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Abstract:

Simple new necessary and sufficient conditions for
robust stability of the positive linear discrete-time systems
with one delay in the general case and in the two special
cases: 1) linear unity rank uncertainty structure, 2) linear
uncertainty structure with non-negative perturbation mat-
rices, are established. The conditions are based on the new
simple criterion for asymptotic stability of the positive
linear discrete-time systems with one delay, proved in the
paper. The considerations are illustrated by numerical
examples.

Keywords: robust stability,
discrete-time, delay

linear system, positive,

1. Introduction

In positive systems inputs, state variables and out-
puts take only non-negative values for non-negative ini-
tial states and non-negative controls.

The conditions for asymptotic stability and robust
stability of positive discrete-time systems with delays
were givenin [1-14, 17].

The main purpose of the paperis to give the quite new
simple necessary and sufficient conditions for robust
stability of linear positive discrete-time systems with one
delay with linear uncertainty structure in the general
case and in two special cases: 1) unity rank uncertainty
structure, 2) non-negative perturbation matrices.

In the paper the following notations will be used:
R - the set of nxm real matrices with non-negative
entries and R’ =R""'; Z, - the set of non-negative
integers. A matrix A=[a;]le R with a,>0 for all
i=1,2,...,n; j=1,2,....,m, will be called strictly positive
and denoted by A>0. Similarly, a vector xe R" with
positive (negative) all components will be called stric-
tly positive (negative) and denoted by x>0 (x<0).

2. Problem formulation

Consider an uncertain positive discrete-time linear
system with one delay #>1 (h is a positive integer)
described by the homogeneous equation
Y= Af@x+A(q)x,, g0, i€Z, (1)
where x,€ R" is the state vector, g=[q,,4>,---,9.,] is the
vector of uncertain parameters,

O=1q:9, €lq, .9, ). q; <q} ., r=12,...m}

()
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is the value set of uncertain parameters and A,(q)
eR, (k=0,h) for any fixed ge Q.

The initial conditions for (1) have the formx_.e R" for
k=hh-1,...,0.

If A(q)e R and A,(q)e R for all ge O then the
solution of equation (1) satisfies the condition xR,
ieZ, ,forany non-negative initial conditions, i.e.
x &R, k=hh-1,...,0. (3)

The positive system (1) is called robustly stable if the
condition lim,_,_x;=0 holds for all initial conditions (3)
and for any fixed ge Q.

It is well known that the positive system (1) is robu-
stly stable if and only if for any fixed g€ Q all zeros z,(q)
(k=1,2,...,i=(h+1)n) of the characteristic equation
w(z,q) = det [2"'],~A4,(q)7" = A,(9)]=0 (4)
satisfy the condition |z,(¢)| <1,k=1,2,...ai=(h+1)n.

The positive system without delay equivalent to (1)
has the form

fH—l A(q)jl 2 qEQ) lEZ+ > (5)

where the state vector X,e R} with 1=(h+1)n and

(6)
Ap(q) O - 0 A (g) X;
I, 0 - 0 0 X
A= v e
0 0 e 0 0 xl»_h+1
L [n 0 i L Xi—h |

The positive system (5) is robustly stable if and only if
w,(z,q) =det(zl, — A(q)) # 0, for |z|>1,vgeQ (7)

It is easy to see that w(z,q)=w,(z,q) (see for ex-
ample [17] for the system without uncertain parame-
ters). Hence, robust stability of the positive system (1)
(with delays) is equivalent to robust stability of the
positive system (5) (without delays).

From the above and by generalisation of known con-
dition for asymptotic stability of positive systems with-
out delays [15, 16] to the positive system (5) with uncer-
tain parameters we obtain the following theorem.
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Theorem 1. The positive system with delays (1) is
robustly stable if and only if the following equivalent
conditions hold:

1) all leading principal minors A(g) (i=1,2,...n=
=(h+1)n) of the matrix

(8)

1, - 4y(9) 0 0 —4,(9)]
-1, 1, 0 0
A(q) =1z - A(q) = oo
I, 0

L 0 _[n ]n i

are positive for all ge Q,

2) all coefficients of the characteristic polynomial of the
matrix S(q)=-A(q), of the form

(9)
s (2.q) = detlzl; — S(g)] = detl(z + DI — A(q)] =

g Aol k
=z + Y a(q):z",
k=0

are positive for all geQ, i.e.
k=0,1,...,a-1.

The aim of the paper is to give the new necessary and
sufficient conditions for robust stability of the positive
discrete-time system (1) with delays in the general case
(with any uncertainty structure in matrices 4,(g) and
A,(gq)) and very simple conditions for robust stability of
the system with linear uncertainty structure, i.e. with

a, (9)>0, vqeQ,

m
Ay(q) = Ao + 24, Ep,,

Tl (10)
A, (q) = Apo + ZlqrEhr,

r=
where A,,e R and E,eR™ (k=0,h, r=1,2,...;m) are
the nominal and the perturbation matrices, respectively,
intwo cases:
1) unity rank uncertainty structure, i.e.

rank E,,=1 for k=0,h, r=12,...m, (11)

kr

2) non-negative perturbation matrices, i.e. E,eR’™
for k=0,h, r=1,2,....m (satisfaction of (11) is not
necessary).

3. Solution of the problem

Let us consider the positive discrete-time Llinear
system with delay 2>1
X =AX, + AyX 5 €2, (12)
where 4, A,e RN

The main result of the paper is based on the following
theorem.

Theorem 2. The positive discrete-time system (12)
with delay is asymptotically stable if and only if the
positive discrete-time system without delay

xi+l=(A0+Ah)xi9 i€Z,, (13)
is asymptotically stable.

Proof. In [14] (see also [13]) it was shown that the
positive discrete-time system with delay (12) is asympto-
tically stable if and only if there a strictly positive vector
A>0 (heRY) exists, such that (A, + A4,— 1) L<O0.

In [18] it was shown that the positive discrete-time
system without delay x,,,=Ax; is asymptotically stable if
and only if there Ae R , A>0 exists, such that (4-1)
A<0.

Hence, the conditions above are equivalent for
A=A,+A, . This means that asymptotic stability of the
positive discrete-time system (12) with delay is
equivalent to asymptotic stability of the positive
discrete-time system (13) without delay.ll

The proof of Theorem 2 is very simple in comparison
with the proof givenin [3].

Generalisation of Theorem 2 to the case of positive
discrete-time systems with multiple delays is given in [7].

From Theorem 2 it follows that asymptotic stability of
the positive system (12) with delay does not depend of
the size of time delay ~>1. Such a kind of stability is
called as asymptotic stability independent of delay.

Moreover, asymptotic stability of the positive system
(13) without delay is equivalent to asymptotic stability
not only of the positive system (12) but also of the
positive systems: x,,,=A,x, + A,x, , ; x,,,=0.54, x, +
+(A,+0.54,)x,, or x,,,=(A4,+A,)x,_,, forexample.

3.1. Robuststability in the general case

By generalisation of Theorem 2 to the positive system
(1) with uncertain parameters we obtain the following
theorem.

Theorem 3. The positive discrete-time system (1) with
delay is robustly stable if and only if the positive discrete-
time system without delay, described by the state
equation

xi+1=D(q)xi: qe 0, ieZ,, (14)
is robustly stable, where

D(q)=A,q)+A,(q)- (15)

From (10) and (15) it follows that D(q)=D,+D,(q)
where

m
Dy = Ay + Apo» Dp(q) = 2q,E,,
r=1

Er = EOr + Ehr'

(16)

The positive system (14) is robustly stable if and only
if all roots z(q) (k=1,2,..,n) of the characteristic
polynomial
w(z,q) = det[zI,—D(q)] (17)

satisfy the condition |z,(¢)| <1, k=1,2,...,n for any fixed
qe0.
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By generalisation of known conditions for asymptotic
stability of positive systems without delays [15, 16] to
the positive system (14) with uncertain parameters and
using Theorem 3 we obtain the following theorem.

Theorem 4. The positive system (1) is robustly stable
ifand only the following equivalent conditions hold:
1) all leading principal minors A(q) (i=1,2,...,n) of the
matrix

D(q)=1,-D(q) =I,~(4(q)+4.(q)) (18)
are positive forallge Q,

2) all coefficients of the characteristic polynomial of the
matrix S(q)=-D(q), of the form
(19)
ws(z,q) = det[zl, = S(q)] = det[(z + )1, = D(q)] =

n n-l k
=z + 2 a(q)z",
k=0

are positive forallge Q,i.e. a.(q)>0,VqeQ,k=0,1,...,
n-1.

Proof. The conditions 1) and 2) are necessary and
sufficient for robust stability of the positive system (14).
These conditions were obtained by generalisation of
known conditions for asymptotic stability of the positive
discrete-time systems without delays, given in [15, 16].
The proof it follows from the above and Theorem 3. l

Lemma 1. If the condition d(q) < 1 for all ge Q
(k=1,2,..., n) where d,,(q) are diagonal entries of the
matrix D (q) does not hold then the positive system (1) is
not robustly stable.

Proof. The proof it follows from Theorem 3 and gene-
ralisation of simple necessary condition for asymptotic
stability of the positive discrete-time systems without
delays, givenin [15, 16]. H

Note that checking of robust stability of the positive
system (1) on the basis of Theorem 4 is very simple in
comparison with application of Theorem 1. This follows
from the fact that the size of the system (14) is extremely
less than the size of the system (5) (equal to
n=(h+1)n).

The conditions 1) and 2) of Theorem 4 can be rewrit-
tenin the form

minA;(g) >0, i=1.2,...,n,

q€0 (20)
minag;(q) >0, k=0,1,....n—1L

g0

For checking the conditions (20) we can apply the
computer methods for finding the minimal values with
constraints of multivariable functions.

3.2. Robust stability in the case of linear unity rank
uncertainty structure

Let us consider the positive discrete-time system (1)
with matrices of the form (10).
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In the case of linear unity rank uncertainty structure
the matrix (15) can be written in the form

m
D(Q) = DO + ZlqrErs q EQ: (21)
r=
where Dy=A,+A,, is asymptotically stable nominal
matrix, ¢=[q.,¢>----4,] is the vector of deviations of
uncertain parameters from nominal values and known
perturbation matrices E,=E,,+E,, (r=1,2,....,m) satisfy
the condition

rankE =1 for r=12,...,m. (22)

The set (2) is m-dimensional hyperrectangle with
L =2" vertices. Let us denote by g, :[qll,qé,...,q,i,],
with ¢! =q orq. =q’ forr=12,...m, 1=12,..L, the
vertices of hyperrectangle (2). Moreover, by D; = D(q;),
[=1,2,...,.L, denote the non-negative vertex matrices,
corresponding to the vertices of the set (2).

Theorem 5. The positive system (1) with linear unity
rank uncertainty structure is robustly stable if and only if
all the vertex matrices D, = D(g;), [=12,..L, are
asymptotically stable.

Proof. Necessity. Necessity is obvious because the
vertex matrices belong to the family {D(q): g€ O} of the
state space matrices of the positive system (14).

Sufficiency. If the matrix (21) has linear unity rank
uncertainty structure then the coefficients a,(q),
k=0,1,..., n—1 of characteristic polynomial (19) are real
multilinear functions of uncertain parameters gq,, r=1,2,
...,;m, and

mina; (¢q) =mina,(q;), k=0,1,...,n—1
q€Q l

From the above and condition 2) of Theorem 4 it
follows that if all the vertex matrices D, = D(q;), [=1,2,
...,L, are asymptotically stable then the positive system
(1) with linear unity rank uncertainty structure is robustly
stable. H

To asymptotic stability checking of the vertex
matrices we can apply Theorem 4 putting D, = D(q;),
[=1,2,...,L, instead of D(q).

From Theorem 5 it follows that robust stability of the
positive system (1) with linear unity rank uncertainty
structure is equivalent to robust stability of L=2"
positive discrete-time systems

x,,=Dx, ieZ, , I=12,..,L=2", (23)

where D; = D(q;) is the vertex matrix corresponding to
the [-th vertex g; of the value set (2) of uncertain
parameters.

3.3. Robust stability in the case of linear uncerta-
inty structure with non-negative perturbation
matrices

In the case of system (1) with linear uncertainty
structure with non-negative perturbation matrices the
matrix D(q) has the form (15), (16) with E.eR™ for
r=1,2,...,m. Satisfaction of (11) is not necessary.
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In such a case q,E . <qE <gq'E, for any fixed
q, €lq, .q,]- Therefore, D(q)eD, for any fixed ge Q
where D,=[D", D] is the non-negative interval matrix
with

m
D™ =Dy+ X4 E,. (24)
r=1

m
D" =D+ X4/ E,. (25)
r=1
Recall that D(q)e D, if and only if d;; <d;;(¢) <dj;,
where d; , d,-}' and d;;(q)are then entries of the matrices
D, D" and D(q) respectively.
Note that the interval matrix D,=[D", D*] is non-
negative if and only the matrix (24) is non-negative.
Robust stability of non-negative interval matrix
D,=[D", D] is equivalent to asymptotic stability of the
matrix D" (see [8, 10], for example). Therefore, we have
the following theorem.

Theorem 6. If the perturbation matrices E,
(r=1,2,....,m) are non-negative, then the positive system
(1) with the matrices (10) is robustly stable if and only if
the matrix (25) is asymptotically stable, where D, and E,
are defined in (16).

4. Illustrative examples

Example 1. Check robust stability of the positive
system (1) with the matrices

B 01+qqu 02“!‘6]2
071 02497 0l+q, [
(26)
04+ 0
4, = a9 ’
0 05+ 919>
with A1, q=[q1,q2]eQ, where
0={q:q, €[-0.1,0.1],4,€[-0.1,0.1]}. (27)
The matrix (18) for the system has the form
D(q) =1, = (4y(q) + 4(q)) =
(28)
_ {0-5 0 -9  02-q, }
—02-g;  04-¢,-q4

Computing the leading principal minors of the matrix
(28) we obtain

A(q) =05-q195 — 4,
A,(q) =det D(q) =0.16—0.5¢, — 0.6q, +0.1g,q, —

2 2, 22
-02g7 +q195 + 4195

The minimal values of the above functions with ge QO
are as follows:

0 =minA,(g) =039, 3, = minA,(g)=0.0501,
q€0 q€0

where minimal values are assigned for g,=¢, =0.1.

Hence, the leading principal minors of the matrix (28)
are positive and the system is robustly stable, according
to Theorem 4.

Example 2. Check robust stability of the positive
system (1) with the matrices

_ 01+(I2 02+CI2
102+q, 01+q [
(29)
04+ 0
4, = 9> ’
0 05+ ¢,
with h>1, g=[q,,q.]€ O, where
0={q:q,€]-0.1,0.1],4,€[-0.1,0.1]}. (30)
The matrix (15) for the system has the form
(31)
D@) = Ao(q) + 4,(q) 05+2g, 02+¢q,
= =+ = =
7 DrD = 0249, 06424,

=Dy +q,E +q,E,,

where

L _[0502]  foo] 21 2
=102 o6 B17|1 2 B27]0 of ¢

The nominal matrix D, is asymptotically stable (all
eigenvalues have absolute values less than 1); the
perturbation matrices have unity rank uncertainty
structure with non-negative entries. To robust stability
checking we can apply Theorem 5 or Theorem 6.

First, we apply Theorem 5. The set (30) has the
following vertices: ¢q; =[-0.1,-0.1], g, =[-0.1,0.1],
73 =101,01], g4 =[01,-0.1]. The corresponding
vertex matrices have the forms

B 03 01 B 0.7 03
Dy = D(q) = 01 04,D2=D(612)= 01 04l
B 0.7 03 B 03 01
Dy=D@)=| 5 oob Do=D@)=| .|

The matrix D5 = D(g3) has eigenvalues: 0.4459 and
1.0541. Because one eigenvalue is greater than 1, the
matrix D; = D(g3) is not asymptotically stable. From
Theorem 5 we have that the system is not robustly stable.

Now we apply Theorem 6. Computing the matrix (25)
we obtain

D+ =D0+qf—E1 +q;E2 =D0+0.1(E1 +E2)=D3.

The matrix D*=D, is not asymptotically stable,
hence from Theorem 6 it follows that the system is not
robustly stable.

5. Concluding remarks

Simple new necessary and sufficient conditions for
robust stability of the positive discrete-time linear
system (1) with linear uncertainty structure in the
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general case (Theorem 4) and in two special cases: 1)
unity rank uncertainty structure (Theorem 5), 2) non-
negative perturbation matrices (Theorem 6), have been
given.

These conditions are based on the new simple
criterion for asymptotic stability of the positive linear
discrete-time systems with one delay (Theorem 2).

The proposed conditions are very simple in
comparison to the existing conditions for robust stability
(see Theorem 1 and paper [5], for example).

The considerations can be generalised to the positive
discrete-time systems with multiple delays, using the
results of the paper [7].
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