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Abstract:

In this paper a very simple method of the visual
information interpretation for recognition and navigation
purposes is presented and discussed. The proposed method
consists of six steps: image acquisition, edge detection,
fast edge vectorization using a high number of short
preliminary vectors, aggregation of the preliminary vectors
into the form of final vectors. The next stages of the visual
information interpretation for recognition and navigation
purposes will be description of the objects' shapes by means
of the final vectors, object recognition and/or robot
navigation on the base of comparison between actual
shape description and templates memorized during the
programming/training process, but they are not discussed
in this paper. The main advantage of the proposed method
is a simple and time-effective algorithm, which can be
performed in real time also by a simple and cheap
processor, working as a “brain” of the considered robot.

Keywords: robot vision, surroundings recognition, real
time navigation, edge detection, raster image vectorization

1. Introduction and reasoning behind the

robotic navigation

For decades, autonomous navigation has been one of
the primary objectives of robotics. A few samples of
surveys of the area available could be [4], [11] and [12].
This is no wonder considering the fact how large portion
of our time is taken by simple tasks of going to a certain
place to perform some tasks there. Delivering items from
one place to another is probably the most common task
performed by people all around the world.

1.1. Robot navigation and navigation with vision

Of course, mobile robots have been around for quite
a while, almost from the beginning of robotics. Robots
are well prepared to carry out strict orders (e.g. go
forward 10 meters, then turn left 60 degrees and con-
tinue forward another 5 meters). Such precisely defined
tasks, they can carry out very well, usually even much
better than humans. Unfortunately this simple scheme of
the mobile robot activity is possible only in stable
environment, without any moving obstacles or topo-
graphy changes. When we consider more casual order
(e.g. take this bag, go outside turn left after a red bin and
drop it at a pile near the bench there) we will come to the
conclusion that this is near/almost impossible to be
performed by any given robot available today.

To find out why the abovementioned order would be
so difficult to carry out by a machine (while no human
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would have much problems with it) lets analyse it.

The first part (‘take this bag') does not seem to pose real
problem as long as the machine can understand that 'this'
means an object of certain type that is placed most
probably between it and the speaker. The second part
('go outside') is however probably the most difficult to
understand. This requires that the machine understands
human concept of buildings and places, some being
external to another. Outside may, depending on context,
mean: “go outside the room” or “go outside the buil-
ding”, possibly some other options as well. Assuming the
machine can understand this concept, it must also
understand how to get outside which usually includes
finding a door and opening it. Then, to continue with
carrying out the order, the machine would need to
understand how 'a bin' look like, especially 'a red bin' and
how to identify 'a pile'. Generally, to put it in a short
phrase, the machine needs video-feedback and must
understand what it sees. Full description of the meaning
of term “Automatic understanding of the images” is
givenin book [17] and paper [18].

Now, one could say that there is no need for such high
level understanding that it would be sufficient to enter
a map of surrounding environment into the robot's me-
mory and just identify a few important landmarks that will
let the machine correctly calculate its current physical
location [2], [3]. This is true such applications already
exist. But they are not really feasible for general use
because of several reasons. One is the amount of work and
skills required to produce such map and configure it with
the machine. The second issue is the inflexibility of such
map - whenever the environment changes (e.g. a path is
blocked or a landmark is removed) it has to be manually
updated to reflect the changes. Last, but not least, such
maps are only useable for the specific place, and do not
allow the robot to be moved to e.g. another office.

1.2. Objectrecognition

Therefore, to construct a versatile robot, able to navi-
gate in common environment, it seems necessary to
introduce a method that will let the machine understand
its surroundings - and this means correctly recognize
objects and their relative placement in the observed area.
A good starting point for investigating object modelling
could be [1]. The key to the success is the ability to
identify these objects regardless of their observed size
and position. This ability is usually referred to as scale
and view portinvariance, and has been drawing attention
of researches for many years now [8], [15]. To add diffi-
culty to the task, the observed objects can be partially
occluded and yet the recognition process must be able to
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deal with them. This usually involves analysing the scene
from differentangles [6].

The current approach to object classification and
scene understanding usually utilizes a scene segmenta-
tion (with a good comparison of recent methods avail-
able in [14]), followed by an attempt to reconstruct the
shape of the observed objects [7].

1.3. Considerations for the processing of video data

Having decided on the desirability of the vision based
on navigation it is now time to look for methods that
could help get us closer to this goal. The primary ad-
vantage, and yet a major problem is the amount of data
available. Video data streams are extremely large compa-
red to other sensorinputs. The number of distinguishable
points (i.e. pixels) in each data frame can mount up to
a million or more and the real-time processing requires to
process at the very least a few frames per second. So there
are a few megabytes per second of data to handle. When
we consider the task of analysing the picture pixel-by-
pixel, comparing them to the past data and the other
parts of the picture and reconstructing the objects
present in the scene, this is the task that will exceed the
capacity of CPUs for yet many years to come.

Therefore, to approach the target we set, which is
autonomous navigation, the stream of processed data
must be reduced to the level that will allow effective
computing.

One of such approaches, that seems attractive is the
vectorization; i.e. transformation of the observed scene
into a set of discrete lines, and then using these lines to
identify the objects they represent.

Actually, the vectorized models are already quite
commonly used for computer graphics and animation.
Vector models are used for rendering, giving us movies
and computer games. Of course it's much easier to build
a raster type image from vector objects and textures,
than guessing the spatial model of the objects from the
observed scene. Nevertheless, if this is achieved, it would
help greatly in getting us closer to the goal - which is the
ability to identify correctly all objects and their location
within the observed scene.

Table 1. Vector versus raster images comparison (for the
purpose of recognition).

raster images vector images
object shape hard to determine easy to determine
object textures present usually removed
detail level high usually small
details are
removed/omitted,
small

amount of data large

It must be mentioned, that the vectorization of raster
images is not a novel subject. It has been used widely for
various purposes, especially for storing maps, blueprints
and technical documentation that was only available in
paper form. Vector images are scalable and require less
space than their raster equivalents, it is therefore desir-
able to store documents in the vector form if possible.
However the algorithms that have been developed for

such uses are focused on quality of the representation
while the speed of processing is not an important factor.

A vectorization of an image done in a few seconds is
considered as a very good result while some algorithms
tend to take minutes to complete. This is acceptable for
an off-line document handling, but by no means is
suitable for analysing of a video stream. While processing
the video stream, the quality of a single vectorization
process has to be sacrificed in favour of its speed.
Because the usual video processing involves a series of
frames that tend to be very similar one to the other,
comparing the results from several consecutive
operations can compensate the relatively lower quality of
a single vectorization process. Then, by using statistical
means a very good representation of the reality can be
achieved.

1.4. Thevectorization approach

Having decided on the benefits of vector approach to
video processing, we have put that idea to a test. Our
long-term goal is to build a robot that will be able to
navigate in an unknown environment and identify the
objects around. Of course, identifying objects may not
always be possible, due to known issues like occlusion,
therefore the robot is supposed to move around, trying to
get a view on the objects that will let it match them with
the internal database and allow recognition with an
acceptable level of certainty.

The whole recognition process has been split into the
following major phases:

e vectorization of the retrieved video stream

® shape extraction and matching with database

® move action

During the vectorization phase each incoming frame
is translated into a set of vectors that represent the edges
found in the frame. These vectors are then grouped into
shapes that are matched against definitions of objects
known to the robot (stored in its local database). The
matching algorithm then has to decide whether some
objects have been recognized with acceptable certainty
and identify objects (or parts of the edges) that the robot
is not able to identify. At the last stage the robot is
supposed to take an action by moving around to get
a better view on the objects that were not yet identified
and in the end to be able to reconstruct a spatial repre-
sentation of the observed scene.

For testing of the scenario described above, we have
built a simple mobile platform with a camera, connected
via radio link to the backing machine which process the
incoming data and controls the robot's movements.
A photo of this device is presented below in Figure 1:

Fig. 1. The mobile robot used for experiments.

Articles



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°2 2008

This paper will present the first phase of the proposed
method; i.e. the fast vectorization algorithm that can be
used to detect shapes - and ultimately to reconstruct
avirtual model of the observed scene.

2. The vectorization process

As mentioned before, the process of transforming
raster data into a set of vectors must be as fast as possible
to keep up with a real-time performance requirements.
To facilitate that, the process must be streamlined,
preferably based on single-pass algorithms at the stages
when large quantity of data is processed. There are also
a few arbitrary constrains introduced. These are related
to the type of data we are extracting from the image.
Because of its nature, vectorized graphics are best suited
to represent the boundaries (also referred to as edges) of
the objects. Although the information about texture may
also provide valuable data, the scope of this paper is
focused on the exploitation of the objects shapes and
therefore is limited to processing the edges observed in

Fig. 2. Sample results of a few edge-detector algorithms.

Edge detection algorithm

the scene. Therefore the whole process of vectorization is
divided into three stages: edge detection, vector crea-
tion and vector merging. These will be described in detail
below.

2.1. Edge detection

This stage of the processing is responsible for extrac-
ting the edges from the image. This is a task that has
been given a considerable attention by researches al-
ready, as edge detection has been used for other various
tasks in image processing and recognition.

For the purpose of proposed vectorization the Canny
algorithm has been selected as it provides reasonable
output, suitable for further processing with a relatively
low number of artefacts in the resultant picture and
continuous lines. For a comparison, a few algorithms with
the results of their run have been presented in the Figure
2 below. Further information and performance compa-
rison of edge detection algorithms can be found in [9].

Canny

Perwitt

Zero crossing
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As it can be observed in Figure 2, the Canny algorithm
produces a good quality output, with least edges unde-
tected and lower number of 'artefacts'. The number of
artefacts (or a 'noise") in the resulting picture has much
impact on the performance of the vectorization process,
so the processing parameters must be adjusted to limit
their number, even at the cost of some real edges being
omitted in the resultant image. This image is then used
for the second phase of the process.

2.2. \Vector creation

Creating vectors even from an image that consists of
lines is not a straightforward task. This is because there is
no deterministic algorithm that would describe how to
translate set of pixels into a set of vectors (on the con-
trary, translating set of vectors into a set of pixels is
asimple, deterministic task).

The same set of pixels can be translated into many
equivalent sets of vectors, but of these the most attrac-
tive for further processing are these that contain less in
number, but longer vectors. Unfortunately, creating qua-
lity, long vectors requires a lot of computations, espe-
cially when taking into the account the fact that lines
on the processed image can be slightly distorted or
damaged.

To counter this problem, a two-phase method has
been introduced. In the first phase, the image is searched
for straight, continuous lines. This constrain allows
usage of a single pass algorithm which is an important
advantage. In the second stage, the algorithm analyses
the vectors found and tries to merge them together to
form longer lines.

The algorithm that creates initial shorter vectors
starts by making a copy of the initial image. The purpose
of this copy is to hold the information about pixels that
has not yet been assigned to any vector. Any vector, that
will be find later on, will have all the pictures that consti-
tute it erased from this image copy.

The algorithm then starts its cyclic routine with
locating in the image copy the first available pixelin the
'on' state. This pixel will be a base for vector search.
An initial vector is constructed with the following para-

meters:

X
7, :{ 0ay0:| (1)
anyO

As a next step, the surrounding of the picture is
searched for other 'lit' pixels, and if found, a number of
hypothetical vectors v, :V,,,...V, ~are constructed.
These all vectors start in the base point but have different
ending points.

The algorithm then repeats recursively the search,
trying to extend each of these vectors at their ends. For
each path, a complete tracking path is kept, described by
all merged pixels (2), with new pixels being added at the
end. Each vector V,, is constructed with a number of
pixels; therefore its construction path p; will consist of
a number (i) of pixels: "

b5 = [(X05 V0)s (X,15 V1 )sewes (X5 ,0)] (2)

Each time the new point is added to the hypothetical
vector, there is a check made against all pixels that have
been added so far - to find out if they altogether still
constitute an acceptably straight line. This is done by
measuring the distance between the hypothetical vector
and each pixelin the tracking path (3)

Vk=0..i ®3)

‘yo =YX =X, (P _px0)+py0 -
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If the distance between the created hypothetical
vector and one of the pixels constituting it is larger than
the predefined constrain, the last pixel added is removed
and the building of this particular vector ends at this
point. Figure 3 presents a sample pixel layout and the
vectors that will be build (solid black line) together with
vectors that will be rejected due to too large distance to
one of its pixels (dashed line):
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Fig. 3. Sample results of vector construction with the
described algorithm.

The value of the maximum allowed distance (d,,.)
between the constructed vector and the pixels that con-
stitute it has a great impact on the vectorization process.
Depending on its value, different results can be expected
(based on experimental results):

Table 2. Results of using different max distance parameter.

max distance time required vectors
d... for vectorization characteristic
<0,5 short short, usually
a few pixels only
0,5-0,8 average average length
>0,8 long, strongly long, over
increasing with d__, 10 pixels
Articles
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To achieve a short processing time, while not
sacrificing the quality of the results, is the best is to
adjust dynamically the d,, value while constructing the
vector. Starting with a small value of 0.5 and then
increasing it to 0,85 as the vector length grows over
4 pixels. As a final step, an attempt is also made to
extend the vector in the direction of the starting point.
This is done by repeating the procedure described above,
but with the ending and staring points swapped:

All pixels that belong to the tracking path of the
constructed vector are then removed from the copy of the
image, in order to prevent them from being used as
a starting point for another vector search (because this
will most likely result in the same vector being con-
structed again).

2.3. Vector aggregation

As it was mentioned before, the first phase results in
creating a large number of relatively short vectors. Beca-
use of the nature of raster images and edge detection
algorithms, artefacts like missing or misplaced pixels are
to be expected. The algorithm described above does not
handle misplaced pixels well, it stops on missing pixels,
so naturally the result of this stage of processing is far
from what one would expect from a quality vectorization.

To cope with missing pixels, the algorithm would
need to extend the search for the constructed vector,
which would lead to extensive computation increase.
Instead another approach has been taken - the short
vectors are merged together in the second stage of the
vectorization. This solution generates much less compu-
tational overhead, as it requires only to perform compu-
tations on a (usually) few thousands of records that were
the result of the first stage. The algorithm that will be
presented also provides other means to further narrow
down the number of vectors processed, thus greatly
improving the overall performance.

The aggregation algorithm picks up vectors from the
source list and tries to merge or join them with another
one on the list. To reduce the number of computations,
initially the vectors in the source list are transformed
into another form (4).

VZ[xo’yo}z[xc,yc,oc,l] (4)

xe’ye

So vectors are now defined by their centres, angle and
length (instead of position of beginning and ending
pixels). The angle is calculated against the vertical line
going through the centre of the vector (asin Figure 4).

The algorithm picks up the vectors from the initial
lists, starting with the longest vector available. This
approach assures better quality of the resultant vector, as
longest ones are most likely to represent real edges of the
objects in the image and not the artefacts. Then the
aggregation is performed by two means: joining another
vector (which results in extension of the original one) or
by merging another vector which is small enough but
matches the constructed vector position and direction so
well that it can be discarded without real loss of infor-
mation. Both of these processes start from a common
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stage, which is defining the search range for the vector v,
as explained in Figure 4:
Ib
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M

rbmux
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lb minY
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Fig. 4. Search region for vector aggregation.

As marked on the picture, the area used for searching
of neighbourhood vectors is defined as a rectangle cen-
tred with the analysed vector, with size based on two
parameters:

m, - the distance orthogonal to the vector axis, usually
the size of a few pixels and,

m, - which defines the maximum margin aligned with the
vector axis. This parameter has a value calculated as
half of the length of the analysed vector plus a few
pixels.

Because (as it was stated before) the aggregation of
the vectors is done by descending order on a length-
sorted table of initial vectors, there is a guarantee that
the joined vector will not be longer than the vectorv,.

For the performance reasons, two additional sorted
sets are created before starting the aggregation proce-
dure. These are lists of source vectors sorted by the
position of their centres (x and y respectively). By uti-
lizing these two lists, the algorithm can quickly locate
the potential candidates that fit into the defined region.

The algorithm now gets into the stage when it looks
for best candidates to extend the analysed vector. For
this purpose, a quality function Q is constructed which
describes how well the proposed candidate matches the
analysed vector. There are three key factors taken into
account when calculating this function:

- Thedistance between the end points of the candidate
and analysed vector. The closer they are to each
other, the higher chance they in reality were parts of
the same line, so the @ function is adjusted
accordingly.

- The length of the vector candidate. It's better if two
longer vectors can be joined so this must be reflected
in Q function.

- The difference in angles between vectors. This
relation actually depends on the length of the vector
candidate. A two pixel vector can be even orthogonal
to the analysed vector and yet be joined without
much error, but the longer the vector candidate, the
more the angles (between the vector and the
horizontal line) must match each other.
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As a result, the following function Q, to measure
quality of matching has been proposed (5). The function
value is proportional to the length of the vector candi-
date and the distance between the ends of the vectors,
but includes an exponential negative punishment for the
difference in vectors' angles. This results in longer and
close to each other vectors being promoted for merge,
but with a very strong emphasis on forming a common
line.

(5)
I, 1 1o, —otg sl
7 gy e D] syt el o)
Qd _lq a vdist 2 2 b 2
where:
[, 1, length of the vector candidate (v,) and base (v,)
vector,

a,a, angleofthev. andv,,

v,  distance between the centres of the vectors,

a, angle of the line that goes through both vector
centres,

a,b  experimentally adjusted parameters.

After the value of Q is calculated for all the vector
candidates, the one with the highest value is chosen for
join, but only if the value of Q exceeds a predefined value
Omax. This last constrain is necessary to eliminate join
actions on formally best matching pair if the matching
quality is so low that they should not really be joined.

The joining of the vectors is performed by creating
a new vector with end points in the end points of the
joined vectors that are not close to each other. Both
vectors that have been joined are in turn removed from
the list.

As a last step of the aggregation process, the algo-
rithm looks for vectors that could be merged with the
newly constructed one. These are short vectors that are in
line with the constructed vector and are in most part
covered by it.

To find out if the vector can be matched, again a qua-
lity function is calculated. First, the distance between
the centres of the constructed vector and the candidate
for merge are calculated as noted in (6):

md = \/(va _vtx 2+ (vOy _vty Z*Sin(B) (6)

then, the Q,, function which is de-facto the maximum
distance between the vectors (7):

Qm = md + (7)

1 )
5 *[ *sin(o)

Finally, if the value of Q,, is less than some predefined
value (e.g. 2 pixels), the vector is merged which means
it's just deleted from the list (as it is assumed that it does
not carry valuable new information).

3. Shape estimation

All steps of the image analysis and processing, des-
cribed in previous chapters, leads to estimation of shapes
for all-important objects presented on the processed ima-
ges. This is currently a work in progress, so just a general

overview will be given here. On the contrary to object re-
cognition based on object features (as for example pro-
posed in [13] and [16]), vector based images are better
suited for shape analysis. This is obvious considering
the fact vectors composing an image usually represent
objects edges.

A technical difficulty arises however when analysing
data from consecutive frames. Even if the camera and the
scene is still, the set of vectors generated for each frame
will be different due to the noise and slight differences in
illumination. The same line may be represented by
different number of vectors on two consecutive frames.

This issue can be overcome by utilizing probabilistic
methods, which calculate the probability of certain line
presence in certain place over a range of data from
consecutive frames. Similar techniques are already used
[10], and there are several methods (e.g. particle filtering
[15]) that are widely used. The algorithms available are
however designed so far for raster data, thus the vector
approach needs its own set of methods that are currently
being implemented.

The next step planned is to calculate the relative dis-
placement of the lines present in the image, and by this
retrieve information about relative movement of the
camera against the scene. This information can also be
used for a second pass of probabilistic model update,
increasing the certainty of lines estimation.

Finally lines with their displacement when compared
against the movement of the camera will allow for the
reconstruction of the third dimension and can be used to
match with the objects stored in the database to identify
them.

4. Concluding remarks

The presented method of fast vectorization has been
tested on some representative examples and it was
proven that the proposed algorithm works. Figures 5 and
6 demonstrate the results of the proposed vectorization
algorithm.
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Fig. 5. Example of the vectorization of an artificial scene.
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Fig. 6. Vectorization results of a real scene.

The algorithm was proven to be effective, with the
results of only 141 vectors created for the scene in Figure
5 and 345 vectors for the scene presented in Figure 6.
Moreover, the algorithm has proven to be really fast in
the real experiments. On a recent PC-type machine with
a 2GHz processor the vectorization time of one frame
(512x384 pixels) is less than 1 second. This is quite
enough to achieve real-time actions of the mobile robot
in a real environment of course when the robot does not
move too fast. Considering the fact, that this is only
a reference implementation, without optimisations, and
a lot of overhead included for clarity and manageability
purpose, it can be assumed, the performance results can
be improved further. Moreover when all the algorithms
mentioned above are tested and proved properly using
software implementation described here, it will be possi-
ble to made hardware implementation of such algorithms
using e.g. FPGA technology.

Right now however our priority is to improve the
efficiency of the shape extraction and matching algo-
rithm, which proved to be a bottleneck for real-time pro-
cessing. We hope that we will be able to overcome them
and publish the results of these shortly.
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