22 B A +zk!(n—k)!

J 0 k=0
J

=0 k=0 k'(] k)'
n+l
(n+1)! k k4l
+BU = ——————— A" X A
" Z:k!(n—k—l—l)!AO

0471
k=0

n! K+l n—k
0 04

n—1
k n—k+1 J—k+1
Ay XA + ;

n-j-1

(fBU” A

=]
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This complies the proof. l
Substituting of (2) into (1b) yields the output formula

‘Z CA X A +
k'(z k)'

Pyt

=0 k= ok'(J k)'

3. Positive discrete-time linear Lyapunov
systems

(4)
C4BU'1¥k+DU

Definition 1. The Lyapunov system (1) is called
(internally) positive if for any X, e R7” and all inputs
UeR!" ,ieZ,wehave X,eR" andY,eR)" forieZ,.
The Kronecker product A®B of the matrices 4=[a,
€R™"and B € R”*is the block matrix [5]

A®B=[a,B]., , €R"™ (5)

i=l,...,m
J=l...n

Lemma 1. Let A,A,,...,A, be the eigenvalues of
a matrix A e R and w,W,...,u, be the eigenvalues of
a matrix B eR"™. Then A+p, for i=1,..,m... and
Jj=1,...,n are the eigenvalues of the matrix

A®I +1,®B" (6)

Using the Kronecker product we shall prove the follo-
wing theorem.

Theorem 2. The Lyapunov system (1) is positive if and
only if

A eR™ k=1,0;BeR"" ,CeR”" ,DeR""

Proof. Using the Kronecker product (5) we may write
the equations (1) in the equivalent form [5]

X, = Ax, + Bu,

TN ieZ, (7)
¥, =Cx, + Du,
where
A=4,®1, +1,®A4 eR™, B=B®I, eR"",
C=C®I,eR”, D=D®I, eR"™
X =[Xi1 Xy . Xin]T’ U; =[Uil Uy .. Uim]T’ (8)

[ A

and X,

ijr

andY, respectwely and T'is denotes the transpose.

U, and Y}, are the jth rows of the matrices X, U,

i

It is well known [4] that the system (7) is positive if
and only if

AecR™, BeR™, CeR™, DeR™ )
From (8) it follows that the conditions (7) are equi-

valent to the conditions (9). B
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Theorem 3. Let A=A,+A, and
S _ (10)
p;(2)= det[lﬁz -4 ]= 2" +a, 2"+ taz+a,

be the characteristic polynomial of the positive system
(1) (thematrix A = 4, ® 1, +1, ® A").

If
[,@A =4 ®1, (12)
then

P1(2)=(p(2))", (p,(2) = det[l,z - 4]) (12)
and

p(A)=0 fork=0,1,...n (13)
where

<“()_—l2£2fmk:QLmﬂ4, (14)

Proof. If (11) holds then

A=A4,1 +1 A =(4,+4)®I = A,
and

p;(2)= det[]ﬁz - Z]z det[(7,z-)®1, ]=
=(@etlr,z - 4) = (p, )
since det[A®B]=det[4]"'det[B]" for4,B e R"" [5].

Using the well-known equality [5] (A®B)(C®D)=
AC®BD it easy to show that

A" =(A®1) =4"®1, fork=0,1,..n (15)
From Cayley-Hamilton theorem we have

p(A)=A"+a, A" +. . +ad+al, =0 (16)

n—1

Substituting (15) into (16) we obtain
pi(A)=A"®I +a, (A" ®I)+.. (17)
+a,A®I, +a,,®1,=p(AH®I, =0

From (17) and (12) we have p-(A4)=(p,(4))" =0
and this implies (13). H

Theorem 3 for k=0 is an extension of classic Cayley-
Hamilton theorem for positive Lyapunov systems.

Remark 1. It is easy to show that condition (11) is
met if and only if matrix 4, is a scalar matrix, i.e.
A,=al ,a=+0.

Remark 2. From (12) it follows that the spectrum 6, of
the matrix A is a subset of the spectrum o of the matrix
A,i.e.0,coy.

Example 1. For the matrices
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0 1 20
A, = , A=
-1 -2 0 2

the condition (11) is satisfied since

[,®4 =4 ®1I, =

S O O
S O DO
S NN O O
N OO O

In this case the characteristic polynomials p,(z) and
pa(z)are
p.(2)=det[l,z— (4, + AI)]:‘

=(z-1)’=2"-2z+1

z—-2 -1

1 z

z-2 0 -1 0
0 z-2 0 -1
1 0 z 0
0 1 0 =z

p;(z) =det [[EZ - Z]z

=(z-D'=(p,(2)) =z"-42"+62" -4z +1

Using (13) and taking into account that
2 1 5 32
A= , A" = ,
-1 0 -2 -1
s 4 3 4o 5 4
-3 =2 -4 -3

we obtain

pi(A)=A4"-44+64° -44+1,
5 4 4 3 302
= -4 +6
-4 -3 -3 -2 -2 -1
2 1] [t o] [o o
-1 0] [0 1] |0 O
1) _ 3 2
pPP(A) =44 -124" +124-41,
4 3 302 2 1
=4 -12 +12
-3 -2 -2 -1 -1 0
1 0] [0 0
—4 =
0 1] |0 0O

In this particular case we have also

o I3 2
P(A)=1247 =244 +121,=12)

-1
2 1 1 0 0 0
24 112 -
-1 0 0 1 0 0
since p'?(2)=12(z-1)’=12p,(2)

Example 2. For the matrices

0 1 20
A0: , A1:
-1 -2 0 3

the condition (11) is not satisfied since

2 0 00 2 0 00
; 10 3 00 0200
In ®Al = and AI ®]rl =
00 20 00 3 0
0 0 0 3 0 0 03

The characteristic polynomial (10) has the form
P;(Z) =

=z' -6z +1322 12z +4

Taking into account that

o3 6] [0 9
-6 =37 |-9 -9

and using (13) for k=0 we obtain
pi(A)=A*—64>+1347 124 +41,

1 o L
N

Therefore, the equation (13) for k=01is not satisfied.

4. Asymptotic stability
Consider the positive autonomous Lyapunov system

X, =4X+X4 ,ieZ, (18)
where X,eR!", A,eR}", k=1,0.

Definition 2. The positive Lyapunov system (18) is
called asymptotically stable if

lim(4, ® 1, +1,® 4/)'x, =0 forall x,eR}  (19)

wherex, is defined by (8).

Theorem 4. The Lyapunov system (18) is asymptoti-
cally stable ifand only if

|ZOI. +le.|<1 for ij=1,...,n (20)

where z,, i=1,...,n (z,, j=1,...,n) are the eigenvalues
of the matrix 4,(4,).
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Proof. By Lemma 1 z,+z, (jj=1,...,n) are the eigen-
values of the matrix 4 = 4, ® [, +1, ® A'. The condi-
tion (19) is satisfied if and only if the condition (20) is
met. Thus by Definition 2 the positive Lyapunov system
(18) is asymptotically stable if and only if the condition
(20) is satisfied. H

Applying the well-known theorem [4, Theorem 2.13]
for the equivalent positive systemx,,, = Ax, we obtain the
following.

Theorem 5. The positive Lyapunov system (18) is
asymptotically stable if and only if all coefficients a;
(1=0,1,...n-1) of the characteristic polynomial
p(2)= det[/ﬁz - Z]z Z"+a, " +..+az+a, (21)
are positive.

Let

A=1-4,®1,+1,®4 =[4,]., (22)
g

j=1,...,n

k]

Then using the well-known Theorem [4, p.69, Theorem
2.14] we obtain the following.

Theorem 6. The positive Lyapunov system (18) is
asymptotically stable if and only if all principal minors of
the matrix (22) are positivei.e.

.. (23)
a;  4p 4y
a,, >0,...,det21>0

a3 Ay 4y

a, a4y

ay Ay

a,| >0, >0, |a,, a,

From Theorem 2.15 [4, p.70] we have following theo-
rem that gives sufficient condition for instability of the
positive Lyapunov system (18).

Theorem 7. The positive Lyapunov system (18) is
unstable if at least on diagonal entry of the matrix
A=A4,®1,+1,® A4 is greater 11.e. a,,>1 for some
ke(1,2,...n).

Example 3. Consider the positive system (18) with

0.1 1 03 0
4, = , A= (24)
0 0.2 2 04

In this case z,=0.1, z,,=0.2 and z,,=0.3, z,,=0.4
and the condition (20) is satisfied since z,+z,=0.4,
zy+z,=0.5, z,+z,=0.5, z,+z,=0.6. Therefore by

Theorem 4 the system (18) with (24) is asymptotically
stable.

The characteristic polynomial (21) for (24) has the form

(25)

z+06 -2 -1 0

ﬁ(z)zdet[Lz—Z]z 0 z+05 0 -1

" 0 0 z+05 -2

0 0 0 z+04
=(z+0.4)(z+0.5°(z+0.6)

=z +22°+1.492 +0.492+0.06

Articles

The coefficients of the polynomial (25) are positive
and by Theorem 5 the positive system (18) with (24) is
asymptotically stable.

The matrix (22) for (24) has the form

06 -2 -1 0
0 05 0 -1
0 0 05 -2
0 0 04
and its principal minors are equal to
&1] a12 &13
=0.30, |a,, a,, a,|=0.15,

A3 Ay A

A=1 - 4,®1, +1,® 4 =

[e)

A~ A

all a12

4, =0.60,

dy Ay

det 4=0.06

Therefore, by Theorem 6 the positive system (18) with
(24) is asymptotically stable.

Example 4. Consider the positive system (18) with

04 1 05 0
4, = , A= (26)
0 0.6 2 06
The matrix A for (26) has the form
09 2 1 0
— 0 1 0 1
A=4,®1,+1,0A4 = (27)
0 0 1.1 2
0 0 0 12

The matrix (27) has two diagonal entries a,,=1.1,
a,,=1.2 greater 1. Thus by Theorem 7 the positive system
(18) with (26) is unstable. The same result we obtain
using the Theorems 4, 5 and 6.

5. Reachability

Consider the positive Lyapunov system (1).

Definition 3. The positive Lyapunov system (1) is
called reachable if for any given X, e R}™ there exists
q €Z,, ¢>0 and an input sequence U, €R})™,
i=0,1,....g-1 that steers the state of the system from
X#0to X, i.e. X, =X,

Lete, i=1,...,n be thei" column of the identity matrix
I,.The columnae,e R’ is called monomial.

Theorem 8. The positive Lyapunov system (1) is
reachable if and only if the reachability matrix
R =[F 4B .. 27'B](=n) (28)
contains n linearly independent monomial columns,
where B and A4 are defined by (8).

Proof. From Definition 3 if follows that the system (1)
is reachable if and only if the equivalent system (7) is
reachable. It is well known [4] that the system (7) is
reachable if and only if the matrix (28) contains n linearly
independent monomial columns. Il
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Remark 3. Other different well-known [4] tests of the
reachability of the positive system (7) can also be applied
to the positive Lyapunov system (1).

Let # € R be the matrix consisting from 7 rows of the
matrix

uy, =| : (29)

corresponding to the 2 chosen linearly independent mo-
nomial column of the matrix (28). Then from the equation
Ryuy = x, we have

Rjii=x, (30)

where I?ﬁb_t =X, is the matrix consisting form linearly in-
dependent monomial column of (28) and

¥, =[x, X, X, ] (X istheithrowof X)) (31)

From (30) we obtain

=Ry 'x, (32)
where R € R is a monomial matrix.

Using (32) we can compute the desired input seg-
uence that steers the state of the positive system (1) from

X,=0toX.

Example 5. Consider the positive system (1) with

{1 0} {2 O} {O:|
Ao = > Al = , B= (33)
0 1 0 3 1

In this case

3000
_ . 10400
A=4,®1,+1,® AT = ,
00 3 0
00 0 4
0 0
_ 0 0
B=B®I =
10
0 1
Using (28) we obtain the matrix
R,=[F 4B 1B A’B]-=
00309 0 27 0 (34)
100004016 0 64
1t ooo0oo0 0 0 0
010000 0 0

that contains four linearly independent monomial columns.

Therefore, by Theorem 8 the positive Lyapunov sys-
tem (1) with (33) is reachable in two steps since the first
four columns of (34) are linearly independent monomial
columns.

1 2
For X, = from (32) we obtain
713 4

-1

- o O O
S O O W
S O O

and the desired input sequence is

1 1
u, =3 4| u={- —|
=B 4=t 2]
Theorem 9. The positive Lyapunov system (1) is
unreachable if the matrix B has no monomial columns or
the matrix [4,+A, B] has less than n linearly indepen-
dent monomial columns.

__ Proof. Note that the matrix

B=B®I, (A=4,®1 +1 ®A4])

has monomial columns if and only if matrix B (4,+A4,)
has monomial columns. In [6] it was shown that the
positive system (7) is unreachable if the matrix B has no
monomial columns or the matrix [B A] has less then n
linearly independent monomial columns. Il

Remark 4. Theorem 9 gives only necessary condition
for reachability of the positive Lyapunov system (1). For
example the system (1) with

0 1 00 1 o
A4, = , A = , B= satisfies the con-
1 0 1 0 0

ditions of Theorem 9 but it is unreachable.

Remark 5. The other different necessary and suffi-
cient conditions for reachability of the positive system
(7) given in [4 p.131, Theorem 3.3] can be extended for
the positive Lyapunov system (1).

6. Controllability

Definition 4. The positive Lyapunov system (1) is
called controllable if for any X, € R} and a final state
X, eR" there exists g € Z,, ¢>0 and a sequence of
inputs U, eR™, i=0,1,...,g-1 that steers the state
of the system from X;#0 to X/, i.e. X =X,.

If X,=0 then the system is called controllable to

zero.

Lemma 2. The matrix A (defined by (8)) is nilpo-
tent if and only if the matrices 4,and A4, are nilpotent.

Proof. If A,and A, are nilpotent then by definition
their eigenvalues z,=0 and z,=0 for ij=1,..,n. By
Lemma 1 the eigenvalues of the matrix A are also zero
and it is nilpotent matrix.
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Let the matrix A be nilpotent and z,+z,=0 fori,j=1,...,n
but at list one of the matrix is not nilpotent. If, for
example, the matrix 4, is not nilpotent then z, # 0 for
i=1,...,n and from Lemma 1 it follows that z,=-z,;#0
for some i,j €[L,...,n]. This contradicts the assumption
that system (1) is positiveand 4, A,eR;". 1

Theorem 10. The positive Lyapunov system (1) is con-
trollable in 7 steps if and only if the matrices 4, and 4,
are nilpotent and reachability matrix (28) contains n
linearly independent monomial columns.

Proof. Using the equivalent system (7) for the positive
Lyapunov system (1) we obtain

Xp = A"x,+Ru (35)

where R; and u; are defined by (28) and (29), respec-
tively. By Lemma 2 A"=0 if and only if the matrices A4,
and A4, are nilpotent. From (35) it follows that there exists
an input sequence n (consisting from n rows of
u; corresponding to the n chosen linearly independent
monomial columns of R;) if and only if the matrix (28)
contains 71 linearly independent monomial columns. ll

Remark 5. If the matrices A, and A4, are not nilpotent
but the positive Lyapunov system (1) is asymptotically
stable and the reachability matrix (28) contains 7 linearly
independent monomial columns then the system is con-
trollable in an infinite number of steps.

From comparison of Theorem 8 and 10 we have the
following corollary

Corollary. The controllability of the positive Lyapunov
system (1) implies its reachability.

Example 6. Consider the positive Lyapunov system (1)
with

’ Ay Ao C a,, dy ’ 1

For which values of entries ay, a,, k=1,2,3 the sys-
tem is controllable in n=2n=4 steps.
In this case

0 a, a, 0
_ a a 0 a
1 13 o1
A:A0®In+ln®A1T: R
a, 0 ag ap,
0 a, a, ay+a,

S|

=B®I =

S = O O
—_ o O O

The matrix 4 is nilpotent if a,,=a,,=a,=a,;=0 and
a,20,a,20.
The reachability matrix (28) has the form
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R =[F 4B 4B 4’B]=
00 a O O 2a,4a, 0 0
00 0 a 0 0 00 (37)
110 0 a4 0O 0 00
01 0 00 0 00

and it contains four linearly independent monomial
columns for a,,=0. Hence by Theorem 10 the positive
system (1) with (36) is controllable in four steps if
a,=a,=a,=a,=a,=0anda,>0.

The considerations can be extended for the dual notion of
observability of the positive Lyapunov system (1).

7. Concluding remarks

The notion of a positive discrete-time Lyapunov sys-
tem has been introduced. The solution (2) of the Lyapu-
nov state equation (1a) has been derived. Necessary and
sufficient conditions for the positivity of the system (1)
(Theorem 2) and for the asymptotic stability (Theorem 4)
have been established. Using Kronecker product of mat-
rices and the concept of equivalent positive system neces-
sary and sufficient conditions for the reachability and
observability have been formulated and proved. The con-
siderations have been illustrated by numerical examples.

An extension of those results for positive continuous-
time Lyapunov systems will be considered in the next pa-
per. An extension of those considerations for 2D positive
Lyapunov systems is also possible.
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