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Abstract:

This paper is concerned with a computationally effi-
cient (suboptimal) non-linear Model Predictive Control
(MPC) algorithm based on two types of neural models:
Multilayer Perceptron (MLP) and Radial Basis Function
(RBF) structures. The model takes into account not only
controlled but also the uncontrolled input of the process,
i.e. the measured disturbance. The algorithm is computa-
tionally efficient, because it results in a quadratic program-
ming problem, which can be effectively solved on-line by
means of a numerically reliable software subroutine. More-
over, the algorithm gives good closed-loop control perfor-
mance, comparable to that obtained in the fully-fledged
non-linear MPC technique, which hinges on non-linear,
usually non-convex optimisation.

Keywords: predictive control, neural networks, linearisa-
tion, quadratic programming

1. Introduction

Model Predictive Control is recognised as the advan-
ced control technique, which has been very successful in
large-scale industrial applications, for example distilla-
tion columns or polymerisation reactors. MPC has influ-
enced not only the directions of development of indu-
strial control systems, but also research in this area [8,
24, 27, 33, 34, 36]. MPC algorithms have many advan-
tages. First of all, they have the unique ability to take
into account constraints imposed on process inputs
(manipulated variables) and outputs (controlled varia-
bles) or state variables, which usually decide on quality,
economic efficiency and safety of production. Secondly,
MPC is very efficient in multivariable process control.
Moreover, MPC can be successfully applied to processes
whose numbers of input and output variables are diffe-
rent, and to processes whose control is difficult (e.g.
processes with the inverse step response).

MPC closely co-operates with economic optimisation
in order to maximise production profit. Different control
structures can be used:

a) The classical multilayer control structure, in which
the economic optimisation layer is activated less
frequently than the MPC layer [4, 6, 13, 14, 36].

b) The multilayer structure with an auxiliary steady-
state target optimisation, which recalculates the ope-
rating point as frequently as the MPC layer executes
[3,11, 13, 14, 21, 36, 37].

c) The integrated structure, in which economic optimi-
sation and MPC optimisation tasks are integrated into
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one optimisation problem [13, 14, 15, 21, 36, 40,
42].

d) The integrated structure with an internal, uncon-
strained controller [16, 35].

In many practical cases disturbances (i.e. uncontrol-
led but measured inputs), for example flow rates, proper-
ties of feed and energy streams etc., vary significantly
and not much slower than the dynamics of the controlled
process. Changes of disturbances entail the necessity of
solving on-line the economic optimisation problem in
order to find the optimal set point for the MPC layer.
Naturally, it is best when the MPC algorithm can compen-
sate the influence of disturbances, if only dynamics of
disturbances and control channels and available process
models enable an efficient realisation of the compen-
sation.

This paper describes a computationally efficient MPC
algorithm with Non-linear Prediction and Linearisation
(MPC-NPL) [17, 19, 22, 36, 38] with measured distur-
bance compensation [18]. The algorithm uses a neural
model of the process on-line twice at each sampling
instant, namely for determining a local linearisation and
a non-linear free trajectory. Two most popular types of
neural models are used: Multilayer Perceptron (MLP) and
Radial Basis Function (RBF) structures. The MPC-NPL
algorithm is computationally efficient because it needs
solving on-line a quadratic programming problem.
Although sub optimal, it gives good closed-loop per-
formance, comparable to that obtained in the fully-fled-
ged non-linear MPC algorithm with non-linear optimi-
sation, in which at each sampling instant a non-linear,
usually non-convex and even multimodal optimisation
problem has to be solved on-line. For such problems there
are no sufficiently fast and reliable optimisation algo-
rithms, i.e. those that would be able to determine the
global optimal solution at each sampling instant and
within a predefined time limit, as it is required in on-line
control. Gradient-based optimisation techniques may
terminate in local minima while global ones substantially
increase the computational burden, yet they still give no
guarantee that the global solution is found [25].

Structure of the model determines accuracy, compu-
tational burden and reliability of the MPC algorithm.
Fundamental (first-principles) models, although poten-
tially very precise, are usually not suitable for on-line
control since they are very complicated and may fre-
quently lead to numerical problems resulting, for
example, from ill-conditioning. Among many structures
of empirical models, neural networks deserve conside-
ration because they have the following advantages:
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a) Are universal approximators [9], hence are able to
approximate precisely non-linear behaviour of tech-
nological dynamic processes [10, 28].

b) Efficientidentification algorithms and structure opti-
misation techniques have been developed [7, 29].

c) Have simple structure and relatively small number of
parameters (unlike fuzzy models do not suffer from
"the curse of dimensionality").

d) Numerical problems typical of MPC algorithms with
comprehensive fundamental models are not encoun-
tered because neural models directly describe input-
output relations of process variables, complicated
systems of differential and algebraic equations do not
have to be solved on-line.

e) Can be easily incorporated into different MPC algo-
rithms and efficiently used on-line [1, 2, 5, 10, 12,
17,18, 19, 20, 22, 28, 30, 31, 32, 36, 38, 41].

2. Model predictive control

Although many versions of MPC algorithms have been
developed over the years, the main idea (i.e. the explicit
application of a process model, the receding horizon and
optimisation of a cost function) is always the same [24,
34, 36]. At each consecutive sampling instant k a set of
future controlincrements is found

Au(k) = [ Au(k 1 k) Auk+N, -110)]" Q)

Itis assumed that Au(k+p |k):0 for p>N,, where N, is
the control horizon. The objective of the algorithm is to
minimise the differences between the reference trajec-
tory y/(k+p | k) and the predicted values of the out-
put y (k+p|k) over the prediction horizon N, i.e.
p=1,...,N. These predictions are calculated on-line using
a dynamic model of the process. The following quadratic
cost function is usually used

J(ky=> 1,y (k+ plk)—$(k+ plk))’
(2)

+ Y A, (Au(k+ plk))?
p=0

where w, >0, A, > 0 are weighting factors. Typically,
N,<N, which decreases the dimensionality of the opti-
misation problem and leads to smaller computational
load. Only the first element of the determined sequence
(1) is applied to the process, the control law is then

u(k | k)=Au(k | k)+u(k-1) (3)

At the next sampling instant, k+1, the measurement
of the process output is updated, the whole procedure is
repeated.

2.1. Model predictive control optimisation problem

As emphasised in the Introduction, constraints hand-
ling is one the most important advantages of MPC algo-
rithms and it determined their great success. In cons-
trained MPC algorithms, future control increments are
found as the solution to the following optimisation
problem

Au(k)

min{J (k) = 1, (" (k+ p1 k)= 5k + p 1K)

N,-1
+ > A, (Au(k+ plk))*} (4)
p=0
subject to :
ulningu(k+p|k)gumax p_O, ..,Nu—l
-Au,, <Autk+plk)<Au, p=0,.,N, -1
yminsj}(k-l-plk)symax p=1,..,N

Defining vectors of length N
Yok = [y k+11k)
k) =[5k +11k)

VI N1R)]
S(k+N1k)]"

Yoin = [ Vi Vo) ®
L Vo)

and vectors of length N,

Y k) =y (k+11k) VIk+N1R)]
O =[3k+11k) .. 3k+NIO]"  (6)
Yoin = [ Vi Vo)
L Vo)

the MPC optimisation problem (4) can be rewritten in
a compact vector-matrix form as

: rej a8 2
min{J (k) =y ()= $0)|  +[Audi)’}
Au(k) M
subject to :
u,. <JAu(k)+u'" <u__ 7)
—Au, <Auk)<Au,,
ymjngj\’(k)gymax
where
10 ..0
11 ..0 8
J=. . ®)
I 1 ... 1

is the matrix of dimensionality N xN,, M and A are
diagonal matrices of dimensionality NxN and N, xN,
comprised of coefficients u,, A,, respectively.

If output constraints have to be taken into account,
the MPC optimisation task (7) may be affected by the
infeasibility problem. So as to cope with such a situation,
the original output constraints have to be softened by
using slack variables [24, 36]. Using a quadratic penalty
for constraint violations the MPC optimisation problem
(7)isthen

(9)
Y= 5®)|, +Aul,

Enm (]}

min  {J(k) :\
(k)

Au(k), Eyin (k). Enax

gmin (k)H2 + pmax

+ 10 min
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subject to :
u. <JAuk)+u""' <u__
-Au,, <Auk)<Au,,
Voin ~ Emin K) S YK) S y 0 + €, (K)
€. (k)20,€,,. (k)=0

where €,..(k), €,..(k) are vectors of length N comprising
the slack variables and p, ., P.... are positive weights.

max

3. MPC-NPL algorithm with neural models

3.1.  Structures of neural models
Let the Single-Input Single-Output (SISO) processes
be described by the following discrete-time equation

y(k) = f(x(k)) = f(u(k—1),...,u(k —ny), (10)
y(k_l)a"'vy(k_n/i)a
k=, ), bk —n,)

where u is the input of the process, y is the output, / is
the uncontrolled but measured input (the disturbance),
friRaeT 2 s Re €', 1<n, 1<n.. When the
Multilayer Perceptron (MLP) feedforward neural network
with one hidden layer and a linear output [7, 29] is used
as the function fin (10), output of the model is

yOR)=wy + 2w, (k) = wy + 2 wip(z, (k) (1)

where z,(k) and v,(k) are the sum of inputs and the output
of the i-th hidden node, respectively, @: R—NR is the
non-linear transfer function (e.g. hyperbolic tangent), K
is the number of hidden nodes. Recalling the input argu-
ments of the general non-linear model (10) one has

1, n,
z,(k) = wio+ 2w u(k—t +1= j)+ > w!, vk = j)
Jj=1 j=1
I (12)
+zwz'l,1u+nA+jh(k T +1_j)
j=1

Weights of the network are denoted by w},,., i=1,...K,
j=0,....I, and w’, i=0,...,K, for the first and the second
layer, respectively. Total number of input nodes is
I = n,+n,+n.—t—1,+2. The number of input nodes,
which depends on the input signalu, is [,= n,—t+1, the
number of input nodes, which depends on the disturbance
signal A, is I, = n.— t,+ 1. Structure of the MLP neural
network model is shown in Fig. 1.

Fig. 1. Structure of the MLP neural network model.
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When the Radial Basis Function (RBF) feedforward
neural network containing one hidden layer with Gaussian
functions and a linear output is used as the function f'in
(10), output of the model is

(k) = f(x(R)) = wy + 2wy exp(-|x(k) = ¢ ] )

cwpt Swexp(zn Ry )

where K is the number of hidden nodes, ¢, and the
diagonal weighting matrices Q.=diag(q, ,.--,q.,) describe
centres and widths of the nodes, respectively, i=1,...,.K.
The model (13) is sometimes named the Hyper Radial
Basis Function (HRBF) neural network in contrast to the
ordinary RBF neural networks in which widths of the
nodes are constant [29]. Let z,(k) be the sum of inputs of
the i-th hidden node. Recalling arguments of the model
(10) one has

Iu
Zi(k): Zqi,j(u(k_r +1—j)—Ci’/-)2 (14)
Jj=1
+3 g, k= =c, )
Jj=1

[Iz
+ Zqi,1“+nA+j (h(k -1, * 1- J) - ci,1”+n,1+j)2
Jj=1
Structure of the RBF neural network model is shown in
Fig. 2.

1

u(k—1)

u(k—ny) :

y(k—T) -

yk-n,)
h(k-1,)
— 2 %0

hk-n)) -

Fig. 2. Structure of the RBF neural network model.

3.2. MPC-NPL optimisation problem

When for prediction a non-linear neural model of the
process is used without any simplifications, at each sam-
pling instant a non-linear optimisation problem (9) has to
be solved on-line. In order to reduce the computational
burden and increase reliability of the control algorithm,
the sub optimal MPC-NPL algorithm is adopted [17, 19,
20, 22, 36, 38]. At each sampling instant k the neural
model is used on-line twice: to determine a local lineari-
sation and a non-linear free trajectory. It is assumed that
the output prediction can be expressed as the sum of the
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forced trajectory (response), which depends only on the
future (i.e. on future input moves Au(k)) and the free
trajectory y'(k), which depends only on the past

§(k) =GR Au(k) +y° (k) (15)

where the dynamic matrix of dimensionality NxN, is
composed of step response coefficients of the linearised

model
s,(k) 0 0

k oo 0
G(k)= sz(:) S‘(:) N : (16)

SN(k) stl(k) SN—NMH(k)

and the free trajectory is a vector of length N

T
Y = [y tk+11k) Yok +N 1K) (17)
Let s,(k) denote the j-th step response coefficient,
j=1,...,N, calculated at the current time instant £ using
the linearised model

min(j,ng) min( j=l.n,)

s, (k)= Y. b(k)— >la,k)s, (k) (18)
i=l i=1
where a,(k), b,(k) are coefficients of the linearised model.

Of course, unlike MPC algorithms with linear models,
the plant and its model are non-linear; hence the
superposition equation (15) cannot be exactly satisfied.
On the one hand, the sub optimal prediction calculated
from (15) is different from the optimal one determined
from the non-linear neural model as it is done in MPC
algorithms with non-linear optimisation [17, 36, 38]. On
the other hand, thanks to using (15), the optimisation
problem (9) becomes the following quadratic program-
ming task

min (k) = |

Au(k), € pin (K, € o (K

" (k) - GAu(k) - y* (),
& i (0]

E e (O (19)

+[Au) + p o

+ p max
subject to :

u,, <JAu(k)+u""' <u_,
- Aumax S Au(k) S Aumax

Vonin = Emin () S GE)AU(K) + y° (k) < 0+ & oy (K)
e (K)=0,e_(k)=0

max

Structure of the MPC-NPL algorithm is depicted in Fig.
3. At each sampling instant k the following steps are
repeated:

1. Linearisation: obtain the dynamic matrix G(k) .

2. Calculate the non-linear free trajectory y'(k).

3. Solve the quadratic programming problem (19) to
determine Au(k).

4. Apply u(k)=u(k | k)+u(k-1).

5. Set k:=k+1, go to step 1.

MPC-NPL algorithm

Quadratic
optimisation

h(k) d(k)
:I y(k)
g Process —»

A A
G(k)

Linearisation,
calculation of the
nonlinear free trajectory

Neural model

Fig. 3. Structure of the MPC algorithm with Non-linear
Prediction and Linearisation (MPC-NPL).

Both the dynamic matrix and the non-linear free
trajectory are calculated on-line using the neural model of
the process.

Defining the vector of decision variables

T
x(k)=[aa" () el () £l ()],
the MPC-NPL optimisation problem (19) can easily be
written in a standard quadratic programming form
n}gl{J(k) =%xT<k)HQp<k>x(k)+f5P (k)x(k)}(m)

A (K)x(k) < b, (K)

where
Au(k) = M x(k), M, = [IN,‘XN“ 0N“><2N]
€y (K)=M,x(k), M, = [ONXNH Iy, ONxN]
En (k) =M x(k), M, = [0N><N“ 0, n INXN]

The cost function is defined by
H (k)= 2M[G" (k) MG (k)M , + M| AM ) +
+2pminM§M2 + 2pmaxM§M3

(22)

for(k)==2M[G" (k)M (y" (k) - y° (k)) (23)

whereas the constraints are defined by

(24)
I -IM, ] [ —u, +ut
JM, u, —u’

_G(k)Ml_MZ _ymin+y0(k)

G(k)M, -M, Yo = ¥" (k)
Agp(k) = M, s bop(k) = A
Ml Aumax
-M, Ole

L _M3 | L Ole i

3.3. Linearisation of neural models

The linearisation point is defined as a vector com-
prised of past input, output and disturbance signal values
corresponding to the arguments of the non-linear model
(10)
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[ uk—17) ]
: (25)
utk—ny)
x, (k) yk=1)
x(k)= : = :
X yk—n,)
hk—1,)

ny+ng+ne—7—7,+2 (k)

| h(k—n.) |

Using Taylor series expansion, the linear approxima-
tion of the non-linear model (10) derived at the current
sampling instantk is

y(k) = f(f(k))+§:b, (x(k))(ulk 1) = x,(k))

-, F Ok =D = x, .1 (K) (26)
=1

Coefficients of the linearised model are calculated
from

- of (¥ (k))
a,(x(k)) = -] I=1,....n, (27)
and
0 [=1,...,7—1
b,(x(k)) = 9f (¥ (k)) I=7 n (28)
ou(k —1) s

Considering the MLP neural model given by (11) and
(12)

=% dPEEE)

w, I=1,...,n, (29
P i le(f(k)) i1+l A ( )
and
(30)
0 [=1,...,7—1
b, (k)= ZK:wz do(z;(x(K))) I

i — Wii-zs1
P dz;(x(k)) -

If hyperbolic tangent is used as the non-linear
transfer function ¢ in the hidden layer of the neural
model, one has

do(z;(x(k)))
dz; (x(k))
The linearisation point given by (25) is not influenced

by the most recent output value y(k), which is available
for measurement. Therefore, it is recommended to use

[ utk—7+1) |

=1—tanh’(z, (¥ (k))) (31)

(32)

u(tk—ny, +1)
x, (k) y(k)
x(k)= : = :
yk—n, +1)
hk—1, +1)

an +ng+ne—7-7,+2 (k)

| h(k—n, +1) |

Articles

If t=1, for linearisation purposes one may set
u(k | k):=u(k-1) or u(k | k):=u(k | k-1).

Taking into account the structure of the RBF neural

model described by (13) and (14), coefficients of the
linearised dynamic model are calculated on-line from

a, (k) =2 w, exp(=z,(X(k)g; , ., (y(k =1)—

i=l (33)
—CUUH) l=1,...,n,
and
0 I=l..c-1 G4
b(k)=4— 25: w; exp(=2z; (X (k)G j_zpy (u(k = 1) =
—c,.f,:_lm) [=1,...,n,

3.4. Calculation of the non-Llinear free trajectory
The general prediction equation forp=1,..., N'is

Yk+plk)=ylk+plk)+d(k) (35)

where the quantities y(k+p |k) are calculated from the
non-linear neural model used for the sampling instant
k+p at the current sampling instant k. In case of the MLP
neural model from (11)

K
y(k+plk)=ws + > wio(z,(k+plk)) (36)
i=1
The “DMC type” disturbance model is used in (35) [24,
36]. The unmeasured disturbance d(k) affecting the pro-
cess at the sampling instant k is assumed to be constant
over the prediction horizon. Its value is calculated from

d(k) = y(k) = y(k 1k =1) (37)

where y(k) is measured whereas the quantity y(k | k1) is
calculated from the non-linear neural model. From (11)
one has

d(k) = y(k) —[wé + 2wl (k))] (38)

Considering the prediction over the horizon N, the
quantities z(k+p | k) and consequently y(k+p | k) de-
pend on future values of the control signal (i.e. decision
variables of the algorithm u(k | k),u(k+1 |k),...), values
of the control signal applied to the plant at previous
sampling instants (u(k-1), u(k=2),...), future output
predictions ( y(k+1|k), y(k+2|k),...), measured va-
lues of the plant output signal (y(k=1),y(k-2),...), future
values of the disturbance & (h(k+11k), h(k+2|k),...)
and values of the disturbance measured up to the current
sampling instant & (h(k),h(k-1),...). From (12) one has

1, (p)
zik+plky=wly+ D whutk—7+1— j+ plk)

J=1

Iu
1 .
=Ly (p)+
1,,(p)
+ D wl, k= j+plk)

J=1
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Sl ytk—jrpy (€39

J=1,,(p)+1
Ly p)

+ D Wy ik =T, +1=j+ plk)

J=1

1)
+ zwil,lqunAJrjh(k_Th +1_.]+p)

J=ly iyt

where I, (p)=max(min(p — t+1, 1,),0) is the number of
the network input nodes, which depends on future control
signal, I,,(p)=min(p—1,n,) is the number of input nodes
depending on output predictions, 1,(p)=max(min(p —
T,, 1,),0) is the number of input nodes, which depends on
future disturbance signal. Since future values of the
disturbance are usually not known at the sampling instant
k, itis assumed that i(k+p | k)=h(k) forp=1.

The non-linear free trajectory y’(k+p | k) is calculated
recursively on-line from the general prediction equation
(35) considering only influence of the past. From (36)

K
Yk + plhy=wy+ 2 wip(z (k+ pl k) +d(k) (40)
i=l1
The quantities zl.o (k+ plk) are determined from (39)
assuming no changes in the control signal from the
sampling instant k onwards and replacing predicted
output signals by corresponding values of the free
trajectory
Ly (p)
Z)(k+plk)y=wi,+ > wutk—1) (41)

J=1

Iy
+ > wlutk—t+1-j+p)

J=ly (p)+1

1,(p)
+ D wp, Ly (k= j+plk)
j=1
+ Yowi, k= j+p)
Jj=1,, (p)+1

111/(;))

+ > W hk)

J=1

lh
+ > Wl hk=T, +1= j+ p)

J=liy (py+l

In case of the RBF neural model, form (13) and (37),
the unmeasured disturbance is

K
d(k)=y(k) - (wo + W, expl(-z, (k»J (42)
i=1
Analogously to (41), the quantities are determined
from
u P

k+plky=wly+ > g, wk-D-c,)"  (43)

Jj=1

Ill
. 2
+ D.q, wk-Tt+1-j+p)—c, )
J=ly (p)+l
1,,(p)

+ ZQi,I“+j(yO(k_j+p | k)_cuﬁj)z

J=1

N . d. 43
+ Zqi,,ﬁj(y(k—]+p)—cum_)2 (c )

J=1y, (p)+]

Ly (p)

+ Zqisl,,+”A+j (h(k)— Cil,ny+j )2
=

I/l
+ Zqi,1“+nA+j (h(k =7, +1=j+p) _Ci,ll,+n,‘+j)2

J=lppy+l
4. Experiments

4.1. The polymerisation reactor

The control process under consideration is a poly-
merisation reaction taking place in a jacketed continuous
stirred tank reactor depicted in Fig. 4 [26]. The reaction
is the free-radical polymerisation of methyl methacrylate
with azo-bis-isobutyronitrile as initiator and toluene as
solvent. The output NAMW (Number Average Molecular
Weight) is controlled by manipulating the inlet initiator
flow rate F,. The monomer flow rate F is the measured
disturbance. The reactor is frequently used as a bench-
mark process for comparing non-linear control strategies.
MPC with a constant linear model is unable to control the
plant effectively (i.e. it is unacceptably oscillatory or
slow) [17, 18, 19, 20, 36]. Although the process is open-
loop stable (it is of inertia type), it is difficult to control
because its dynamic and steady-state properties are
significantly non-linear. Hence, in this case it is justified
to use non-linear models of the process and non-linear
MPC algorithms. Different suboptimal MPC techniques
with on-line quadratic programming were applied to the
reactor yielding good control quality, comparable to that
obtained in MPC with on-line non-linear optimisation
[17, 18, 19, 20, 36].

monomer F F, initiator

B .

MPC
A A

polymer
NAMW

»

Fig. 4. Polymerisation reactor control system structure.

4.2. Models and compared MPC algorithms

The fundamental model [26] is used as the real pro-
cess during simulations. An identification procedure is
carried out, as a result of which two MLP empirical models
are obtained:
a) aneural model without the measured disturbance

y(k) = f(u(k =2), y(k =1), y(k =2)) (44)
b) aneural model with the measured disturbance
(45)

y(k) = f (u(k =2), y(k =1), y(k =2), h(k = 1), h(k = 2))

whereu=F,y=NAMW, h=F.Neural model have K=5
and K=6 hidden nodes, respectively. Empirical models
have input arguments determined by t=1,=n,=n,=
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n.=2. To demonstrate efficiency of the proposed sub
optimal MPC-NPL algorithm with measured disturbance
compensation three algorithms are compared:

1. MPC-NPLa: the sub optimal MPC-NPL algorithm
without disturbance compensation (the model (44) is
used).

2. MPC-NPLb: the sub optimal MPC-NPL algorithm with
disturbance compensation (the model (45) is used).

3. MPC-NO: the “optimal” but computationally prohi-
bitive MPC algorithm with Non-linear Optimisation
with disturbance compensation (the model (45) is
used).

Parameters of all three MPC algorithms are the same.
The horizons are N=10, N,=3, the weighting matrices
M,=I and A,=Al, A=0.2. The manipulated variable is
constrained, F,,,,=0.003, F,,..=0.06, the sampling time

is 1.8 min.

4.3. Controlaccuracy
The reference trajectory is constant NAMIW“=20000.

Four experiments are carried out:

e Experiment 1: F changes from 1 to 0.5 m’/h at the
sampling instantk=5.

e Experiment 2: F changes from 1 to 2 m’/h at the
sampling instantk=5.

e Experiment 3: a series of stochastic step changesin Ff
is used as shown in Fig. 7.

® Experiment4:sinusoidal changesin Fare used
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Fig. 5. Experiment 1: Simulation results of the MPC-NPLa (solid), MPC-NPLb (solid-points) and MPC-NO algorithm (solid-circles).
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Fig. 6. Experiment 2: Simulation results of the MPC-NPLa (solid), MPC-NPLb (solid-points) and MPC-NO algorithm (solid-circles).
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(46)
1 m’/h k=1,..4
F(k)=41-0.7(sin(0.07k) —
—sin(0.35)) m’/h k=5,...100

Simulation results of compared MPC algorithms are
depicted in Fig. 5, 6, 8, 9. When the MPC-NPLa algorithm
is implemented without disturbance compensation,
responses of the system are relatively slow, amplitudes
are quite big. On the contrary, when disturbance compen-
sation is used in the MPC-NPLb algorithm, responses of
the process are reasonably faster; amplitudes of the
changes are significantly smaller. It is because the MPC-
NPLb algorithm takes the disturbance into account
during control value calculation. As a result, the manipu-
lated variable F, changes faster in comparison to the
MPC-NPLa scheme. Moreover, the closed-loop perfor-
mance obtained in the sub optimal MPC-NPLb algorithm
with quadratic programming is very close to that obtai-
ned in computationally prohibitive MPC-NO approach
with disturbance compensation, in which a non-linear
optimisation problem has to be solved on-line at each
sampling instant. Table 1 compares Integral Squared
Error (ISE) in studied MPC algorithms.

Finally, RBF neural network models (44) and (45) are
obtained and three considered MPC algorithms simu-
lated. Because both MLP and RBF neural structures are
universal approximators, simulation results are practi-
cally the same.
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Table 1. Comparison of Integral Squared Error (ISE) in different MPC algorithms.

Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4
MPC-NPLa 1.11-10 2.85-10’ 1.51-10° 3.00-10’
MPC-NPLb 3.25-10° 7.75-10° 4.19-10 9.21-10°
MPC-NO 2.81-10° 9.02-10° 3.61-10' 9.17-10°
2
1.5F
L

L
05 T
20 40 60 80 100 120 140 160 180 200
k
Fig. 7. Experiment 3: Disturbance F.
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Fig. 8. Experiment 3: Simulation results of the MPC-NPLa (solid), MPC-NPLb (solid-points) and MPC-NO algorithm
(solid-circles).
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Fig. 9. Experiment 4: Simulation results of the MPC-NPLa (solid), MPC-NPLb (solid-points) and MPC-NO algorithm
(solid-circles).
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4.4. Computational efficiency
Considering the simulation results presented above,
one can see that the sub optimal MPC-NPLb algorithm
gives the closed-loop control profile very close
(practically identical) to that obtained in the MPC-NO
algorithm. It is then interesting to compare
computational complexity of these studied non-linear
algorithms with measured disturbance compensation. In
the MPC-NO algorithm the SQP (Sequential Quadratic
Programming) non-linear optimisation routine is used.
As the initial point of optimisation, N,—1 control values
calculated at the previous sampling instant and not
applied to the process is used
(47)

u’ (k1 k) u(k k=1
u’ (k)= u’(k+N, =31k) |=| utk+ N, =31k~1)
u’(k+N,-21k)| |utk+N,-21k-1)
| u’(k+N,-11k) | |utk+N,=21k=1)]

If N,=1, manipulated variable calculated and applied to
the plant at the previous sampling instant is used, i.e.
u'(k)=[u(k-1) ... u(k=1)]". Although the initial point
can be chosen in different ways, the method used is
natural and the most efficient in terms of computational
complexity [20].

Table 2 shows the influence of control and prediction
horizons on floating point operation (MFLOPS) in
Experiment 3. Six control horizon (N,=1, 2, 3, 4, 5, 10)
and two prediction horizon (N=5,10) lengths are
considered. In general, the control horizon has far bigger
impact on computational burden than the prediction
horizon has. It is obvious, since N, is the number of the
decision variables of the MPC optimisation problem (19).
The MPC-NO algorithm is many times more computa-
tionally demanding than the sub optimal MPC-NPLb
algorithm.

Table 2. Influence of control and prediction horizons on floating point operation (MFLOPS) in the MPC-NPLb algorithm and

the MPC-NO algorithm
Algorithm N N,=1 N,=2 N,=3 N,=4 N,=5 N,=6
MPC-NPLb 5 0.32 0.38 0.50 0.67 0.92 -
MPC-NO 5 1.85 3.65 7.89 11.70 17.00 -
MPC-NPLb 10 0.47 0.53 0.67 0.86 1.13 3.68
MPC-NO 10 2.85 4.13 7.63 12.85 19.24 70.57

5. Conclusions

The paper details the computationally efficient MPC
algorithm with Non-linear Prediction and Linearisation
(MPC-NPL) with measured disturbance compensation and
presents its application to a polymerisation reactor. The
algorithm can be used when the process is significantly
affected by the uncontrolled but measured inputs (i.e.
disturbances). In particular, the algorithm can be used at
the advanced MPC layer in control systems with economic
optimisation. When MPC co-operates with economic
optimisation, compensation of measured disturbances in
MPC is particularly important. Disturbance compensation
significantly improves control quality. The MPC-NPL
algorithm can take into account constraints imposed
both on process inputs and outputs, very important from
economic and technological reasons.

In comparison with the MPC algorithm with Non-
linear Optimisation (MPC-NO), good closed-loop perfor-
mance and computational efficiency are the advantages
of the presented approach. Thanks to linearisation and
non-linear free trajectory calculation which are deter-
mined on-line from the neural model, the performance of
the sub optimal MPC-NPL and potentially “optimal” MPC-
NO algorithms is very similar. Computational efficiency of
the MPC-NPL algorithm is twofold. Computational burden
is significantly smaller than that of the MPC-NO scheme.
Furthermore, the sub optimal algorithm needs solving
on-line only a quadratic programming problem, which
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can be done within foreseeable time limit. The necessity
of full, non-linear optimisation is avoided.

Neural networks of MLP and RBF types are used as
process models. Having excellent approximation abili-
ties, in comparison with popular fuzzy models they do not
suffer from "the curse of dimensionality", which is troub-
lesome in multivariable cases. Furthermore, unlike fun-
damental models, neural models have simple, reqular
structure. Hence, as detailed in the paper, they can be
easily incorporated into the described MPC algorithms
and efficiently used on-line. Neural models directly des-
cribe input-output relations of process variables; nume-
rical problems typical of MPC algorithms with funda-
mental models are not encountered.

MPC algorithms whose simulation results are presen-
ted in this paper use MLP neural models. From a control
engineer's perspective, as detailed in the previous para-
graph, both structures can be used in MPC, compare [17]
and [19]. On the other hand, MLP networks are global
approximators whereas RBF networks are local approxi-
mators. Itis because in the first case all hidden nodes are
used to calculate the output for a given input, in the
second case only selected hidden nodes are employed,
otherisinactive. It affects training, i.e. for MLP networks
itis impossible to establish a link between available data
and parameters of hidden nodes. As a result, such net-
works are usually initialised randomly, training (a non-
linear optimisation task) is difficult, time consuming and
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likely to stop in shallow local minima. Conversely, train-
ing of RBF models is much more efficient because para-
meters of basis functions are directly found from avail-
able data. Moreover, selection of the optimal structure of
a RBF model which leads to desired approximation accu-
racy can be included in a training procedure, whereas
selection of the structure of a MLP model is tedious, it
usually needs training many networks [29].

The presented algorithm can be relatively easy exten-
ded to deal with Multi-Input Multi-Output (MIMO) pro-
cesses, similarly as shown in [17]. Moreover, although in
practice stability of the algorithm is usually achieved by
proper tuning of the weighting factors u, , A, it can be
combined with the stabilising dual-mode approach in
which stability is guaranteed [23].
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