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The field of remote sensing is an area of science and
technology that has undergone rapid development in
recent years. This paper focuses primarily on how to exploit
the capabilities made available by remote sensing and how
to put them to use by combining them with a systemic
approach to design and analysis in various measurement
and control applications. The emphasis is placed on high-
resolution satellite and Lidar sensors — the most prevalent
remote sensing technologies. Following the presentation of
some general issues related to low- and high-level proces-
sing of remote sensing data, such as data dimensionality
reduction, data fusion, and change detection, the paper
provides examples of control-related applications of re-
mote sensing technologies. It is argued that successful
exploitation of new generations of remote sensing tech-
nologies will require extensive development of new algo-
rithms based on a variety of approaches, such as machine
vision, statistical learning, and artificial intelligence.

Keywords: remote sensing, satellite imagery, Lidar, image
processing, data fusion, distributed control, modeling and
simulation.

1. Introduction

The field of control has traditionally, since its origins
in the eighteenth century with Watt's governor, combi-
ned the development of coherent foundations for sys-
tems theory with simultaneous engagement in the solu-
tion of practical problems in a broad spectrum of diver-
sified application areas. Research has probed such issues
as stability and estimation, robustness and adaptation,
optimality, information structures and decentralization.
Important results have been obtained around the core
problem of closed-loop design for linear and non-linear
systems. Those results as well as the systemic, formal
approach based on rigorous modeling of the underlying
physical phenomena governing the behaviors of the
system subject to control have been instrumental in
expanding the scope of applications of control systems.
Areas where control theory has made a major contri-
bution include robotics, manufacturing, power systems,
signal processing, operations research, transportation,
agriculture, telecommunication networks and econo-
mics. The breadth of the applications of automatic con-
trol shows that the development of the control field clos-
ely follows the development of technology, and benefits
from paying attention to technological trends. By under-
standing the details of a technology, the control spe-
cialist is able on the one hand to identify the technolo-

full development of the technology, and on the other
hand to introduce systemic methodology based on a rigo-
rous approach to analysis and design that advances the
particular field.

The field of remote sensing is one area of science and
technology that has experienced rapid development in
recent decades. Remote sensing can be defined as the use
of sensors installed on satellites or aircraft in order to
detect electromagnetic energy scattered from or emitted
by the Earth's surface. Specific wavebands are chosen
according to the characteristics of the intended target.
The driving force behind the use of space-borne remote
sensors installed on satellites has been the expansion of
space technology, since the launch of the first satellites
in the sixties, into many aspects of everyday life. Tele-
communications and weather forecasting are just a few
examples of how space technology has become embed-
ded in the contemporary technological landscape. Sen-
sors operating in the optical electromagnetic spectrum
are complemented by instruments operating in the mi-
crowave band, such as radars. Another major technolo-
gical development has been the introduction of Global
Positioning Systems (GPS), which have opened the way
for the wide use of precise optical altimetry (Lidar
systems).

We can define the relationships between remote
sensing technologies and control systems as being of two
kinds. The first type of relationship is intrinsic and relates
to the use of the principles of control systems science and
engineering in remote sensing devices and systems.
Control technologies, such as those found in satellite
control, are an integral part of remote sensing systems
themselves. Attitude control or the control of navigation
and communication systems are un essential requirement
for the very deployment of satellites. The other type of
relationship is extrinsic. It relates to the issue of how one
can exploit the capabilities made available by remote
sensing technologies to construct next-generation con-
trol systems in a wide range of applications.

This paper focuses primarily on the extrinsic function
of remote sensing. It reviews the areas where remote
sensing technologies find novel applications, and the
challenges associated with their implementation to
address selected technical problems. The first part of the
paper briefly introduces the most prevalent remote sen-
sing technologies, with the emphasis on high-resolution
satellites (an example of passive sensors) and Lidar sen-
sors (an example of active sensors). This is followed by
the presentation of some general issues related to low-
and high-level processing of remote sensing data, such
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as data dimensionality reduction, data fusion, and
change detection. The final part of the paper provides
examples of control-related applications of remote sen-
sing technologies.

2. Remote sensing technologies

2.1. Satellites

Satellite sensors are characterized by their spatial,
spectral, radiometric, and temporal resolution [15]. Spa-
tial resolution refers to the size of the smallest possible
feature that can be detected and depends primarily on the
Instantaneous Field of View (IFOV). Spectral resolution
describes the ability of a sensor to define fine wave-
length intervals. Radiometric resolution describes sen-
sor's ability to discriminate slight differences in the mag-
nitude of the electromagnetic energy, determining its
sensitivity to small differences in reflected or emitted
energy. The absolute temporal resolution of a satellite
corresponds to the revisit period of the same area at the
same viewing angle. Because of some degree of overlap in
the imaging swaths of adjacent orbits, the actual tempo-
ral resolution of a sensor depends on a variety of factors.

The spatial resolution of a satellite sensor is often
different for panchromatic images and for images in
particular spectral bands. The most widely used satellite
optical instruments, such as Landsat ETM+ or SPOT,
feature 4-7 spectral bands. Hyperspectral sensors offer
the acquisition of several hundreds of bands. NASA's
AVIRIS acquires data in 224 bands in the range 0.35-1.5
pm with a bandwidth of 10 nm. The large number of spec-
tral bands has a significant impact on the subsequent
stage of data processing and pattern recognition. Since
the launch of IKONOS in September 1999, we have wit-
nessed the emergence of sensors with high (< 1m) spatial
resolution. Table 1 presents a list of recent high-reso-
lution satellites.

One issue that has to be considered when planning
work with satellite data is the availability of data. Only
Landsat 7 is programmed to collect and archive 4 sets of
global land images every year. Furthermore, this is the
only program that makes all of its data available to all for
the cost of reproduction. Another consideration is that
acquisition of imagery from space can be hindered by
weather conditions.

2.2. Lidar

Lidar (Light Detection And Ranging) is one of the
most widely used ranging techniques, which also include
supersonic wave ranging, infrared system ranging and
satellite navigation ranging.

Table 1. High-resolution satellites.

Fig. 1. Components of an airborne Lidar system (©Terrapoint).

A Lidar system (Fig. 1) consists of the following con-
currently operating components: a laser range finder,
a Global Positioning System (GPS) receiver and an Iner-
tial Navigation System (INS). Laser, GPS and INS data are
stored on a logging computer and processed off-line.

The return signal can be recorded in the form of
a multiple-return signal or a continuous signal. Inter-
pretation of the return signal is schematically depicted
in Fig. 2.
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Fig. 2. Lidar multiple return signal.

Panchromatic Multi-spectral Swath

Satellite Country Launch resolution [m] resolution [m] [km]
QuickBird-2 us Oct. 2001 0.6 2.4 16
Resurs DK-1 Russia June 2006 1 3 28
GeoEye-1 us March 2007 0.41 1.64 15
WorldView-2 us 2008 0.5 1.8 16
Pleiades-1 France Late 2008 0.7 2.8 20
Eros C Israel 2009 0.7 2.5 16
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Depending on the wavelength and signal reception
techniques, Lidar systems can operate for different types
of measurements. The depth of coastal waters is mea-
sured by bathymeters that use two laser wavelengths. The
water depth is calculated as a function of the time
difference between two signals: an infrared one reflected
by the water surface, and a co-aligned blue-green signal
which penetrates the water surface. The concentration of
aerosols in the atmosphere is measured by Differential
Absorption Lidars (DIALs). They exploit the difference in
the absorption level of light at different wavelengths by
the gas, the concentration of which is measured.
An increasing number of Lidar systems come in the form
of integrated packages with digital image capture tools,
targeting the commercial survey, civil engineering,
mining and industrial markets.

2.3.Radar

Radars belong to the class of remote sensing devices
operating in microwave regions. Synthetic Aperture Ra-
dar (SAR) is a space-borne or airborne electromagnetic
imaging sensor widely used in remote sensing applica-
tions due to its independence from weather conditions.
There are three main differences between SAR and an
optical sensor.

Fig. 3. RADARSAT-2 image.

Table 2. SAR space sensors.

e Thetwo techniques use different frequencies or wave-
lengths. SAR uses microwave wavelengths (in the
range of 1 cm to 1 m), while optical sensors use wave-
lengths near that of visible light, or 1 micron. This
means that SAR can see through clouds and storms.

e SAR sensors do not rely upon the sun's illumination or
thermal radiation; they carry their own illumination
source, in the form of radio waves transmitted by an
antenna. Therefore, SAR can be used with equal effec-
tiveness at any time of day or night.

® SARis a side-looking sensor (optical sensors mainly
look straight down).

Table 2 summarizes the characteristics of recently
announced SAR systems.

A RADARSAT-2 image of Igaluit, Nunavut in Canada
acquired January 7, 2008 is shown in Fig. 3 (courtesy of
McDonald, Dettwiler and Associates Ltd.). The resolution
of the three radar data channel (HH, VV, HV) image is 8 m.

3. General problems

3.1. Complexity of the information system invol-
ved in the processing of remote sensing data.

Data complexity

A defining feature of a large class of remote sensing
systems, particularly those with multi-spectral sensors, is
high measurement complexity [4]. In the case of multi-
spectral imagery, the measure of the complexity of the
image depends exponentially on the number of bits per
band (dynamic range), and the number of spectral bands.
The measurement complexity influences the performance
of the accuracy of a classification task that uses the data.
The number of training samples needed to adequately
discriminate between the classes grows rapidly with the
measurement complexity. The relationship between the
expected classification accuracy and the number of
training samples and the measurement complexity was
initially investigated in [13]. The results show that for
a fixed number of training samples there is an optimal
measurement complexity. Consequently, one can expect
to increase classification accuracy by using more bands
and a higher dynamic range N, but to achieve the increa-
sed accuracy, more training samples are needed. This
becomes an increasingly important practical conside-
ration as we start to incorporate hyperspectral data in
pattern recognition and classification tasks.

Dimensionality reduction
A closely related problem is the issue of high dimen-
sionality of data, regarded in more general terms as the

Spatial resolution Swath

SAR system Country Launch [m] [km]
Cosmo-SkyMed-1 Ttaly June 2006 <1 100 10 200
RADARSAT-2 Canada December 2007 3 100 20 500
Surveyor China 2007 10, 25 100, 250
TerraSAR-X Germany June 2007 1 16 10 100
RISAT India 2008 3 50 30 240
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Table 3. Feature extraction methods for dimensionality reduction.

Method

Principle

Type of reduction

Optimization
criterion

Limitations/Notes

Principal Component
Analysis (PCA)[8]

2"-order statistics

Linear decompo-
sition to covariance
eigenvectors.

Axes maximize the
variance of orthogo-
nal projections.

Not efficient when
the data are poorly
correlated.

Self-Organizing Maps
(SOM) [16]

Neural network
(non-supervised
learning)

Projection of data
on a map (usually
2D or 3D).

Maximum number of
iterations.

Dimensions of the
map selected a priori.

ISOMAP [31]

Geodesic distances
incorporated with
metric multidimen-
sional scaling

Projection on
nonlinear
hyperplanes.

Minimum geodesic
distance on a neigh-
borhood graph.

Dimensionality
results from the
algorithm.

Locally Linear
Embedding (LLE)
[25]

Maintains local
linearity.

Computation of
neighborhood-prese-
rving embeddings of
high-dimensional

Minimum
reconstruction
error.

Inputs mapped into
a single global
coordinate system.
Dimensions selected

inputs

a priori.

dimensionality of the feature space. The analysis process
applied in low-dimensional spaces is in most cases not
appropriate in spaces with higher dimensionality. Several
approaches and methods have been developed to reduce
the dimensionality of the data. The dimensionality reduc-
tion methods can be broadly categorized as feature extra-
ction and feature selection methods.

Feature extraction implies the search for m features
that are functions of n initial dimensions, where m < n.
However, the physical sense of the dimensions can be
lost. In the methods based on feature selection, the most
pertinent dimensions are retained. Table 3 compares
typical dimensionality reduction methods that apply to
the feature extraction approach.

The use of Self-Organizing Maps related to the analysis
at different levels of dimensionality can be intuitively
assessed using an example [36] illustrated in Fig. 4. The
scene captured by a Landsat-7 ETM+ sensor (Fig. 4a) is
segmented using SOM with a different number of neurons
(Fig. 4b, c, d). With the number of segments equal to 5 the
urban areas can be much easier distinguished than with
higher numbers of segments. On the other hand, finer
features on the image, such as shallow water in the left
part of Fig. 4b, can be detected only when the number of
neurons becomes sufficiently high.

a)
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d)

Fig. 4. SOM-based segmentation of Landsat-7 ETM+ image.
a) Original image, b) 100-cluster SOM, c) 11-cluster SOM,
d) 5-cluster SOM.

Another example demonstrates the utility of the LLE
method. Sixty directly taken 16x16 pixel 4-band Quick-
Bird images of tree crowns belonging to three coniferous
tree species are plotted (Fig. 5) in a 2D space. The dimen-
sionality is therefore reduced from 1024 (16-16-4) to 2.
Figure 5 shows the resulting distribution of the images.
The circled points indicate the positions of images of
crowns of three different tree types. The images are shown
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in the bottom part of Fig. 5. It is clear from Fig. 5 that the
discrimination of the crown tree types is greatly enhanced
when using LLE-generated representations of a reduced
dimensionality.
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fig. 5. Reduction of dimensionality of 16x16 QuickBird
images using the LLE method.

A variety of methods have been developed for the
selection of pertinent features from high-dimensional
data. Approaches such as genetic algorithms [11], fractal
dimension [33], rough set theory and Support Vector
Machines have been reported.

Spatial sparseness

Another problem encountered with processing some
remote sensing data is spatial sparseness of the data.
There are several sources of the sparseness. The data may
be acquired in the form of a sparse image due to the
discrepancy between the spatial resolution of the sensor
and the size and distribution of the objects of interest.
The results of unsupervised classification of image pixels
often produce salt-and-pepper-like effects. The output of
a change-detection algorithm where decisions are made
independently at each pixel is often in the form of sparse,
noisy data.

The simplest techniques dealing with the spatial spar-
seness problem use standard binary image processing
operations, such as median filters, or morphological ope-
rations. More complex solutions are needed to better
adapt the operations to the application requirements.
Scale independence can be achieved, for example, by the
use of wavelets. The Multi-Scale Isotropic Matched Filte-
ring (MIMF) operator (Eq. 1) takes into account four
features of the sparse image [23]: contrast, local non-
homogeneity of the scene, radial symmetry, and size.

s B
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1 ’ 1 ’
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Fig. 6 depicts the calculation of the operator compo-
nents in the case of rasterimages.
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Fig. 6. MIMF calculation in the discrete domain.

Equation 1 can be extended by additional terms that
take into account other image characteristics that are of
interest for the user. Also, the analysis of successive
maxima of the surface obtained by performing MIMF
filtering on an input image permits to extract shape
parameters of the objects of interest located on the
image.

3.2. Sensor fusion

The purpose of sensor fusion is to obtain more reliable
and accurate information through the synergistic combi-
nation of sensory data from multiple sensors. Moreover,
by fusing complementary information from multiple sen-
sors, we can perceive additional features, impossible to
perceive using just the information from each individual
sensor.

The development of smart sensors and integrated
multi-sensor systems requires an interdisciplinary appro-
ach that involves the application of concepts from control
theory, signal processing, statistics, artificial intelligen-
ce, and other disciplines. The following methods are used
in sensor fusion algorithms [19]:
estimation,
classification,
inference, and
Artificial Intelligence methods.

Estimation methods can be divided into simple non-
recursive methods, which take a weighted average of
information provided by individual sensors and use this as
the fused value, and recursive approaches that apply
Kalman filtering. The Kalman filter determines the output
estimates using the statistical characteristics of the
measurement model. Extended Kalman filters (EKF) can be
used where the model is nonlinear. The divergence due to
modeling errors is critical in Kalman filter application.
A fuzzy logic adaptive system was used in [27] to adjust
the exponential weighting of a weighted EKF and prevent
the Kalman filter from divergence. Classification methods
apply cluster analysis in order to partition the multidi-
mensional feature space into distinct regions defined by
geometrical or statistical boundaries each representing
an object class. Inference methods combine sensor infor-
mation according to the rules of probability theory. Dem-
psterShafter evidential reasoning extends the Bayesian
approach by dealing with any lack of information on the
hypothesis probability. Artificial intelligence methods
rely on the application of rule-based systems and compu-
tationalintelligence techniques.
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In the realm of remote sensing, a typical problem is
the fusion of Lidar data with the spectral information
about the environment. Fig. 7 illustrates the form of input
data we deal with in such a data fusion by showing
a cloud of Lidar points superimposed on a QuickBird image
of a rural terrain in central Alberta.

Fig. 7. Lidar data superimposed on a QuickBird satellite
image.

Examples of sensor fusion architectures include the
combination of video and multi-beam Lidar [32], pan-
sharpening schemes [35], and the integration of the
AVIRIS (Airborne Visible Infrared Imaging Spectrometer)
hyperspectral data with the surface texture information
derived from the TOPSAR (Topographic Synthetic Aperture
Radar) radar data [5]. A combination of SAR and IRS
(Indian Remote Sensing) optical data was used in the
application of automatic procedures for earthquake da-
mage classification.

In real world situations, information about the sensed
environment is subject to the presence of various forms of
uncertainty, and the sensors are not always perfectly
functional. A challenging task is, therefore, the design of
robust fusion algorithms.

3.2. Change detection

The generic problem of detecting changes in process
parameters has been widely studied [29]. These changes
may be due to a shift in the mean values of process para-
meters or to a variation in signal dynamics. The abrupt
change detection methods typically find their application
in preventive maintenance and quality control. Three
different change detection methods - the difference me-
thod, the possibilistic approach, and the model-based
approach - were tested in [26] in the context of moni-
toring a sequential manufacturing process.

In the analysis of multi-temporal and multi-spectral
remote sensing data, various automatic and unsupervised
change-detection methods have been developed [7],
[12], [2]. Typically, a test metric is computed from two
adjacent images and a decision is made by thresholding
the metric. A few examples of the metrics are given below
[37]: chi-square (Eq. 2), absolute value of histogram
differences (Eq. 3), likelihood ratio (Eq. 4), and Snede-
cor's F-test (Eq. 5).
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where: I (x,y;j) - intensity of point (x, y ) of the jth
image; (j, k) - indices of two sequential images; /4, (0) -
histogram of image j ; w - intensity mean; o - intensity
standard deviation.

In template-based metrics, such as template matching
A or based on normalized (uw = 0; 6 =1) inner product
y as given in Equations (6) and (7), the structures of the
images are compared.

A=Y 1(x, ;)= 1(x, y;k) (6)
y =112 h (7)
21z

In the problem of change detection in an image
sequence, the temporal consistency of pixels in the same
location at different times is exploited. Pixel intensities
over time have frequently been modeled as an autore-
gressive (AR) process [14]. However, linear models per-
form poorly in more demanding conditions. As suggested
in [3], a nonlinear dependence to model the relationship
between two images in a sequence and under the no-
change hypothesis. An adaptive neural network was used
in [6] to identify small-scale changes from a sequence of
multispectral images. Pixels for which the non-linear ne-
ural predictor performs poorly are classified as changed.

The employment of Lidar rather than spectral infor-
mation as primary data in updating is of particular inte-
rest in such applications as reliable damage assessment in
earthquake-prone and dynamically changing urban areas
[34]. Synthetic aperture radars have been exploited less
extensively than optical sensors in the context of change
detection, mainly due to the fact that SAR images suffer
from the presence of the speckle noise. An unsupervised
change-detection approach specifically oriented to the
analysis of single-channel single-polarization multi-tem-
poral SAR images was presented in [1]. The proposed
approach is based on a closed-loop process made up of
a controlled adaptive iterative filtering, and a comparison
between multi-temporal images carried out according to
a standard log-ratio operator.

3.4. Quality of Service
Independent of the type of service, the precision of
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the remote sensing data itself is an important conside-
ration. The number and the variety of errors sources in
remote sensing technologies are particularly large. As an
example, the major components of the error budget in
Lidar systems are the following:
A) Laser
e Timing precision;
e Scan method (oscillating, elliptical, ...);
® Beam divergence;
e Angular precision.
B) GPS
e Aircraft GPSinstallation;
e Basestation location;
® (lock and ephemeris errors;
e Siteinterference and obstructions;
e Satellite configuration;
e Tonosphere errors;
® Troposphere errors.
C) IMU (Inertial Measurement Unit)
e IMU to Laserand GPS antenna offsets;
e Pitch, roll, heading accuracy;
e Alignment.

4. Controlrelated applications

Remote sensing techniques have proven to be a valu-
able monitoring tool, providing data that can be used for
modeling and control of processes with important spatial
dimensions, particularly those involving natural pheno-
mena. The considerations that go beyond process mode-
ling, such as decision making and the interactions bet-
ween complex system components and the networking of
individual agents, extend the applicability of remote sen-
sing techniques to the domain of control systems. Some
representative types of applications are discussed below.

A.SLAM

Sonar and laser range sensors, and to a lesser extent
vision systems, can be used in mobile robotics to build
maps of the unknown surrounding area when no GPS data
is available. The process of building a map of the environ-
ment while simultaneously using this map to deduce
robot localization information is called Simultaneous
Localization and Mapping (SLAM). In SLAM, both the
trajectory of the moving platform and the location of all
landmarks are estimated online without the need for any
a priori knowledge of location, and in spite of errors
caused by readings from sensors and the motion control
system.

In probabilistic form, the SLAM problem requires that
the probability distribution (Eq. 8) describing the esti-
mates of the landmark locations and vehicle state be
computed for all times k

P(xkﬂm | ZO;k’UO;k"xO) (8)
where:
X, - state vector describing the location and orienta-

tion of the mobile platform;

u, - controlvector;

m, - timeinvariant location of the ith landmark;

Z, - observation (taken from the vehicle) of the loca-
tion of the ith landmark at time .

It can be shown that the precision of these estimates
increases monotonically and that the vehicle location
estimate becomes bounded [10]. In order to solve the
SLAM problem, optimal state estimators such as the
Kalman filter (KF) and the extended Kalman filter (EKF)
have been used. Although this approach produces good
results, it suffers from two limitations: quadratic com-
plexity and sensitivity to failures in data association
[21]. Alternative algorithms, such as those based on the
expectation maximization (EM) algorithm, fastSLAM, and
dense-SLAM [22] have been investigated. Nonethe-less,
multi-robot mapping remains a challenging area, with
a large number of issues still to be investigated.

While optimal robot motion can be well specified in
fully known environments, exploring robots have to cope
with partial and incomplete models. Any viable explo-
ration strategy has to be able to accommodate continge-
ncies that might arise during map acquisition. Hence,
exploration is a challenging planning problem, which is
often solved sub-optimally via simple heuristics. In futu-
re, the SLAM algorithms and strategies will increasingly
relate to a broader range of perceptual problems, such as
sensor-based manipulation and interaction with human
operators.

B. Navigation

Navigation for mobile robots and autonomous vehi-
cles using vision has been widely investigated [9]. Re-
cently, the number of applications of laser scanners has
greatly expanded, ranging from driver assistance sys-
tems, through collision avoidance and map building, to
driverless transport in factory yards.

An example of modular architecture of the navigation
system is presented in [30]. The architecture, shown in
Fig. 8, contains an inner and an outer control loop. The
outer control loop is used during the initial phase, when
the laser scanner delivers sensor data for the target
classification and path planning modules. The inner con-
trol loop manages the complete approach process. The
laser scanner and odometer provide the required sensor
data.

Sensors | Vehicle
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Laser Recognition Path Planning
Scanner start/

scan
target raiectory
data| | i”“/““)”}
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Odometry Tracking Motion Control =
- vehicle 7.
wheel | pose speed/ |
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Fig. 8. Automated navigation system.
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An interesting problem of navigation, i.e., gate reco-
gnition, and gate crossing for a real-size outdoor mobile
robot, was presented in [28]. The vehicle's general navi-
gation is based on information from Global Positioning
System (GPS) and Inertial Navigation System (INS). When
the robot is near the gate, the laser scanner sensor gives
information about the exact location of gate, its shape,
and attitude of the vehicle with respect to the gate. The
gate-crossing problem differs from range-based, wall-
following problems, since it requires a transition from the
open-field (essentially GPS or sensor fusion-based)

Articles



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°3 2008

navigation to range-based navigation.

Advantages of laser scanners over other types of
sensors include their high precision and independence of
prevailing ambient conditions. This is especially impres-
sive when operating at night, where no additional illumi-
nation is needed.

C. Automated Highway Systems

Automated Highway Systems (AHSs) have recently
been the focus of extensive research effort. This parti-
cular area of navigation systems is driven by the conti-
nuous development of the auto industry. In an AHS, each
vehicle must be under computer control in both longitu-
dinal and lateral directions. Lateral vehicle control sche-
mes can be generally categorized into roadfollowing
control and vehicle-following control.

An essential component of an AHS is an automatic
ranging system (Fig. 9) equipped with risk estimation
and decision making capabilities. Lidar sensors have
been studied for this purpose, forinstance, in the Califor-
nia PATH vehicle guidance project [17].

Fig. 9. Lidar-equipped experimental vehicle (IEEE).

The experimental study has also revealed an interes-
ting relation between Lidar outputs and magnetometer
measurements, showing that the Lidar output may be
roughly approximated by the look-ahead scheme using
the outputs from two sets of magnetometers. This
demonstrates that Lidar may be reasonably considered as
a look-ahead sensor, which can provide a considerable
amount of phase lead. Consequently, new lateral control
systems can be developed with Lidar as the only sensor.

A real-time feature-level sensor fusion system incor-
porating spatio-temporal aligned vision and multi-beam
Lidar measurements for robust vehicle detection and
tracking has been developed [20]. The detection process
does not rely on target motion, hence the system can
be used in traffic jam and stop-and-go applications.
Tracking multiple targets is achieved by fusing asyn-
chronous heterogeneous sensor data, with multi-ins-
tance Kalman filters for the targets and a single Kalman
filter for the ego-motion estimation.

D. Modeling

Understanding processes requires models, and often
the use of Al approaches. In this context, satellite and
airborne remote sensing sensors have proved particularly
useful in extracting meaningful information, especially
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for modeling applications related to environmental mo-
nitoring, agriculture, urban studies, and forest manage-
ment. Next-generation commercial radar satellites offer
advancements that will enhance marine surveillance, ice
monitoring, disaster management, resource manage-
ment and mapping in zones around the world where
access is difficult orimpossible.

A well-developed area of application of Lidar sensors
is urban modeling. Models of urban zones can further be
used for municipal planning or disaster studies. They
allow the quick detection of damage and building colla-
pses due to natural disasters, such as flooding or earth-
quakes. Various spatial dynamic models, especially those
based on cellular automata (CA) and geographical infor-
mation system (GIS), have been constructed. The selec-
tion of dynamic models is influenced by the results of the
application analysis.

Remote sensing is used to estimate biological, phy-
sical and chemical properties over a range of temporal
and spatial scales, ranging from local and rapid through
to large and slow. Spatial scale is a concept that is closely
connected with measurement and sampling. Therefore, it
is important to distinguish between scales of measure-
ment, which relate to the sample, and scales of the spa-
tial variation of data.

5. Conclusions

The operation and use of high resolution satellites
and many other remote sensing technologies are no lon-
ger restricted to a few countries with advanced techno-
logy. Over twenty countries have already direct access to
satellite technologies and space-borne data. Deploy-
ment of fleets of small satellites and HALE (High-Altitude
Long-Endurance) UAVs will significantly reduce the high
cost of large systems, which currently hampers the com-
mercial use of these technologies.

Remote sensing technologies are particularly useful
for acquiring environmental data. They play a major role
in studies of climate change, forestry, and security
issues. One of the most important applications of remote
sensing is the detection of changes occurring on the
earth's surface. This stems from the fact that knowledge
of the dynamics of either natural resources or man-made
structures is a valuable source of information to support
decision making by governments as well as by public and
private institutions. We expect future change-detection
algorithm developments to be fueled by increasingly
integrated approaches combining elaborate models of
change, robust statistics, and global optimization me-
thods. Further system improvement is expected, particu-
larly from heterogeneous sensor data fusion strategies.

The successful exploitation of new generations of
very high resolution imagery from space, Lidar sensors
and other remote sensing technologies will require ex-
tensive development of new algorithms based on a varie-
ty of approaches, such as machine vision, statistical lear-
ning, and artificial intelligence. The construction of use-
ful automatic measurement and control systems incor-
porating information extracted from remote sensing
sources must follow the guiding principles of systems
science.
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